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ABSTRACT

In modern automatic speech recognition systems, it is standard prac-
tice to cluster several logical hidden Markov model states into one
physical, clustered state. Typically, the clustering is done such that
logical states from different phones or different states can not share
the same clustered state. In this paper, we present a collection of
experiments that lift this restriction. The results show that, for Au-
rora 2 and Aurora 3, much smaller models perform as least as well
as the standard baseline. On a TIMIT phone recognition task, we
analyze the tying structures introduced, and discuss the implications
for building better acoustic models.

Index Terms— automatic speech recognition, acoustic model-
ing, phonetic decision tree

1. INTRODUCTION

The basic unit of modern acoustic models for large vocabulary com-
puter speech recognition (LVCSR) systems is the 3-state triphone
hidden Markov model (HMM). To represent all possible sequences
of phones, there should be one HMM in the acoustic model for every
possible center phone label, in every possible left context and right
context. Since a typical system may model 44 different phonemes,
this means a complete acoustic model would contain a total of over
255 thousand HMM states in 85 thousand triphone models.

Even today, there is not enough transcribed acoustic data to
properly train an acoustic model with 255 thousand HMM states.
Tree-based state tying [1] was invented to address this issue, and is
still in use today. We call the theoretical HMM states that should
exist in a complete acoustic model logical states, and the concrete
shared states that they refer to as clustered states.

Typically, the logical states that share the same clustered state
all belong to the same state of the same center phone. A clustered
state associated with state 2 from one HMM will never be associated
with a different state of the same or any other HMM. A clustered
state associated with the center phone “ah” will ever be associated
with any other center phone. This design feature is based on the
assumption that there is no benefit from clustering different phones
or different states together, although the literature contains mixed
results [2, 3, 4].

This paper explores the result of using conventional tree-based
state tying, but allowing cross-center phone and cross-state cluster-
ing. The result of using this global decision tree is an acoustic model
that better describes the acoustics of the training data, without arti-
ficially partitioning the acoustic space. Where a similar system was
constructed in [4] to address sloppy conversational speech, the cur-
rent experiments demonstrate how it can be more generally useful.

This paper is organized into four sections. In Section 2, we dis-
cuss the clustering method used for this paper in more detail. Sec-
tion 3 demonstrates the system behavior on three different tasks: Au-
rora 2, Aurora 3, and TIMIT. Aurora 2 and Aurora 3 are both con-
nected digit recognition tasks, and cover five different languages. In
all five languages, the global decision tree automatically identifies
and clusters similar sounds. The resulting models are much smaller,
more efficient, and no less accurate. Results on the TIMIT phone de-
coding task are also presented, including an analysis of the resulting
cross-phone and cross-state tying that the tree learns from the data.
Finally, our conclusions are discussed in Section 4.

2. METHOD

The standard way of clustering logical HMM states together is to use
a set of phonetic decision trees. One tree is built for every state of
every center phone. Each of the trees starts with all possible pho-
netic contexts represented in a root node. Then, a binary question
is chosen that best splits the logical states represented by the node
into two child nodes. Whichever question creates two new clustered
states that maximally increase the log likelihood of the training data
is chosen. This process is applied recursively until the log likelihood
increase is less than a threshold, at which point a final agglomerative
clustering step is performed. The choice of threshold is important,
because it directly affects the depth of the tree, and therefore the final
size of the acoustic model.

In this work, we do not use a different decision tree for every
context independent phone state. Instead, we use a single phonetic
decision tree that starts with all logical states in the root node. For
each task, we augment the question sets with the extra questions
needed to separate all of the logical states for the task. In this way,
although the training algorithm is able to cluster the states in the
standard way, it is not compelled to.

Another difference between the results in this paper and the
usual method is the amount of look-ahead. Usually, each question is
evaluated by looking at the likelihood increase induced by its direct
children. In this paper, we use a two-step lookahead so that each
question is evaluated by calculating the likelihood increase if we use
that question, and then make the best possible decision for the next
two levels of the tree. As a result, adjacent levels of the tree are able
to cooperate and find a slightly better solution.

3. RESULTS

Here we present an analysis of the method on three different standard
recognition tasks.
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clean train, set A test
States Clean SNR10 Average

180 99.63 72.57 63.28
178 99.65 72.21 62.86
169 99.62 71.31 62.39
159 99.67 71.51 63.40
142 99.63 70.85 62.61
128 99.64 70.79 62.94
109 99.55 68.00 60.68
94 99.54 69.71 63.64

Table 1. Word accuracy of Aurora 2 system trained on clean data. As
the model size decreases, word accuracy drops. Models with much
fewer states than the baseline perform almost as well.

multi train, set A test
States Clean SNR10 Average

180 99.48 91.96 97.24
175 99.44 91.96 97.27
168 99.49 91.93 97.14
161 99.46 91.90 97.16
148 99.38 91.86 97.07
134 99.31 91.86 97.12
119 99.35 91.67 96.95
105 99.22 91.38 96.65
80 99.13 90.82 96.14
60 98.57 90.07 95.67

Table 2. Word accuracy of Aurora 2 system trained on multi-style
data. Accuracy and model size exhibit the same pattern seen with
clean training data.

3.1. Aurora 2 Results

The Aurora 2 task [5] consists of recognizing strings of English dig-
its embedded in a range of artificial noise conditions. The stan-
dard Aurora 2 acoustic model contains eleven sixteen-state whole
word HMMs, a three-state silence model, and a one-state short pause
model.

This model topology is easy to generate, but likely suboptimal.
For instance, the initial sounds of the word pairs (six, seven) and
(four, five), although acoustically similar, are modeled separately.
Furthermore, although the task contains both short words like “oh”
and long words like “seven”, all models are sixteen states long.

Whereas digits are a special case where solutions can be hand-
optimized, the global decision tree used here is data-driven and can
be applied to any system incorporating whole word models. Any
acoustic redundancies should be automatically found and incorpo-
rated into the acoustic model topology.

Questions for this English digit model consisted of word-id
questions and state-id questions. The word-id questions were of the
form “is the current word in this class”, where the set of all possible
one and two word classes was hypothesized. The state-id questions
were chosen to be “is the current state greater than or equal to n,”
where n was able to take on values between 3 and 17.1

As mentioned in Section 2, the threshold chosen to control
the size of the tree directly affects the final size of the model. Ta-

1Valid state numbers for this task range from 2–17 for each of the eleven
digit models, 2–4 for the silence model, and 2 for the short pause model.

bles 1 and 2 show how recognition accuracy changes with model
size (number of clustered states). Word accuracy is shown on three
partitions of the data: on clean test data, on test set A with 10dB
signal to noise ratio (SNR), and an average accuracy. There is only a
slight degradation in accuracy at a level of 140 shared states, which
represents a model compression of 25%. Even with as few as 120
shared states (33% reduction) shows only a minimal loss in accuracy
over the demonstrated test data.
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Fig. 1. The first nodes of the clean model Aurora 2 global state-tying
decision tree.

Figure 1 represents the first few levels of the tree learned from
clean training data. This part of the tree was identical for all of the
systems reported in Table 1.

The root node asks the question that splits every word’s HMM in
half: “Is the current state greater than or equal to 8,” abbreviated as
“S:S8”. If the question is false, the data proceeds to the left, and the
next question is whether the current word is in the class that contains
“SIL” and “SP”, abbreviated as “C:SIL SP”. If it is not, then an-
other split happens at state S5, which allows the question “C:FOUR
FIVE” to cluster the first states of those two words together. All
this is done automatically, without linguistic or phonetic knowledge.
Notice also that even though the tree is just three levels deep, it has
already isolated the final state of the silence model SIL S4.
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Fig. 2. An example of logical states clustered across four of the
words in the Aurora 2 task.

Figure 2 shows how the clustered states are shared among the
logical phones from four of the acoustic models in a clean trained
acoustic model with 142 clustered states. Each row in the figure
represents one of the whole-word HMMs, and each circle is one of
its logical states. Groups of states joined by lines indicate they all
map to the same clustered states.

In the model, there are quite a few HMMs where adjacent states
are clustered together. This is probably an indication that the original
model had too many states, and that the superfluous parameters have
been eliminated automatically by the clustering process.
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Compression Ratio
Language Condition 0% 25% 50% 75%

Danish hm 54.26 55.37 57.34 54.18
Danish mm 77.47 78.26 77.60 77.21
Danish wm 91.12 91.27 91.16 90.66

German hm 84.32 84.64 84.04 83.40
German mm 82.94 83.31 82.14 81.04
German wm 93.31 93.33 92.84 90.70

Spanish hm 73.08 73.56 71.20 67.97
Spanish mm 89.41 89.87 89.35 89.10
Spanish wm 94.44 94.39 94.12 94.12

Finnish hm 65.19 67.67 66.40 64.66
Finnish mm 83.45 83.58 82.97 80.51
Finnish wm 93.84 93.93 93.82 94.14

Table 3. Word recognition accuracy for Aurora 3 systems in all four
languages and thee conditions. As the compression ratio increases
from 0% to 25%, the accuracy stays the same or increases slightly.

There are also examples of similar sounds in different words
mapping to the same clustered states. The initial sounds of ”SIX”
and ”SEVEN” share the same states, as well as the final sounds of the
models for ”ONE”, ”NINE”, and ”SEVEN.” Additionally, ”NINE”
and ”ONE” share the same initial state. There is no good reason for
this cluster, and it can probably be blamed on over-zealous cluster-
ing.

3.2. Aurora 3 Results

The Aurora 3 task is similar to the Aurora 2 task in many ways. It
consists of recognizing strings of digits recorded in noisy car en-
vironments in four European languages (Danish, German, Spanish,
and Finnish). Like Aurora 2, the baseline models are sixteen-state
whole word models for each digit, in addition to the silence and short
pause models.

The question sets for each language of the Aurora 3 task were
generated in the same way as the question set for the Aurora 2 task.
That is, both word-id and state-id questions were asked. The classes
for the word-id questions were automatically generated from all pos-
sible subsets of the vocabulary with one or two class members.

Table 3 shows complete Aurora 3 evaluation results for four dif-
ferent model sizes. When training each of these models, a thresh-
old was chosen to create models with up to 75% fewer clustered
states than the original, unclustered acoustic model. For each of
the four languages, three digit accuracies are reported corresponding
to three different training conditions. For high-mismatch (hm), the
training data is much less noisy and reverberant than the test data.
In the well-matched (wm) condition, both the training and testing
data contain the same mix of more or less noisy data. Finally, the
medium-mismatch (mm) condition contains different noise condi-
tions for training and testing.

With 25% fewer clustered states than the baseline model, eleven
of the systems are actually better than the baseline, with one (Span-
ish, well-matched) being insignificantly worse.

It is more surprising that, for most cases, even at a 50% com-
pression ratio, the word accuracy is not significantly degraded. In
fact, all of the German models are much better than the baseline
at this size. This is a good indication that the baseline models had
too many states. They were learning patterns and distinctions in the
noisy training data that did not generalize well to the testing data.

Class Members

Anterior w l el z s dh th v f en n d t m b p dx
EVowel ey eh ae
Fricat dh th jh ch v f zh z sh s

iy iy
Liquid hh y w r l el

Medium l el eh ae ow ax ah er ey
UnStrident w y r l el ng g k en n d t m b p dx

Vowel oh ax ah ow aw iy ey oy ay er uh uw aa ah
ae ao ih ix eh ae ix

Short oh uh ax ah aa oy ay ih eh ah ey ae ix

Table 4. A subset of the phone classes used in our TIMIT experi-
ments.

3.3. TIMIT

The TIMIT corpus [6] provides 3696 utterances for training and
1344 utterances for testing. In addition to the acoustic data, it also
includes detailed phonetic transcriptions for each utterance. For our
tests, we use use the convention of Hon and Lee [7], training mod-
els for 48 different phones and then mapping down to 39 phones for
scoring purposes. Recognition was performed using standard Viterbi
search with a bigram phonetic language model.

The question set explored during the clustering included ques-
tions about the current state, about the current center phone, and
about the current left and right context phone class. In contrast, a
standard system would only use the context questions. We used a
total of 109 phonetic classes to generate the questions, a subset of
which are shown in Table 4.
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Fig. 3. The first nodes of the TIMIT global state-tying decision tree.

Figure 3 shows the initial nodes of the global decision tree gen-
erated on TIMIT data. Near the top of the tree, most of the ques-
tions are being asked about the class of the center phone, or the state
number of the HMM. At deeper levels, more context questions oc-
cur alongside the center phone and state questions. And, when the
final agglomerative clustering stage occurs, two leaf nodes may be
merged that previously had different paths through the tree.

Figure 4 shows how the phone recognition accuracy of the sys-
tem was affected by varying the model size. We compare to a base-
line where each context-independent phone state was clustered inde-
pendently (HHEd baseline). Although there isn’t a significant differ-
ence in accuracy at equivalent model sizes, there are two interesting
results from this experiment. We found that the likelihood of the
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Fig. 4. Accuracy of the TIMIT system with varying model size

data under the model was consistently better using the global tree,
which indicates it is a better match. Also, notice that the HHEd base-
line can not build fewer clustered states than the number of context-
independent phone states (144), but the global tree can make much
smaller models.

It is also informative to analyze the structure found in the best
global decision trees. We found three different classes of tying that
would exist in the traditional modeling framework.

3.3.1. Co-articulation

One motivation behind using triphones is that they capture co-
articulation effects. That is, the final sound of phone ’a’ will change
depending on what the next phone will be. But, sometimes, the
sound will be similar for two contexts. For instance, the final sound
of a+b (the model for ’a’ when followed by ’b’) might be the same
as the final sound of a+c. Standard tree clustering methods will take
advantage of this data redundancy and cluster the final state of a+b
and a+c together.

But, it could also be the case that the initial state of some ’b’ and
’c’ models are similar, when they are following the phone ’a’. That
is, the initial states of a-b (the model for ’b’ when following ’a’) and
a-c are acoustically similar.

We did find many cases like this in the global tree for TIMIT. For
instance, the triphones iy-jh+ah, and iy-ch+ah (along with fifteen
other similar physical triphones) share the same clustered state as
their first state.

3.3.2. Triphone HMMs with too many states

When aligning a full set of three-state triphones to the training data,
one assumes that all of the states are necessary to model the acous-
tics. It could be the case, as with the whole word models discussed
earlier, that this method allocates too many states to some utterances.
As with the whole-world models, the expectation is that this would
manifest itself as some triphones repeating a clustered state for more
than one consecutive state.

Two typical examples are the physical triphones uw-w+ao and
uw-w+aw, where the first two states of both models are represented
by the same clustered state. This case was common for triphones
based on the center phones el, l, and w. Another interesting and un-

expected example is the pair of triphones n-m+n and n-ng+n, whose
initial and final states are all modeled by the same clustered state.

3.3.3. Acoustically confusable phones

Another common feature found in the globally tied model was that
sometimes the center states of triphones with different center phone
ids share the same clustered state. This was common with classi-
cally confusable center phone pairs such as (n,en), (ix,ih), and (g,k)
in similar contexts. What the tree is learning from the data is that,
in some contexts, there is not enough acoustic information to distin-
guish these confusable phones.

4. DISCUSSION

Decision trees are a common tool used to cluster logical states into
clustered states for large vocabulary speech recognition systems.
They are usually limited to operate independently on every context-
independent state of the acoustic model. Using a global decision
tree to cluster the logical HMM states generates a better model and
allows the decoder to concentrate on real distinctions supported by
the acoustic training data.

We have discussed three experiments where a global decision
tree was used to jointly cluster every logical state in the acoustic
model. For noisy speech, we showed that reducing model size can
increase accuracy in some cases, and up to 50% reduction in model
parameters can be achieved without any significant accuracy degra-
dation. For TIMIT phonetic decoding, we showed that the global
tying structure makes reasonable decisions, complementing the kind
of tying that occurs in the baseline model.
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