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Abstract: This paper proposes a robust approach to imagematching by exploiting the only
available geometric constraint, namely, the epipolar constraint. The images are uncalibrated,
namely the motion between them and the camera parameters are not known. Thus, the
images can be taken by di�erent cameras or a single camera at di�erent time instants. If
we make an exhaustive search for the epipolar geometry, the complexity is prohibitively
high. The idea underlying our approach is to use some classical techniques (correlation
and relaxation methods in our particular implementation) to �nd an initial set of matches,
and then use a robust technique|the Least Median of Squares (LMedS)|to discard false
matches in this set. The epipolar geometry can then be accurately estimated using a well
adapted criterion. More matches are eventually found, as in stereo matching, by using the
recovered epipolar geometry. A large number of experiments have been carried out, and
very good results have been obtained.
Regarding the relaxation technique, we de�ne a new measure of matching support, which
allows a higher tolerance to deformation with respect to rigid transformations in the image
plane and a smaller contribution for distant matches than for nearby ones. A new strategy for
updating matches is developed, which only selects those matches having both high matching
support and low matching ambiguity. The update strategy is di�erent from the classical
\winner-take-all", which is easily stuck at a local minimum, and also from \looser-take-
nothing", which is usually very slow. The proposed algorithm has been widely tested and
works remarkably well in a scene with many repetitive patterns.

Key-words: Robust Matching, Epipolar Geometry, Fundamental Matrix, Least Median
Squares (LMedS), Relaxation, Correlation.
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Téléphone : (33) 93 65 77 77 – Te´lécopie : (33) 93 65 77 65



Mise en correspondance robuste d'images non calibr�ees

par recouvrement de la g�eom�etrie �epipolaire

R�esum�e : Dans cet article, nous proposons une approche robuste au probl�eme de la mise
en correspondance de primitives dans le cas d'images non calibr�ees i.e on ne dispose ni du
mouvement entre les cam�eras ni des param�etres intrins�eques associ�es �a chacune des cam�eras.
Les images peuvent ainsi être consid�er�ees comme prises par une même cam�era �a di��erents
instants ou par un syst�eme st�er�eoscopique de 2 cam�eras. Dû �a la complexit�e de la tâche, une
recherche exhaustive de la g�eom�etrie �epipolaire ne peut �evidemment être entreprise. L'id�ee
principale de l'approche que nous d�eveloppons est d'utiliser, dans une premi�ere phase, des
m�ethodes classiques de type corr�elation et relaxation a�n de trouver un premier ensemble
d'appariements entre points �a forte courbure des 2 images. Une seconde phase fait alors
appel �a des m�ethodes robustes de type - Moindres m�edianes des erreurs au carr�e ( Least
Median of Squares ou LMedS) - a�n d'�eliminer les �eventuels faux appariements. La g�eom�e-
trie �epipolaire est alors estim�ee �a l'aide de cet ensemble d'appariements et de l'utilisation
de crit�eres de minimisation ad�equats et bien adapt�es au probl�eme de sa d�etermination. Une
ultime phase de recherche des appariements respectant la contrainte de la ligne �epipolaire
peut alors être e�ectu�ee a�n d'am�eliorer encore les r�esultats. Un grand nombre d'exp�eriences
ont �et�e men�ees et d'excellents r�esultats ont �et�e obtenus.
Concernant la technique de relaxation utilis�ee, nous d�e�nissons une nouvelle mesure d'ap-
pariement qui associe une grande tol�erance aux d�eformations rigides dans le plan image, et
qui associe une faible (resp. grande) contribution aux appariements lointains (resp. proches).
Une nouvelle strat�egie pour la mise �a jour des appariements est d�evelopp�ee. Elle permet de
ne s�electionner que les appariements qui ont un large support de correspondance et un faible
score d'ambigu��t�e. Cette mise �a jour est di��erente de l'approche classique dite "le vainqueur
prend tout" (winner-take-all) sujette au probl�eme des minima locaux, et aussi di��erente de
l'approche "le perdant ne gagne rien" (looser take nothing) qui est tr�es lente. L'algorithme
propos�e a �et�e largement test�e et fonctionne remarquablement bien sur des sc�enes �a motifs
p�eriodiques.

Mots-cl�e : Mise en correspondance robuste, G�eometrie �epipolaire, Matrice fondamentale,
Moindres m�edianes (LMedS), Relaxation, Corr�elation.
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1 Introduction

Matching di�erent images of a single scene remains one of the bottlenecks in computer vision.
A large amount of work has been carried out during the last 15 years, but the results are,
however, not satisfactory. The only geometric constraint we know between two images of a
single scene is the epipolar constraint . However, when the motion between the two images is
not known, the epipolar geometry is also unknown. The methods reported in the literature
all exploit some heuristics in one form or another, for example, intensity similarity, which
are not applicable to most cases. The di�culty is partly bypassed by taking long sequences
of images over short time interval [9, 58]. Indeed, as the time interval is small and object
velocity is constrained by physical laws, the interframe displacements of objects are bounded,
i.e., the correspondence of a token at the subsequent instant must be in the neighborhood of
the �rst. However, in many cases, such as a pair of uncalibrated stereo images, this technique
does not apply. Developing a robust image matching technique is thus very important.

Over the years numerous algorithms for image matching have been proposed. They can
roughly be classi�ed into two categories:

1. Template matching. In this category, the algorithms attempt to correlate the grey
levels of image patches in the views being considered, assuming that they present some
similarity [4, 15, 16, 7, 14]. The underlying assumption appears to be a valid one for
relatively textured areas and for image pairs with small di�erence; however it may be
wrong at occlusion boundaries and within featureless regions.

2. Feature matching. In this category, the algorithms �rst extract salient primitives from
the images, such as edge segments or contours, and match them in two or more views. An
image can then be described by a graph with primitives de�ning the nodes and geometric
relations de�ning the links. The registration of two maps becomes the mapping of the
two graphs: subgraph isomorphism. Common techniques are tree searching, relaxation,
maximal clique detection, etc. Some heuristics such as assuming a�ne transformation
between the two images are usually introduced to reduce the complexity. These methods
are fast because only a small subset of the image pixels are used, but may fail if the chosen
primitives cannot be reliably detected in the images. The following list of references is by
no means exhaustive: [54, 50, 5, 6, 45, 35, 22, 55]

The approach we propose in this paper aims at exploiting the only geometric constraint,
i.e., the epipolar constraint, to establish robustly correspondences between two perspective
images of a single scene. We �rst extract high curvature points and then match them using a
classical correlation technique followed by a new fuzzy relaxation procedure. More precisely,
our algorithm consists of three steps:

� Establish initial correspondences using some classical techniques,
� Estimate robustly the epipolar geometry,
� Establish correspondences using estimated epipolar geometry as in stereo matching.

The basic idea is �rst to estimate robustly the epipolar geometry, and then reduce the
general image matching problem to stereo matching. In the subsequent sections, we will �rst
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4 Zhang, Deriche, Faugeras, Luong

review the epipolar geometry, and then describe in detail the three steps of the proposed
approach. A preliminary version of this paper appeared in the proceedings of the third
European Conference on Computer Vision [12].

A similar idea has been independently exploited by Xu et al. [57, 40], who also searched
for image correspondences through the recovery of the epipolar geometry. There are however
two main di�erences:

� The weak perspective camera model is used in their work, and a full perspective model is
used in ours. The choice of the most appropriate criterion for the recovery of the epipolar
geometry is not addressed in their work.

� The search for the epipolar geometry is carried out with an exhaustive strategy in their
work. The complexity is prohibitively high even for a weak perspective model (O(m4n4),
where m and n are the number of points in the �rst and second image, respectively). The
complexity is reduced by checking only a few closest points. In our work, some classical
techniques are applied to �nd an initial set of correspondences.

We could apply the same strategy as that of Xu et al. [57, 40]. In fact, it has been applied to
solve the correspondence problem between two sets of 3D line segments [59]. When applying
it to the problem addressed in this paper, we need 8 point correspondences in order to
estimate the epipolar geometry. The complexity is then O(m8n8). Suppose both m and n
are 100, the complexity is in the order of 1032! Xu et al. [57, 40] deal with also the motion
segmentation problem using epipolar constraint, which is not addressed in this paper.

Recently, computer vision researchers have paid much attention to the robustness of vi-
sion algorithms because the data are unavoidably error prone [17, 60]. Many the so-called ro-
bust regression methods have been proposed that are not so easily a�ected by outliers [25, 48].
The reader is referred to [48, Chap. 1] for a review of di�erent robust methods. The two most
popular robust methods are the M-estimators and the least-median-of-squares (LMedS) me-
thod (see Sect. 6.3). Kumar and Hanson [26] compared di�erent robust methods for pose
re�nement from 3D-2D line correspondences, while Meer et al. [38], for image smoothing.
Haralick et al. [18] applied M-estimators to solve the pose problem from point correspon-
dences. Thompson et al. [51] applied the LMedS estimator to detect moving objects using
point correspondences between orthographic views. Other recent works on the application
of robust techniques to motion segmentation include [52, 42, 3].

Regarding the robust recovery of the epipolar geometry, our work is closely related to
that of Olsen [43] and that of Shapiro and Brady [49]. Olsen uses a linear method to estimate
the epipolar geometry, which has already been shown in one of our previous work [32] to
be insu�ciently accurate. He further assumes that knowledge of the epipolar geometry, as
in many practical cases, is available. In particular, he assumes the epipolar lines are almost
aligned horizontally. This knowledge is then used to �nd matches between the stereo image
pair, and a robust method (the M-estimator, see Sect. 6.3) is used to detect false matches
and to obtain a better estimate of the epipolar geometry. Shapiro and Brady also use a
linear method. The camera model is however a simpli�ed one, namely an a�ne camera.
Correspondences are established by tracking corner features over time. False matches are

INRIA



A Robust Technique for Matching Two Uncalibrated Images 5

rejected through a regression diagnostic, which computes an initial estimate of the epipolar
geometry over all matches, and sees how the estimate changes if a match is deleted. The
match whose removal maximally reduces the residual is identi�ed to be an outlier and is
rejected. The procedure is then repeated with the reduced set of matches until all outliers
have been removed. These two approaches (M-estimators and Regression diagnostics) work
well when the percentage of outliers is small and more importantly when their derivations
from the valid matches are not too large, as in the above two works. In the case described
in this paper, two images can be quite di�erent. There may be a large percentage of false
matches (usually around 20%, sometimes 40%) using heuristic matching techniques such
as correlation, and a false match may be completely di�erent from the valid matches. The
robust technique described in this paper deals with these issues and can theoretically detect
outliers when they make up as much as 50% of whole data.

2 Notation

A camera is described by the widely used pinhole model. The coordinates of a 3-D point
M = [x; y; z]T in a world coordinate system and its retinal image coordinates m = [u; v]T

are related by

s

24uv
1

35 = P

2664
x
y
z
1

3775 ;

where s is an arbitrary scale, and P is a 3 � 4 matrix, called the perspective projection
matrix. Denoting the homogeneous coordinates of a vector x = [x; y; � � � ]T by ~x, i.e., ~x =
[x; y; � � � ; 1]T , we have s ~m = P ~M.

The matrix Pcan be decomposed as

P= A [R t] ;

where A is a 3� 3 matrix, mapping the normalized image coordinates to the retinal image
coordinates, and (R; t) is the 3D displacement (rotation and translation) from the world
coordinate system to the camera coordinate system. The most general matrix A can be
written as

A =

24�fku fku cot � u0
0 � fkv

sin � v0
0 0 1

35 ; (1)

where

� f is the focal length of the camera,
� ku and kv are the horizontal and vertical scale factors, whose inverses characterize the
size of the pixel in the world coordinate unit,
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6 Zhang, Deriche, Faugeras, Luong

� u0 and v0 are the coordinates of the principal point of the camera, i.e., the intersection
between the optical axis and the image plane, and

� � is the angle between the retinal axes. This parameter is introduced to account for the
fact that the pixel grid may not be exactly orthogonal. In practice, however, it is very
close to �=2.

As is clear, we cannot separate f from ku and kv. We thus have �ve intrinsic parameters for
each camera: �u = �fku, �v = �fkv , u0, v0 and �.

The �rst and second images are respectively denoted by I1 and I2. A point m in the
image plane Ii is noted as mi. The second subscript, if any, will indicate the index of the
point in consideration.

3 Epipolar Geometry

Considering the case of two cameras as shown in Fig. 1. Let C1 and C2 be the optical
centers of the �rst and second cameras, respectively. Given a point m1 in the �rst image,
its corresponding point in the second image is constrained to lie on a line called the epipolar
line of m1, denoted by lm1

. The line lm1
is the intersection of the plane �, de�ned by m1,

C1 and C2 (known as the epipolar plane), with the second image plane I2. This is because
image point m1 may correspond to an arbitrary point on the semi-line C1M (M may be at
in�nity) and that the projection of C1M on I2 is the line lm1

. Furthermore, one observes
that all epipolar lines of the points in the �rst image pass through a common point e2, which
is called the epipole. e2 is the intersection of the line C1C2 with the image plane I2. This
can be easily understood as follows. For each point m1k in the �rst image I1, its epipolar
line lm1k

in I2 is the intersection of the plane �k, de�ned by m1k, C1 and C2, with image
plane I2. All epipolar planes �k thus form a pencil of planes containing the line C1C2. They
must intersect I2 at a common point, which is e2. Finally, one can easily see the symmetry
of the epipolar geometry. The corresponding point in the �rst image of each point m2k lying
on lm1k

must lie on the epipolar line lm2k
, which is the intersection of the same plane �k

with the �rst image plane I1. All epipolar lines form a pencil containing the epipole e1,
which is the intersection of the line C1C2 with the image plane I1. The symmetry leads
to the following observation. If m1 (a point in I1) and m2 (a point in I2) correspond to a
single physical point M in space, then m1,m2, C1 and C2 must lie in a single plane. This is
the well-known co-planarity constraint or epipolar equation in solving motion and structure
from motion problems when the intrinsic parameters of the cameras are known [29].

Let the displacement from the �rst camera to the second be (R; t). Let m1 and m2 be
the images of a 3-D point M on the cameras. Without loss of generality, we assume that M
is expressed in the coordinate frame of the �rst camera. Under the pinhole model, we have
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C1
e1

m1

lm1

�

M

C2

e2

m2

lm2

I1

I2

(R; t)

Fig. 1. The epipolar geometry

the following two equations:

s1 ~m1 = A1 [I 0]

�
M
1

�
s2 ~m2 = A2 [R t]

�
M
1

�
;

where A1 and A2 are the intrinsic matrices of the �rst and second cameras, respectively.
Eliminating M , s1 and s2 from the above equations, we obtain the following fundamental
equation

~mT
2A

�T
2 TRA�1

1 ~m1 = 0 ; (2)
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where T is an antisymmetric matrix de�ned by t such that Tx = t^ x for all 3-D vector x
(^ denotes the cross product).

Equation (2) is a fundamental constraint underlying any two images if they are pers-
pective projections of one and the same scene. Let F = A�T

2 TRA�1
1 , F is known as the

fundamental matrix of the two images [31]. Without considering 3-D metric entities, we can
think of the fundamental matrix as providing the two epipoles (i.e., the vertexes of the two
pencils of epipolar lines) and the 3 parameters of the homography between these two pen-
cils. This is the only geometric information available from two uncalibrated images [36, 31].
This implies that the fundamental matrix has only seven degrees of freedom. Indeed, it is
only de�ned up to a scale factor and its determinant is zero. Geometrically, F ~m1 de�nes the
epipolar line of pointm1 in the second image. Equation 2 says no more than that the corres-
pondence in the right image of pointm1 lies on the corresponding epipolar line. Transposing
equation 2 yields the symmetric relation from the second image to the �rst image.

It can be shown that the fundamental matrix F is related to the essential matrix E =
t�R [29, 23] by

F = A�T
2 EA�1

1 :

It is thus clear that if the cameras are calibrated, the problem becomes the one of motion
and structure from motion [29, 53, 39, 13, 1, 56, 24].

4 Finding Candidate Matches by Correlation

Before recovering the epipolar geometry, we must establish a few correspondences between
images. To this end, a corner detector is �rst applied to each image to extract high curva-
ture points. A classical correlation technique is then used to establish matching candidates
between the two images.

4.1 Extracting Points of Interest

First, feature points corresponding to high curvature points are extracted from each image.
A great deal of e�ort has been spent by the computer vision community on this problem,
and several approaches have been reported in the literature in the last few years. They
can be broadly divided into two groups: The �rst group consists in �rst extracting edges
as a chain code, and then searching for points having maxima curvature [10, 2, 37] or per-
forming a polygonal approximation on the chains and then searching for the line segment
intersections [21]. The second group works directly on a grey-level image. The large num-
ber of techniques that have been proposed within this group are generally based on the
measurement of the gradients and of the curvatures of the surface (see [11] for a review).

In our application, we use the corner detector [19], which is a slightly modi�ed version
of the Plessey corner detector [20, 41]. It is based on the following operator:

R(x; y) = det[Ĉ]� k trace2[Ĉ] ; (3)

INRIA



A Robust Technique for Matching Two Uncalibrated Images 9

where Ĉ is the following matrix:

Ĉ =

"
Î2x

dIxIydIxIy Î2y

#
; (4)

where Î denotes the smoothing operation on the grey level image I(x; y). Ix and Iy indicate
the x and y directional derivatives respectively.

We use a value of k equal to 0.04 to provide discrimination against high contrast pixel
step edges. After that, the operator output is thresholded for the corner detection. It should
be pointed out that this method allows us to recover a corner position up to pixel precision.
In order to recover the corner position up to sub-pixel position, one uses the model based
approach we have already developed and presented in [8], where corners are extracted directly
from the image by searching the parameters of the parametric model that best approximate
the observed grey level image intensities around the corner position detected. One can notice
that such an approach is well adapted for scenes containing polyhedral objects, but not for
most outdoor scenes.

correlation
window

m1

m2

u1

v1

u1 u2

v2
v1

Image 1 Image 2

search
window

Fig. 2. Correlation

4.2 Matching Through Correlation

Given a high curvature point m1 in image 1, we use a correlation window of size (2n+ 1)�
(2m + 1) centered at this point. We then select a rectangular search area of size (2du +
1) � (2dv + 1) around this point in the second image, and perform a correlation operation
on a given window between point m1 in the �rst image and all high curvature points m2

lying within the search area in the second image. The search window re
ects some a priori

knowledge about the disparities between the matched points. This is equivalent to reducing
the search area for a corresponding point from the whole image to a given window. The
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10 Zhang, Deriche, Faugeras, Luong

correlation score is de�ned as

Score(m1;m2) =

nX
i=�n

mX
j=�m

[I1(u1 + i; v1 + j) � I1(u1; v1)]� [I2(u2 + i; v2 + j) � I2(u2; v2)]

(2n+ 1)(2m+ 1)
p
�2(I1) � �2(I2)

;
(5)

where Ik(u; v) =
Pn

i=�n

Pm
j=�m Ik(u+ i; v + j)

�
[(2n+ 1)(2m + 1)] is the average at point

(u; v) of Ik (k = 1; 2), and �(Ik) is the standard deviation of the image Ik in the neighborhood
(2n+ 1)� (2m+ 1) of (u; v), which is given by:

�(Ik) =

sPn
i=�n

Pm
j=�m I2k(u; v)

(2n+ 1)(2m+ 1)
� Ik(u; v) : (6)

The score ranges from �1, for two correlation windows which are not similar at all, to 1, for
two correlation windows which are identical.

A constraint on the correlation score is then applied in order to select the most consistent
matches: For a given couple of points to be considered as a candidate match, the correlation
score must be higher than a given threshold. If the above constraint is ful�lled, we say that
the pair of points considered is self consistent and forms a candidate match. For each point
in the �rst image, we thus have a set of candidate matches from the second image (the set
is possibly nil); and in the same time we have also a set of candidate matches from the �rst
image for each point in the second image.

In our implementation, n = m = 7 for the correlation window, and a threshold of 0.8 on
the correlation score is used. For the search window, du and dv are set to a quater of the
image width and height, respectively. It is thus very large (half of the whole image).

5 Disambiguating Matches Through Relaxation

Using the correlation technique described above, a point in the �rst image may be paired
to several points in the second image (which we call candidate matches), and vice versa.
Several techniques exist for resolving the matching ambiguities. The technique we use falls
into the class of techniques known as relaxation techniques. The idea is to allow the candidate
matches to reorganize themselves by propagating some constraints, such as continuity and
uniqueness, through the neighborhood.

5.1 Measure of the Support for a Candidate Match

Consider a candidate match (m1i;m2j) where m1i is a point in the �rst image and m2j is a
point in the second image. Let N (m1i) and N (m2j) be, respectively, the neighbors of m1i

and m2j within a disc of radius R. If (m1i;m2j) is a good match, we will expect to see many
matches (n1k;n2l), where n1k 2 N (m1i) and n2l 2 N (m2j), such that the position of n1k
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A Robust Technique for Matching Two Uncalibrated Images 11

relative to m1i is similar to that of n2l relative to m2j. On the other hand, if (m1i;m2j)
is a bad match, we will expect to see only few matches, or even not any at all, in their
neighborhood.

More formally, we de�ne a measure of support for a match, which we call the strength of
the match (SM for abbreviation), as

SM (m1i;m2j) = cij
X

n1k2N (m1i )

�
max

n2l2N (m2j )

ckl �(m1i;m2j; n1k;n2l)

1 + dist(m1i;m2j; n1k;n2l)

�
;

where cij and ckl are the goodness of the candidate matches (m1i;m2j) and (n1k;n2l), which
can be the correlation scores given in the last section, dist(m1i;m2j; n1k;n2l) is the average
distance of the two pairings, i.e.,

dist(m1i;m2j; n1k;n2l) = [d(m1i;n1k) + d(m2j;n2l)]=2

with d(m;n) = km� nk, the Euclidean distance between m and n, and

�(m1i;m2j; n1k;n2l) =

(
e�r="r if (n1k;n2l) is a candidate match and r < "r

0 otherwise

where r is the relative distance di�erence given by

r =
jd(m1i;n1k) � d(m2j;n2l)j

dist(m1i;m2j; n1k;n2l)

and "r is a threshold on the relative distance di�erence. The above de�nition of the strength
of a match is similar in the form to that used in the PMF stereo algorithm [44].

Several remarks can be made regarding our measure of matching support.

� Firstly, the strength of a match actually counts the number of candidate matches found
in the neighborhoods, but only those whose positions relative to the considered match are
similar are counted.

� Secondly, the test of similarity in relative positions is based on the relative distance (the
value of r). Indeed, the similarity in relative positions is justi�ed by the hypothesis that
an a�ne transformation can approximate the change between the neighborhoods of the
candidate match being considered. This assumption is reasonable only for a small neigh-
borhood. Thus we should allow larger tolerance in distance di�erences for distant points,
and this is exactly what our criterion does.

� Thirdly, the contribution of a candidate match (n1k;n2l) to the strength of the match
(m1i;m2j) is the exponential of the negative relative error r, which is strictly monotoni-
cally decreasing function of r. When r is very big, then exp(�r="r)! 0, and the candidate
match can be ignored. When r! 0, i.e., the di�erence is very small, then exp(�r="r)! 1,
and the candidate will largely contribute to the match (m1i;m2j).
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12 Zhang, Deriche, Faugeras, Luong

� Fourthly, if a point in the left image has several candidate matches in the right image,
only the one which has smallest distance di�erence is accounted for, which is done by the
\max" operator.

� Lastly, the contribution of each candidate match in the neighborhood is weighted by its
distance to the match. The addition of `1' is only to prevent the over weight for very
close points. In other words, a close candidate match gives more support to the match
being considered than a distant one. This is also connected to the fact that an a�ne
approximation is only reasonable for a small neighborhood.

The measure of matching support de�ned above, however, is not symmetric. That is,
the strength of a match is possibly not the same if we reverse the role of the two images,
i.e., possibly we have SM (m1i;m2j) 6= SM (m2j;m1i). This occurs when several points
n1k 2 N (m1i) are candidate matches of a single point n2l 2 N (m2j), as illustrated in Fig. 3
where n11 and n12 share the same point n21 as their candidate match. In our implementation,

n

n

n11

12

21

image 1 image 2

RR

Fig. 3. Illustration of the non-symmetric problem of the matching support measure

we have made the followingmodi�cation in order to achieve the symmetry. Before computing
the summation, if several points n1k 2 N (m1i) score the maximal value with the same point
n2l 2 N (m2j), then only the point which gives the largest value is counted. This assures
that the same pairing will be counted if we reverse the role of the two images.

Other heuristics can be integrated into the computation of the strength of a match. For
example, if the angle of the rotation in the image plane is assumed to be less than �, then
we can impose the following constraint: the angle between ����!m1in1k and

����!m2jn2l must be less
than �. In other words, for a candidate match (n1k;n2l) which does not satisfy the above
constraint, its �(m1i;m2j; n1k;n2l) takes the value of zero.

In our implementation,R = one eighth of the image width, cij = 1, "r = 0:3 and � = 90�.
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5.2 Relaxation Process

If we de�ne the energy function as the sum of the strengths of all candidate matches, i.e.,

J =
X

(m1i;m2j )

SM (m1i;m2j)

then the problem of disambiguatingmatches is equivalent to minimizing the energy function
J . The relaxation scheme is one approach to it. It is an iterative procedure, and can be
formulated as follows:

iterate f

� compute the matching strength for each candidate match
� update the matches by minimizing the total energy

g until the convergence of the energy

After the correlation procedure, for each point in the �rst image, we have a set of candi-
date matches from the second image (the set is possibly nil); and in the same time we have
also a set of candidate matches from the �rst image for each point in the second image. The
last subsection has already explained how to compute the SM for each candidate match.
As the de�nition of SM is now symmetric, we only need to compute SMs for the list of
candidate matches in the left image and assign the values to the candidate matches in the
right image, thus saving half of the computation.

There are several strategies for updating the matching in order to minimize the total
energy. The �rst is the \winner-take-all", as exploited by Rosenfeld et al. [47], Zucker et
al. [61], and Pollard et al. [44]. The method works as follows. At each iteration, any matches
which have the highest matching strengths for both of the two image points that formed
them are immediately chosen as \correct". That is, a match (m1i;m2j) is selected if its
points (either m1i orm2j) have no higher matching-strength scores with any other matches
they can form. Then, because of the uniqueness constraint, all other matches associated with
the two points in each chosen match are eliminated from further consideration. This allows
further matches, that were not previously either selected or eliminated, to be selected as
correct provided they now have the highest matching strengths for both constituent points.
This method proceeds as a steepest-descent approach, and is thus fast. However, it may get
stuck easily at a bad local minimum.

The second is the \looser-take-nothing" [28]. The method works as follows. For each
point in the �rst image, the candidate which has gained the weakest matching strength is
eliminated. The process suppresses at most one candidate at each iteration until one and
only one candidate is left for each point, �nally achieving an unambiguous set of matches.
Since the suppressed matches have gained the weakest support, they are very possibly not
among the correct matches. This method thus proceeds as a slowest-descent approach, and
is not e�cient if a point has many candidate matches. Furthermore, this method is not
symmetric for the two images: reversing the role of the two images may give di�erent result.
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We have developed a new update strategy, which we would like to call \some-winners-
take-all". It di�ers from \winner-take-all", which is in fact all-winners-take-all , and works as
follows. As with \winner-take-all", we consider all matches which have the highest matching
strength for both of the two image points that formed them. We shall call such matches the
potential matches, and denote them by fPig. For fPig, we construct two tables. The �rst,
denoted by TSM , saves the matching strength of each Pi, and is then sorted in decreasing
order. The second, denoted by TUA, saves a value which indicates how unambiguous each
Pi is. This is de�ned as

UA = 1� S
(2)
M =S

(1)
M ;

where S
(1)
M is the SM of Pi, and S

(2)
M is the SM of the second best candidate match. Thus UA is

ranging from 1 (unambiguous) to 0 (ambiguous). The table TUA is also sorted in decreasing
order. Finally, those potential matches Pi which are among both the �rst q percent of
matches in TSM and the �rst q percent of matches in TUA are selected as correct matches.
Thus, ambiguous potential matches will not be selected even they have high SM, and those
having weak SM will not selected even they are unambiguous. We have therefore prevented
the problem of evolve-too-soon-ness with \winner-take-all" while maintaining computational
e�ciency. If a candidate match does not receive any support (SM = 0), it will be eliminated
from further consideration. If q = 100, i.e., one hundred percent selection case, our method
becomes \winner-take-all". Not that q must be larger than 50 in order to assure that at
least one potential match will be selected at each iteration if there exist several potential
matches. If q < 50, a premature stop may occur. In our implementation, q is set to 60.

Our algorithm necessarily converges, because if during one iteration there is no match
selected, then the total energy will remain the same at the next iteration. The number of
selected matches is evidently limited because the number of candidate matches is limited.

6 Robust Estimation of the Epipolar Geometry

Using the set of matched points established in the previous step, one may then recover
the so-called fundamental matrix. This is one of the most crucial steps. We will consider
linear and nonlinear criteria and also exploit a robust technique to detect the outliers in the
correspondences.

6.1 The Linear Criterion

Equation (2) can be written as a linear and homogeneous equation in the 9 unknown coef-
�cients of matrix F:

uT f = 0 ; (7)

where

u = [u1u2; v1u2; u2; u1v2; v1v2; v2; u1; v1; 1]
T

f = [F11; F12; F13; F21; F22; F23; F31; F32; F33]
T :
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Thus we know that if we are given 8 matches we will be able, in general, to determine a
unique solution for F, de�ned up to a scale factor. This approach, known as the eight point
algorithm, was introduced by Longuet-Higgins [29] for solving the motion and structure from
motion problem, and has been extensively studied in the literature [30, 53, 56, 27] for the
computation of the Essential matrix E (see Sect. 3). It has proven to be very sensitive to
noise.

In practice, we are given many more than 8 matches and we use a least-squares method
to solve

min
F

X
i

( ~mT
2iF ~m1i)

2 ; (8)

which can be rewritten as:
min
f

kUfk2 ;

where

U =

264 uT1
...
uTn

375 :

Several methods are possible to solve this problem. The �rst uses a closed-form solution
via the linear equations by setting one of the coe�cients of F to 1. The second solves the
classical problem:

min
f

kUfk2 subject to kfk = 1 : (9)

The solution is the eigenvector of UTU associated with the smallest eigenvalue.
The advantage of the linear criterion is that it leads to a non-iterative computation

method, however, we have found that it is quite sensitive to noise, even with a large set of
data points. The two main reasons for this are:

� The constraint det(F) = 0 is not satis�ed, which causes inconsistencies of the epipolar
geometry near the epipoles.

� The criterion is not normalized, which causes a bias in the localization of the epipoles.

The reader is referred to [32] for a detailed study of the linear methods.

6.2 Minimizing the Distances to Epipolar Lines

As it has been said, one of the drawbacks of the linear criterion method is that we do not
take into account the fact that the rank of F is only two, and that F thus depends on only
7 parameters. This could be taken into account by parameterizing matrix F as follows:

F =

0@ b a �ay � bx
�d �c cy + dx

dy0 � bx0 cy0 � ax0 �cyy0 � dy0x+ ayx0 + bxx0

1A ; (10)
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where the parameters (x; y) and (x0; y0) are the a�ne coordinate of the two epipoles, and
the coe�cients, of the homography between the two pencils of epipolar lines, which are the
coe�cients of the sub-matrix 2 � 2 obtained by suppressing the third line and the third
column. However, nonlinear minimizations must be performed.

The �rst idea is to use a nonlinear criterion by minimizing:X
i

d2( ~m2i;F ~m1i) ;

where d( ~m2;F ~m1) is the Euclidean distance of pointm2 to its epipolar line F ~m1. It is given
by

d( ~m2;F ~m1) =
j ~mT

2F ~m1jp
(F ~m1)21 + (F ~m1)22

;

where (F ~m1)i is the i-th component of vector F ~m1. However, unlike the case of the linear
criterion, the two images do not play a symmetric role. To obtain a consistent epipolar
geometry, it is necessary and su�cient that by exchanging the two images, the fundamental
matrix is changed to its transpose. This yields the following criterion:X

i

(d2( ~m2i;F ~m1i) + d2( ~m1i;F
T ~m2i)) ;

which operates simultaneously in the two images. Using the fact that ~mT
2 F ~m1 = ~mT

1F
T ~m2,

it can be rewritten as:X
i

�
1

(F ~m1i)21 + (F ~m1i)22
+

1

(FT ~m2i)21 + (FT ~m2i)22

�
( ~mT

2iF ~m1i)
2 : (11)

This criterion is also clearly normalized in the sense that it does not depend on the scale
factor used to compute F.

6.3 Taking into Account Possible Outliers in the Initial Correspon-
dences

In all matches established so far, as described in section 5, we may �nd two types of outliers
due to

bad locations. In the estimation of the fundamental matrix, the location error of a point
of interest is assumed to exhibit Gaussian behavior. This assumption is reasonable
since the error in localization for most points of interest is small (within one or two
pixels), but a few points are possibly incorrectly localized (more than three pixels).
The latter points will severely degrade the accuracy of the estimation.

false matches. In the establishment of correspondences, only heuristics have been used.
Because the only geometric constraint, i.e., the epipolar constraint in terms of the
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A Robust Technique for Matching Two Uncalibrated Images 17

fundamental matrix , is not yet available, many matches are possibly false. These will
completely spoil the estimation process, and the �nal estimate of the fundamental
matrix will be useless.

The outliers will severely a�ect the precision of the fundamental matrix if we directly ap-
ply the methods described above. In the following, we give a brief description of the two
most popular robust methods: the M-estimators and the least-median-of-squares (LMedS)
method.

Let ri be the residual of the i-th datum, i.e., the di�erence between the i-th observation
and its �tted value. The standard least-squares method tries to minimize

P
i r2i , which

is unstable if there are outliers present in the data. The M-estimators replace the squared
residuals r2i by another functions of the residuals, yielding

min
X
i

�(ri) ;

where � is a symmetric, positive-de�nite function with a unique minimum at zero. For
example, Huber [25] employed the squared error for small residuals and the absolute error for
large residuals. The M-estimators can be implemented as a weighted least-squares problem.
In [43, 31], the following weight was used for the estimation of the epipolar geometry:

wi =

8><>:
1 jrij � �

�=jrij � < jrij � 3�

0 3� < jrij ;

where � is some estimated standard deviation of errors. This method was robust to outliers
due to bad localization. It was, however, not robust to false matches.

The LMedS method estimates the parameters by solving the nonlinear minimization
problem:

min med
i

r2i :

That is, the estimator must yield the smallest value for the median of squared residuals
computed for the entire data set. It turns out that this method is very robust to false matches
as well as outliers due to bad localization. Unlike the M-estimators, however, the LMedS
problem cannot be reduced to a weighted least-squares problem. It is probably impossible
to write down a straightforward formula for the LMedS estimator. It must be solved by a
search in the space of possible estimates generated from the data. Since this space is too
large, only a randomly chosen subset of data can be analyzed. The algorithm which we have
implemented for robustly estimating the fundamental matrix follows that structured in [48,
Chap. 5], as outlined below.

Given n point correspondences: f(m1i;m2i)g. A Monte Carlo type technique is used to
draw m random subsamples of p = 8 di�erent point correspondences. For each subsample,
indexed by J , we determine the fundamental matrix FJ . For each FJ , we can determine
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the median of the squared residuals, denoted by MJ , with respect to the whole set of point
correspondences, i.e.,

MJ = med
i=1;::: ;n

[d2( ~m2i;FJ ~m1i) + d2( ~m1i;F
T
J ~m2i)] :

We retain the estimate FJ for whichMJ is minimal among allm MJ 's. The question now is:
How do we determine m ? A subsample is \good" if it consists of p good correspondences.
Assuming that the whole set of correspondences may contain up to a fraction " of outliers,
the probability that at least one of the m subsamples is good is given by

P = 1� [1� (1� ")p]m : (12)

By requiring that P must be near 1, one can determine m for given values of p and ". In
our implementation, we assume " = 40% and require P = 0:99, thus m = 272. Note that
the algorithm can be speeded up considerably by means of parallel computing, because the
processing for each subsample can be done independently.

As noted in [48], the LMedS e�ciency is poor in the presence of Gaussian noise. The
e�ciency of a method is de�ned as the ratio between the lowest achievable variance for the
estimated parameters and the actual variance provided by the given method. To compensate
for this de�ciency, we further carry out a weighted least-squares procedure. The robust

standard deviation estimate is given by

�̂ = 1:4826[1+ 5=(n� p)]
p
MJ ;

where MJ is the minimalmedian. The reader is referred to [48, page 202] for the explanation
of these magic numbers. Based on �̂, we can assign a weight for each correspondence:

wi =

(
1 if r2i � (2:5�̂)2

0 otherwise ;

where
r2i = d2( ~m2i;F ~m1i) + d2( ~m1i;F

T ~m2i) :

The correspondences havingwi = 0 are outliers and should not be further taken into account.
The fundamental matrixF is �nally estimated by solving the weighted least-squares problem:

min
X
i

wir
2
i :

We have thus robustly estimated the fundamental matrix because outliers have been detected
and discarded by the LMedS method.

As said previously, computational e�ciency of the LMedS method can be achieved by
applying a Monte-Carlo type technique. However, the eight points of a subsample thus
generated may be very close to each other. Such a situation should be avoided because
the estimation of the epipolar geometry from such points is highly instable and the result
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is useless. It is a waste of time to evaluate such a subsample. In order to achieve higher
stability and e�ciency, we develop a regularly random selection method based on bucketing
techniques, which works as follows. We �rst calculate the min and max of the coordinates of
the points in the �rst image. The region is then evenly divided into b�b buckets (see Fig. 4).
To each bucket is attached a set of points, and indirectly a set of matches, which fall in it.
The buckets having no matches attached are excluded. To generate a subsample of 8 points,
we �rst randomly select 8 mutually di�erent buckets, and then randomly choose one match
in each selected bucket.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 4. Illustration of a bucketing technique

One question remains: How many subsamples are required? If we assume that bad
matches are uniformly distributed in space, and if each bucket has the same number of
matches and the random selection is uniform, the formula (12) still holds. However, the
number of matches in one bucket may be quite di�erent from that in another. As a result, a
match belonging to a bucket having fewer matches has a higher probability to be selected. It
is thus preferred that a bucket having many matches has a higher probability to be selected
that a bucket having few matches, in order that each match has almost the same probability
to be selected. This can be realized by the following procedure. If we have in total l buckets,
we divide [0 1] into l intervals such that the width of the ith interval is equal to ni

�P
i ni,

where ni is the number of matches attached to the ith bucket (see Fig. 5). During the bucket
selection procedure, a number, produced by a [0 1] uniform random generator, falling in the
ith interval implies that the ith bucket is selected.

In our implementation, b = 8.
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0 1 2 3 l � 1

0 1

number of matches

bucket

random

variable

Fig. 5. Interval and bucket mapping

7 Stereo Matching

Once the fundamental matrix has been determined robustly, we use it to establish a new set
of correspondences using a correlation based approach that takes into account the recovered
epipolar geometry (i.e., epipolar constraint).

The matching approach that has been developed is a slightly modi�ed version of the
initial matching process (Sect. 4). For a feature point in the �rst image, and in order to �nd
possible matching partners not too far from the epipolar line in the second image, we place
a narrow band of width 2� pixels centered on this epipolar line and �nd the points that lie
within the band. The value of � is chosen to be 3.8 �d for a probability of 95%, where �d is
the root of mean squares of distances between the points and their epipolar lines de�ned

by the recovered fundamental matrix, i.e., �d =
qP

iwir
2
i

�P
iwi: The same constraints as

in Sect. 4 are then applied to select the most consistent matches, except that the constraint
on the disparity (de�ned by the search window) is replaced by the epipolar constraint just
described.

If needed, we can re�ne the estimation of the fundamental matrix using all correspon-
dences established at this point. The number of correspondences found in this step is usually
larger.

8 Experimental Results

The proposed algorithm has been tested on two dozen image pairs, and good results have
been obtained. Di�erent types of scenes have been used, such as indoor, rocks, road, and
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textured dummy scenes. Due to space limitation, we provide in this paper the matching
results of six image pairs, which are labeled bust, road, valley, rotation, trunk and
tracing. The last image pair has been generated by a ray-tracing algorithm, and contains
many repetitive patterns. All others are real images. The image resolution is 512�512,
except for scene road, whose resolution is 512�470. All parameters used in the algorithm
are the same for all image pairs with one exception, and are as were speci�ed in the previous
sections. The exception was done for image pair rotation. Because of its large disparity in
y-direction, the size of correlation search window, which is set to 257�257 by default, is not
big enough, and we have set it to 257�301.

In order to show the performance of the relaxation procedure, we also provide the mat-
ching results given by the correlation technique. The correlation results are obtained as
follows. We perform the correlation twice by reversing the roles of the two images (i.e., from
left to right, and then from right to left) and consider as valid only those matches for which
the reverse correlation has fallen on the initial point in the �rst image. More precisely, for
a given point m1 in the left image, let the match candidate with the highest correlation
score be m2 through a left-to-right correlation. Before validating the match, we perform a
right-to-left correlation. If the match candidate with the highest correlation score for m2 is
again m1, then this match will be validated; otherwise, it will be rejected. The two images
thus play a symmetric role. This validity test allows us to reduce greatly the probability of
error.

Table 1. Summary of the matching results with the correlation, relaxation and robust methods:
Numbers of total and bad matches

Scene Nbr of Pts Correlation Relaxation LMedS Stereo Nbr of
name (left - right) (total/bad) (total/bad) (detected) (matches) iterations

bust 512 - 512 103/4 97/0 11 93 11
road 367 - 389 53/12 52/7 5 48 12
valley 395 - 512 235/14 248/4 15 241 16
rotation 288 - 255 89/31 102/11 15 88 12
trunk 377 - 355 117/25 127/20 22 118 15
tracing 383 - 352 143/lots 248/19 31 226 20

The results are shown in �gures 6 through 23, and are summarized in table 1. For each
scene, three �gures are provided, showing the matching results by correlation, relaxation
and stereo. By stereo is meant that the epipolar geometry estimated by the robust method
LMedS is used in matching, as described in Sect. 7. In each �gure, two pictures (the left
and right images) are shown. Points are indicated by a cross, and matched points are given
the same number. The epipolar lines are drawn on the images to illustrate the di�erence
between the epipolar geometry estimated from all matches found by relaxation and that
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estimated by the LMedS. In table 1, both the total number of matches and the number of
bad matches found by correlation and relaxation are provided, together with the number of
outliers detected by the LMedS and the number of matches found by stereo. Here, we only
count false matches as bad matches, and do not take into account those matches due to bad
location. The LMedS actually detects all those bad matches except for scene road, and the
matches due to bad locations. Sometimes, the LMedS also rejects a few good matches whose
error measures go slightly beyond the threshold de�ned in Sect. 6.3. The last column shows
the number of iterations conducted during the relaxation process. The word lots in the last
row means that the number of bad matches is very high (more than 50% and not checked
carefully) when the correlation technique was used for scene tracing. Just for information,
the �rst column gives the number of points of interest for each of the �rst and second images.

Table 2. Comparison of the normalized residuals before and after discarding outliers by LMedS (in pixels)

bust road valley rotation trunk tracing

before 0.6 5.1 3.8 9.2 13.0 8.5
after 0.3 0.8 0.7 0.5 1.2 0.4

In Table 2, the normalized residuals before and after discarding outliers by LMedS are
given, which show the improvement achieved by incorporating an outlier detection module.
A normalized residual is approximately equal to the average distance between a point and
its epipolar line.

For scene bust (Figs. 6{8), the images were taken by two cameras with parallel optical
axes placed almost horizontally. There were a few false matches when using the correlation
technique, e.g., match 76 (on the right part of the images in Fig. 6). The matches found with
the relaxation are all correct. The epipolar geometry computed from these matches is shown
by the epipolar lines in Fig. 7. The average distance between a point and its epipolar line is
0.6 pixels. Consider that the precision of a point extracted by the corner detector described
in Sect. 4.1 is in the order of one pixel, the epipolar geometry estimated is quite good. Two
good matches found by correlation are missed by relaxation: matches 4 and 15 in the top
part of images in Fig. 6. This is because these matches are isolated and too far away from
other matches to gain any support. Recall that the radius of the neighborhood disc R is
set to the eighth of the image width. If we increase the value of R, we can recover these
two matches. Although all matches are correct, LMedS still detects 11 matches as outliers,
and the average distance between a point and its epipolar line is now reduced to 0.3 pixels.
Comparing the epipolar geometry illustrated in Fig. 8 with that in Fig. 7, one can hardly
�nd any di�erence.

For scene road (Figs.9{11), the two images were taken by a single camera mounted on
a moving vehicle (this is thus a motion sequence). The vehicle moves forward on the right
lane, and the epipolar lines are thus expected to intersect to each other at a point near the
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Fig. 6. Scene bust: Matching result with the correlation technique
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Fig. 7. Scene bust: Matching result with the relaxation technique and the epipolar geometry recovered
using all matched points

center of the image. Figure 9 shows the matched points recovered by using the correlation
technique. One can notice that some points have not been correctly matched: matches 5, 21
and 23, to name a few. After carrying out the relaxation procedure, several false matches
have been corrected, but a few still persist, e.g., match 22 in Fig. 10. The epipolar geometry
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Fig. 8. Scene bust: The epipolar geometry recovered after discarding outliers and the matched points
found using the epipolar constraint
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Fig. 9. Scene road: Matching result with the correlation technique

estimated, as shown by the epipolar lines in Fig. 10, is not correct, and the average distance
between a point and its epipolar line is 5.1 pixels, which is quite large. The LMedS has
detected and rejected 5 outliers (3 false matches and 2 not very well located points). This
signi�cantly changes the epipolar geometry, in particular, the positions of the epipoles, as
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Fig. 10. Scene road: Matching result with the relaxation technique and the epipolar geometry recovered
using all matched points
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Fig. 11. Scene road: The epipolar geometry recovered after discarding outliers and the matched points
found using the epipolar constraint

shown in Fig. 11. The average distance is now 0.8 pixels. The attentive reader may have
noticed that the number of outliers detected, 5, is less than the number of false matches, 7
(see Table 1). In fact, there are four matches (49, 50, 51 and 52 in Fig. 10) on the lane marker
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which are not correct. However, they have not been detected by the LMedS because they
almost lie on the same epipolar line (see Fig. 11). As the criterion used in outlier detection
is the epipolar constraint, false matches lying on the epipolar line cannot be detected by our
LMedS method.
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Fig. 12. Scene valley: Matching result with the correlation technique

For scene valley (Figs.12{14), the two images were taken by two cameras placed one
above the other. The epipolar lines are thus expected to be almost parallel and oriented
vertically. The scene is composed of rocks with di�erent sizes. As the scene is rather textured,
the correlation technique works reasonably well: 235 matches have been found, 14 of which
are false (see Fig. 12). After the relaxation process, even more matches (248) have been
recovered, and only four of them are false. The false matches are those labeled 184, 54,
49 and 214 in Fig. 13. Although there are only four false matches, the epipolar geometry
estimated is completely wrong, as shown by the epipolar lines in Fig. 13, and the average
distance between a point and its epipolar line is 3.8 pixels, which is large. The LMedS has
detected all these false matches plus several not very well located ones. This completely
changes the epipolar geometry, as shown in Fig. 14. The average distance is now 0.7 pixels.

For scene rotation (Figs.15{17), the two images were taken by the same camera, but
there is a rotation around the optical center and a tilt translation between the two positions.
In spite of the image distortion due to the rotation, the correlation works reasonably except
for the points on the grid against the wall, where the repetitive patterns make matching
by correlation extremely di�cult (see Fig. 15): among 89 matches recovered, 31 are false.
Because of the use of contextual (neighboring) information, the relaxation technique has
produced a much better matching result (see Fig. 16). Among 102 matches recovered, only
11 are false, and almost all matches on the grid are correct. The LMedS has detected all
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Fig. 13. Scene valley: Matching result with the relaxation technique and the epipolar geometry recovered
using all matched points
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Fig. 14. Scene valley: The epipolar geometry recovered after discarding outliers and the matched points
found using the epipolar constraint

the false matches, and the epipolar geometry estimated is illustrated by lines in Fig. 17. The
average distance between a point and its epipolar line is reduced from 9.2 pixels to 0.5.
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Fig. 15. Scene rotation: Matching result with the correlation technique
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Fig. 16. Scene rotation: Matching result with the relaxation technique and the epipolar geometry
recovered using all matched points

For scene trunk (Figs.18{20), the two images were taken by two cameras placed side by
side. The two cameras have quite di�erent focal lengths, as can be noticed by the change
of the trunks' size. Again, despite the scale di�erence, our method works well. One can
also notice the drastic change in the epipolar geometry estimated before (Fig. 19) and after
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Fig. 17. Scene rotation: The epipolar geometry recovered after discarding outliers and the matched
points found using the epipolar constraint
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Fig. 18. Scene trunk: Matching result with the correlation technique

(Fig. 20) applying the LMedS technique for outlier detection. The average distance between
a point and its epipolar line is reduced from 13 pixels to 1.2.
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Fig. 19. Scene trunk: Matching result with the relaxation technique and the epipolar geometry recovered
using all matched points
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Fig. 20. Scene trunk: The epipolar geometry recovered after discarding outliers and the matched points
found using the epipolar constraint
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Fig. 21. Scene tracing: Matching result with the correlation technique

1 23 4
5 67 8 910 11 12

1314 1516 1718 19 2021 222324
25262728 293031 323334

35 3637 38394041 4243 444546
47 4849 505152

53545556 5758 59 60 6162 6364
6566 67

6869 7071 7273 747576 777879 808182 83848586878889 90 91929394 9596 979899100101 102103104105106107 108 109 110111112113114 115116 117 118119120 121122 123124 125126127128129 130 131 132133134 135136137 138139 140141142143144145 146147 148149 150151152 153 154155 156157158159160 161162163164 165 166167 168169 170171172 173174175176177178 179180 181182 183 184185 186187188 189190191 192193194 195 196197198 199200 201202203 204205 206 207208 209 210211 212 213 214 215216 217218 219220 221 222 223224 225226227 228229 230231 232 233234235236237 238 239240241 242 243 244245 246247
248

1 2

3

4

5

6

7

8

9

10 11

12

1314

1516 17

18

19

20
21

22

2324
25

26

2728 293031 323334
35 36

37

38

39

4041

42

43

444546
47 4849
50

5152
53

54

5556

57

58
59 60

61

62

636465

66

67

6869

70

71

72

73
747576 777879 808182 83848586878889

90 91

929394 9596 979899100101 102103104105106107

108 109 110

111112113114 115116

117 118

119120 121122

123

124

125

126127128129
130 131

132

133134 135136137 138139 140141142143144145

146

147 148149 150151152 153

154

155 156157158159160
161162163

164
165 166167

168

169 170171172

173

174175176177178
179180

181

182
183

184

185 186187188 189190191

192

193194 195

196
197

198
199200 201202

203
204205

206
207

208
209 210211 212 213

214 215

216

217

218 219220
221

222

223

224

225226

227

228

229 230231

232 233234235 236

237

238 239 240

241

242 243 244245 246247
248

Fig. 22. Scene tracing: Matching result with the relaxation technique and the epipolar geometry
recovered using all matched points
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Fig. 23. Scene tracing: The epipolar geometry recovered after discarding outliers and the matched points
found using the epipolar constraint

Finally, the two images in scene tracing (Figs.21{23) were generated by a ray tracing
technique simulating two cameras placed diagonally. The numerous repetitive patterns make
the matching by correlation almost impossible. Indeed, among 143 matches found, more
than a half are false (Fig. 21). This implies that if we apply the LMedS at this stage we
cannot obtain any useful result. Using the relaxation technique, we have obtained a very
good matching result: 248 matches have been recovered, and only 19 are false (Fig. 22).
These false matches have been all detected by the LMedS, and the epipolar geometry has
been correctly estimated, as shown in Fig. 23. The average distance between a point and its
epipolar line is reduced from 8.5 pixels in Fig. 22 to 0.4 pixels in Fig. 23. The fundamental
matrix used for generating the two images is:24 6:440951e�07 5:203664e�06 1:658593e�02

�4:065228e�06 7:716572e�07 1:798488e�02
�1:821295e�02 �1:834903e�02 1

35
and the estimated one is:24 6:455367e�07 5:146858e�06 1:622137e�02

�4:012881e�06 7:702527e�07 1:775179e�02
�1:785370e�02 �1:811788e�02 1

35
For comparison, we have normalized the last element to 1. The di�erence between them is
very small.

In Table 3, we summarize the CPU time in seconds spent in each step on a Spar 10
Workstation. The time shown is merely indicative, as we have not tried to optimize our
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Table 3. Computation time in each step: CPU time in seconds on a Sparc 10 Workstation

Scene Correlation Relaxation LMedS Stereo

bust 16.9 5.9 2.2 1.8
road 8.4 1.9 1.5 2.0
valley 8.6 9.5 3.3 1.6
rotation 2.8 2.1 2.0 0.6
trunk 6.3 4.9 2.1 2.0
tracing 6.1 76 3.2 1.1

codes. The time for correlation depends on the scene complexity, and essentially the number
of points. The time for relaxation depends on the degree of matching ambiguity. If there are
not many matching candidates, like in scene road, the time is very short. In scene tracing,
however, the time spent in relaxation is extremely high (76 seconds!) because each point
may have as many as 40 matching candidates. The time for LMedS is almost constant,
around 2 seconds. The time for stereo is around 1.6 seconds. Thus, in general, the most time
consuming step is the correlation.

9 Conclusion

We have proposed in this paper a robust approach to image matching by exploiting the
only geometric constraint, namely, the epipolar constraint. The presence of the epipolar
geometry between two images is now well known, and can be described by the fundamental
matrix. The idea is to use some heuristic techniques (correlation methods in our particular
implementation) to �nd an initial set of matches, and then use a very robust technique|
the Least Median of Squares (LMedS)|to discard outliers in this set. The LMedS aims
at �nding the fundamental matrix, by searching in the parameter space, which minimizes
the median of the squared errors. An error is quanti�ed by the distance of a point to its
corresponding epipolar line. This method has been tested with a large number of real images
(indoor scenes, outdoor scenes, dummy mannequins, etc.). From the experiments we have
carried out, our approach allows about 40% of false matches in the initial set of matches.
The fundamental matrix can �nally be accurately estimated from the good points.

There still exist a number of ways to improve our algorithm:

Accuracy The precision of the �nal estimation of the fundamental matrix depends tightly
on those of the matched points. To have a better estimation of the fundamental matrix,
we should increase the accuracy of matched points. One possibility is to use subpixel-
precision corner detector whenever possible. For example, if we are working in an indoor
environment, we may use corner detectors such as [11, 46, 8]. Another possibility is to
apply subpixel-precision correlation techniques. The idea is to compute the correlation
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score for each point in the neighborhood of the match, and �t a parametric surface,
e.g., a paraboloid, to the correlation scores, and eventually compute the position with
the largest correlation score.

Stability The stability of our algorithm is directly related to that of �nding the fundamental
matrix, which is studied in [33]. One of the most stringent situations is that all points
are located close to a critical surface, for example, a plane. If the points are almost
on a plane, it is better to describe their relation between two views by a homography
instead of a fundamental matrix. This will not change considerably the structure of
our algorithm. The question is when to switch from using a fundamental matrix to
using a homography, and vice versa.

Ambiguity Using the epipolar constraint alone does not allow to �nd unambiguousmatches
between two views. If a false match is occasionally aligned with the epipolar line, it
will not be detected by our algorithm because only the epipolar constraint is used for
outlier rejection. This of course does not disturb the estimation of the fundamental
matrix. A good stereo matching algorithm, such as [44, 34], should be used to exploit
other constraints like a disparity gradient limit.
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