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ABSTRACT
Understanding users’ search intent expressed through their
search queries is crucial to Web search and online adver-
tisement. Web query classification (QC) has been widely
studied for this purpose. Most previous QC algorithms clas-
sify individual queries without considering their context in-
formation. However, as exemplified by the well-known ex-
ample on query “jaguar”, many Web queries are short and
ambiguous, whose real meanings are uncertain without the
context information. In this paper, we incorporate context
information into the problem of query classification by using
conditional random field (CRF) models. In our approach,
we use neighboring queries and their corresponding clicked
URLs (Web pages) in search sessions as the context infor-
mation. We perform extensive experiments on real world
search logs and validate the effectiveness and efficiency of
our approach. We show that we can improve the F1 score
by 52% as compared to other state-of-the-art baselines.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous; I.5.2 [Pattern Recognition]: Design Methodology-
Classifier design and evaluation

General Terms
Algorithms, Experimentation

Keywords
Search context, Query classification

1. INTRODUCTION
Search engines have become one of the most popular tools

for Web users to find their desired information. As a result,
understanding the search intent behind the queries issued
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by Web users has become an important research problem.
Query classification (or query categorization), denoted as
QC, has been studied for this purpose by classifying user
queries into a ranked list of predefined target categories.
Such category information can be used to trigger the most
appropriate vertical searches corresponding to a query, im-
prove Web page ranking [18], and help find the relevant on-
line advertisements.

Query classification is dramatically different from tradi-
tional text classification because of two issues. First, Web
queries are usually very short. As reported in [5], most
queries contain only 2-3 terms. Second, many queries are
ambiguous [11], and it is common that a query belongs to
multiple categories. For example, [27] manually labels 800
randomly sampled queries from the public data set from
ACM KDD Cup’051, and 682 queries have multiple cate-
gory labels.

To address the above challenges, a variety of query clas-
sification approaches have been proposed in the literature.
In general, these approaches can be divided into three cate-
gories. The first category tries to augment the queries with
extra data, including the search results returned for a certain
query, the information from an existing corpus, or an inter-
mediate taxonomy [8, 27]. The second category leverages
unlabeled data to help improve the accuracy of supervised
learning [5, 6]. Finally, the third category of approaches
expands the training data by automatically labeling some
queries in some click-through data via a self-training-like
approach [21]. Although the existing methods may be suc-
cessful in some cases, most of them are not context-aware;
that is, they treat each query individually without consider-
ing the user behavior history.

A MOTIVATING EXAMPLE. Suppose that a user issues a
query “Michael Jordan”. It is not clear whether the user is
interested in the famous basketball player or the machine
learning researcher at UC Berkeley. Without understanding
the user’s search intent, many existing methods may classify
the query into both categories “Sports” and “Computer Sci-
ence”. However, if we find that the user has issued a query
“NBA” before “Michael Jordan”, it is likely that the user is
interested in the category of“Sports”. Conversely, if the user
issues some queries related to machine learning before the
query“Michael Jordan”, it may suggest the user is interested
in the topics related to “Computer Science”.

1ACM KDD Cup’05 is an open contest conducted in conjunction
with the ACM KDD’05 conference, which gives a QC task on
800,000 randomly selected Web queries.



Intuitively, using search context information, such as the
adjacent queries in the same session as well as the clicked
URLs of these queries, can help better understand users’
search intent and thus improve the classification accuracy.
As shown in previous studies (e.g., [9, 10, 13]), adjacent
queries raised by the same user are usually semantically re-
lated. Moreover, compared with search queries, which are
often short and ambiguous, the URLs that are selectively
clicked by a user after issuing the queries may better reveal
the search intent of the user.

As a first attempt to leverage context information in query
classification, in this paper, we intend to answer the fol-
lowing questions: 1) How do we model context information
effectively and incorporate it into the problem of query clas-
sification? 2) How much improvement can we achieve by
using context information in query classification? 3) Would
incorporating context information add too much computa-
tional burden and would it be possible to extend the idea
for real world commercial search engines?

To answer these questions, we propose to use the Con-
ditional Random Field model (CRF for short) [19] to help
incorporate the search context information. We have several
motivations for using this model. First, CRF is a sequential
learning model which is particularly suitable for capturing
the context information of queries. Second, the CRF model
does not need any prior knowledge for the type of condi-
tional distribution. Finally, compared with Hidden Markov
Models, the CRF model is more flexible to incorporate richer
features, such as the knowledge of an external Web directory.

In this paper, we show how CRF can be used for mod-
eling the context information for query classification. We
conduct extensive experiments on real world search logs to
empirically evaluate our proposed model. Our experiments
show that the CRF approach improves the F1 score by as
much as 52% as compared to the state-of-the-art baselines.
Moreover, after the CRF model is trained offline, the online
inference stage is very fast (e.g., less than 0.1 millisecond in
our experiments), which makes our approach feasible to use
in real world search engine systems.

The rest of this paper is organized as follows. In Section 3,
we describe the problem of context-aware query classifica-
tion. We then briefly introduce the CRF model in Section 4
and present the features in CRF in Section 5. The experi-
mental results are reported in Section 6 and the related work
is discussed in Section 2. Finally, we conclude our paper and
point out some future research directions in Section 7.

2. RELATED WORK
Given a query and a predefined taxonomy, the objective

of query classification (QC) is to classify the query into a
ranked list of categories which are leaf nodes of the tax-
onomy. Previous studies on QC can be classified into two
categories depending on the types of taxonomy.

In the first category, the taxonomy is defined by consid-
ering the Web query types. In [7], Broder gave the first
taxonomy of Web query types such as Navigational Queries,
Informational Queries and Transactional Queries. Rose et
al. [24] introduced a more complex taxonomy of Web query
types based on a popular taxonomy proposed by Broder.
However, both of their works do not deal with classification
based on a taxonomy of categories. Lee et al. [20] stud-
ied the classification problem and introduced an approach

to classify Web queries into either Informational Queries or
Navigational Queries. But their approach does not consider
Transactional Queries. Recently, the problem of detecting
commercial intent (OCI) attracts some researchers’ interest
[12]. This problem is also a QC problem by considering Web
queries types.

For the second category, a taxonomy is defined by con-
sidering the topics of queries. Early work of query topic
classification was done by manually classifying Web queries
for query analysis, especially on the query topic distribu-
tion [4]. Since it is expensive for manually classifying Web
queries, it is an interesting problem to design a automatic
approach for classifying Web queries with a taxonomy of
topics. Early works on this problem only considered the
local information of queries, i.e., the terms of queries [5,
6]. However, as mentioned by [8], queries are usually short
and the internal information is very limited. Recently, some
works proposed to leverage the external Web knowledge to
enrich the queries, such as extracting information from the
top related search results of the query from a search engine
[8] or taking advantage of a Web directory [27]. Given the
fast growth of non-English web, some researchers studied
the problem of cross-language query classification [23]. The
approach proposed in this paper does not consider different
languages.

In recent years, some researchers realized the importance
of search context. In [16] and [9], two context-aware ap-
proaches to query suggestion were proposed. Cao et al. [10]
proposed a general context-aware model for query sugges-
tion and ranking. These works confirmed that search con-
texts are effective for disambiguating Web queries and can
help improve the quality of multiple search services. How-
ever, to the best of our knowledge, none of existing works
on query classification considered the search context. In our
approach, click information is considered as an important
part of context. Though many existing works such as [9,
29] studied how to use click-information to enrich query’s
semantic feature, none of them proposed an approach for
leveraging click information for QC.

Proposed by Lafferty et al in [19], CRFs have been widely
used in various domains such as named-entity recognition
(NER) [22], identifying protein names in biology abstracts
[26] and Web query refinement [14]. Some researchers also
studied some variants of the basic Linear chain-CRF such
as Skip-chain CRF [28]. In this paper, we use the basic
Linear-chain CRF to model the query context.

3. PROBLEM STATEMENT
In this section, we introduce several notations and then

give a description of context-aware query classification based
on the definition of traditional query classification problem
in [27].

Definition 1. (Search context and contextual
queries). A user search session o is a series of observations
o1 . . . oT , where each observation ot(1 ≤ t ≤ T ) consists of
a query qt and a set of URLs Ut clicked by the user for qt.
For any query qk(1 < k ≤ T ), the observations o1 . . . ok−1 is
the search context of qk. In particular, the series of queries
q1 . . . qk−1 are called the contextual queries of qk.

Various methods have been proposed for session segmen-
tation in the literature [17]. In this paper, we adopt a sim-
ple yet effective rule to divide sessions [9]; that is, two user



queries are divided into different sessions if the interval be-
tween their issued times is longer than 30 minutes. This
rule has been widely used in previous works, e.g., [9, 16],
and proved effective. Table 1 shows some examples of real
user sessions. The symbol “↓” indicates the user clicks a
URL. Note that the query “gmc” is an ambiguous query
that refers to the “GMC cars” in session S1, but refers to
the “General Medical Council of Britain” in session S2.

SID User session

ford =⇒ toyota =⇒ gmc
S1 ↓ ↓ ↓

www.ford.co.uk www.toyota.com www.gmc.com
registered nurse =⇒ gmc

S2 ↓ ↓
www.mayo.edu/mshs www.gmc-uk.org

ancient Rome =⇒ gladiator
S3 ↓ ↓

www.historyforkids.org en.wikipedia.org/wiki/Gladiator

Table 1: Examples of real user sessions.

Definition 2. (Taxonomy). A taxonomy Υ is a tree of
categories where each node corresponds to a predefined cat-
egory. The semantic meaning of each category is defined by
the labels along the path from the root to the corresponding
node.

Figure 1: An example of taxonomy.

Figure 1 shows a part of the taxonomy of ACM KDD
Cup’05. Sometimes we need to map the categories of a

taxonomy Υ to the categories of another taxonomy Υ̂ for
reusing the category labels of Υ. In this paper, we adopt an
effective mapping method introduced by Shen et al. [27] as
a part of our approach.

Definition 3. (Level-n Category, Ancestor Cate-
gory, and Sibling Category). Given a category c in a
taxonomy Υ, c is called a level-n category if the node of c is
located at n-th level of Υ. A category c∗ is a level-m ances-
tor category of c, denoted by αm

c (m < n), if c∗ is a level-m
category and c∗ corresponds to an ancestor node of c in Υ.
A category c# is an level-m sibling category of c, denoted by
βm

c (m < n), if c# is at the same level with c and c# shares
a common ancestor category αm

c with c.

For instance, in Figure 1, given a level-2 category c“Living
\Car& Garage”, α1

c is the level-1 ancestor category “Living”
and “Living\Career& Jobs” is a level-1 sibling category of c.

Problem Statement (Context-aware query classifi-
cation). Given a target taxonomy Υ, a user-specified pa-
rameter K, and a user query qT , context-aware query classi-
fication incorporates the search context of qT to classify qT

into a ranked list of K categories cT1, cT2,..., cTK , among
Nc leaf categories {c1, c2, ..., cNc} of Υ.

4. MODELING SEARCH CONTEXT BY CRF
The Conditional Random Field (CRF) model is a discrim-

inative graphical model, which focuses on modeling the con-
ditional distribution of unobserved state sequences given an
observation sequence [19]. The strength of processing se-
quential data and incorporating rich features makes CRF
model particularly suitable for context-aware query classifi-
cation.

cT-1,cT, cT-2,cT-1,c0,c1,

T T

T T

Figure 2: Modeling search context by a Linear-chain
CRF.

As shown in Figure 2, in our problem, a Linear-chain
CRF defines the conditional probability of a category la-
bel sequence c = c1...cT−1cT given an observation sequence
o = o1...oT−1qT as:

p(c|o) =
1

Z(o)

T∏
t=1

ψ(ct−1, ct,o), (1)

where Z(o) =
∑

c

∏T
t=1 ψ(ct−1, ct,o) is a normalization fac-

tor and c0 is an empty category label which is added for
simplicity of defining the model. Potential functions ψ de-
scribe the Linear-chain transitions, and are defined as:

ψ (ct−1, ct,o) = exp

(∑

k

λkfk (ct−1, ct,o)

)
, (2)

where fk is a feature function and λk is the weight of fk.
Given training data D = {o(n), c(n)}N

n=1, the objective of
training a Linear-chain CRF is to find a set of parameters
Λ = {λk} that maximize the conditional log-likelihood:

L(Λ) =

N∑
n=1

log p(c(n)|o(n)). (3)

Once the parameters Λ have been learned using a training
data set, we can infer the category label c∗T for the test query
qT as c∗T = arg max

cT

p(cT | o, Λ).

5. FEATURES OF THE CRF MODEL
When we use the CRF to model a search context, one of

the most important parts is to choose the effective feature
functions. In this section, we introduce the features used
for building a CRF model of the search context for QC.
In general, the features can be divided into two categories.
The features that do not rely on the context information
are called local features, and those that are dependent on
context information are called contextual features.

5.1 Local features
To leverage the local information of individual queries,

we consider three types of features that associate queries
with the corresponding category label, namely, query terms,
pseudo feedback, and implicit feedback.



5.1.1 Query terms
Given a query qt (1 ≤ t ≤ T ) and its category label ct,

the elementary features that reflect the association between
qt and ct are the terms of qt. Suppose qt consists of a set
of terms {tqt}, each tqt can be considered as a feature to
support the category label ct. The weights of these features
can be learned in the training process of the CRF model.

The problem of this type of features is that query terms
are usually sparse. Consequently, the available training data
are usually with limited size and could not cover a sufficient
set of query terms that are useful for reflecting the associa-
tion between queries and category labels. Therefore, given
a new query whose partial, or all terms do not occur in the
training data, this kind of features will not work.

The above problem is difficult to solve because it is hard
to label a large number of sessions with a complex taxon-
omy for a sufficiently large set of terms for all categories. For
this reason, we also consider some other features that repre-
sent the association between queries and category labels by
leveraging some external Web knowledge.

5.1.2 Pseudo feedback
This type of features exploits the top M results returned

by an external Web directory. Given a query qt (1 ≤ t ≤ T )
and its category label ct, we first submit qt to an external
Web directory, such as the Google Directory [2] or Yahoo
Directory [1], and get the top M search results. In the sec-
ond step, for each of the top-M results, we follow the method
in [27] and map its category label from a category in the Web
directory’s taxonomy to a category in the target taxonomy.
Finally, we calculate a general label confidence score:

GConf(ct, qt) =
Mct,qt

M
,

where Mct,qt means the number of returned related search
results of qt whose category labels are ct after mapping. In-
tuitively, the GConf score reflects the confidence that qt is
labeled as ct gained from pseudo feedback; the larger the
score, the higher the confidence.

5.1.3 Implicit feedback
The third type of local features considers the click infor-

mation as the implicit feedback from users. Similar to the
type of features from pseudo feedback, we also exploit an
external Web directory. However, we use the clicked URLs
by users instead of the top-M results returned by the Web
directory to enrich queries. To be more specific, given a
query qt (1 ≤ t ≤ T −1), let the set of clicked URLs of qt be
Ut = {ut}, the click-based label confidence score of ct given
qt is defined as:

CConf(ct, qt, Ut) =

∑
ut

CConf(ct, ut)

|Ut| ,

where CConf(ct, ut) means the confidence that ct is the
most appropriate category label of ut.

We calculate CConf(ct, ut) in three steps. The first two
steps are similar to those in calculating the general label
confidence score. That is, we first submit qt to a Web direc-
tory and then map the category of each top-M result to a
corresponding category in the target taxonomy. After these
two steps, we obtain a document collection for each possible
category of qt in the target taxonomy, which will be used to
calculate CConf(ct, ut). In the third step, we build a Vector

Space Model (VSM) [25] for each category from its document
collection and make the cosine similarity between the term
vector of ct and the term vector of ut as CConf(ct, ut). The
snippets of the web pages are used for generating the term
vectors.

It is a special case that the top-M search results returned
by the Web directory contain the clicked URL ut. In this
case, ut is associated with a Web directory label c̃t. De-
noting the mapped category label of c̃t as ĉt, we define
CConf(ĉt, ut) = 1 and ∀c 6=ĉtCConf(c, ut) = 0.

Note that the CConf score is only applicable when the
click information of qt is available. If a user does not click
on any URL for qt, or qt is the current query to be classified,
this score cannot be calculated.

5.2 Contextual features
To use the context information, we consider some features

that can reflect the association between adjacent category
labels.

5.2.1 Direct association between adjacent labels
Occurrence of a pair of adjacent labels 〈ct−1, ct〉 (1 < t ≤

T ) is an obvious feature of the association between adjacent
labels, where ct−1 and ct are leaf categories in the target
taxonomy. The higher the weight 〈ct−1, ct〉, the larger the
probability ct−1 transits into ct. The weights of these fea-
tures are learned from the training data during the training
process of the CRF model.

5.2.2 Taxonomy-based association between adjacent
labels

Limited by the size of the training data, some transi-
tion between categories may not occur in the training data.
Moreover, the number of observed transitions may not re-
flect the distribution in real world applications. Conse-
quently, the CRF model may not be able to capture the
direct association between categories properly.

To reduce the bias of training data, besides considering
the feature of direct association between adjacent labels, we
also consider the structure of the taxonomy. Intuitively, the
association between two sibling categories is stronger than
that of two non-sibling categories. For example, the category
“Computer\Software” is more relevant to “Computer\Hard-
ware” than to “Live\Career& Jobs”. Please refer to Defini-
tion 3 for the formal definition of sibling categories.

To be more specific, given a pair of adjacent labels 〈ct−1,ct〉,
where ct−1 and ct are both leaf categories at level n, we con-
sider n− 1 features of taxonomy-based association between
ct−1 and ct as {〈αi

ct−1 , αi
ct
〉} (1 ≤ i ≤ n − 1). The weights

of these features are learned from the training data. This
idea is similar to smoothing, where, if there are no train-
ing data for the feature when 〈ct−1,ct〉 occurs, there may
still be some training data for the features at higher-level
transitions 〈αi

ct−1 , αi
ct
〉 in the training data. Let βi

ct−1 and

βi
ct

be the level-i siblings of ct−1 and ct, respectively. It is
easy to see that 〈αn

ct−1 , αn
ct
〉 occurs if ∃βn

ct−1 , βn
ct

such that
〈βn

ct−1 , βn
ct
〉 occurs.

6. EXPERIMENTS
In this section, we validate our proposed methods through

a systematic empirical comparisons with two baselines over
a real data set.



6.1 Experimental Set Up and Data Sets
We use the target taxonomy of ACM KDD Cup’05 as our

target taxonomy, which is widely used in the literature for
QC. This taxonomy is a two-level taxonomy and has seven
level-1 categories and 67 level-2 categories.

We randomly extract 10,000 sessions from one day’s search
log of a major commercial search engine under the session
segmentation rule mentioned in Section 3. In this paper, all
the extracted sessions contain at least two queries so that we
can exploit the impact of contextual information for query
classification. The proportion of sessions with more than
one query is usually not small. As shown in [15], about
55% sessions have more than one query in a search log of
the Excite search engine. Our search log also shows that
there are more than 45% such sessions among all sessions. It
implies that our approach can help in many cases. Moreover,
the queries in single query sessions are mostly “easy queries”
that have clear meanings and are easy to be classified. In
the extracted sessions, there are 23,091 unique queries and
32,410 unique clicked URLs in total.
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Figure 3: Distributions of (a) session lengths and
(b) query frequencies of the training data.

Figure 3 (a) and Figure 3 (b) show the session length dis-
tribution and the query frequency distribution of the data
set, respectively. From these two figures we can see that
in this data set, both the distribution of session lengths
and the distribution of query frequencies roughly follow the
power law. This phenomenon is consistent with some previ-
ous analysis on large scale search logs [9].

We invited three human labelers to label the queries of
each session with the 67 level-2 category labels. For each
query, a labeler gives a most appropriate category label by
considering not only the query itself, but also the search con-
text and the clicked URLs of the query. A query’s final label
is voted by the three labelers. Since each query is associated
with context information (except for the beginning queries
of sessions) and real user clicks which can help determine
the meaning or intent of the query, the consistency among
the labelers is quite high. For more than 90% queries, the
three labelers give the same labels. This is very different
from the general query classification problem [27].

Figure 4 shows the category distribution of the labeled
queries. From this figure, we can see the category labels of
the queries in our data set cover all seven level-1 categories.

6.2 Baselines
In this paper, we adopt two baselines to evaluate the per-

formance of our approach:

Bridging classifier(BC): We implement the bridging
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Figure 4: Distribution of different category labels in
the training data.

classifier introduced by Shen et al in [27]. The idea
of this approach is training a classifier on an interme-
diate taxonomy and then bridging the queries and the
target taxonomy in the online step of QC. Experiments
in [27] show this approach outperforms the wining ap-
proach in KDD Cup’05.

Collaborating classifier(CC): Since there is no exist-
ing approach for query classification that takes into
account the context information, we design a naive
context-aware approach as the second baseline to fur-
ther evaluate the modeling power of CRF in this prob-
lem. The idea of this approach is as follow: given a test
query qT and the previous query qT−1 in the same ses-
sion, 1) firstly we use the bridging classifier to obtain
all possible categories of qT as CqT = {cqT } with scores
Score(qT , cqT ) and all possible categories of qT−1 as
CqT−1 = {cqT−1} with scores Score(qT , cqT−1); 2) Af-
ter that, for each cqT , we let:

Score(cqT ) = Score(qT , cqT ) +
∑

cqT−1

Score(qT−1, cqT−1)

×AConf(cqT−1 , cqT ),

where AConf(cqT−1 , cqT ) means the association con-
fidence [3]of the adjacent label pair 〈cqT−1 , cqT 〉. The
association confidence which is calculated as:

AConf(cqT−1 , cqT ) =
freq(cqT−1 , cqT )∑

c freq(cqT−1 , c)
,

where freq(c1, c2) means the frequency of the adjacent
label pair 〈c1, c2〉 in the training data. Finally the
category label ranked list of CT is generated by ranking
Score(cqT ).

6.3 Evaluation Metrics
Given a test session q1q2...qT , we take the last query qT as

the test query and take the queries q1q2...qT−1 and their cor-
responding clicked URL sets U1U2...UT−1 as the search con-
text. In order to evaluate the performance of our approach
and the two baselines on the task of query classification with
search context, we use three metrics, namely, overall preci-
sion, overall recall and overall F1 score. For a test query
qT with the true category label cT , given the classification
results CT,K where CT,K is a set of the top K predicted cat-
egory labels from a tested approach, the precision(P ) for qT

is represented as
δ(cT∈CT,K)

|K| , where δ(∗) is a boolean func-

tion of indicating whether ∗ is true(=1) or false(=0). The
recall(R) for qT is represented as δ(cT ∈ CT,K) and the F1



score for qT is represented as 2×P×R
P+R

. The overall precision

is calculated as
∑N

n=1 Pn

N
, where N means the number of all

test cases and Pn means the precision for the nth test query.
The overall recall and overall F1 score are both calculated
in similar ways.

To reduce the uncertainty of splitting the data into train-
ing data and test data, we adopt a ten-fold cross validation
as follow: 1) Firstly we randomly partition the labeled ses-
sions into ten folds; 2) Then we take each of the ten folds as
test data and the remaining nine folds as training data; 3)
Finally, we report the average performance of the ten runs.

6.4 Overall Results and Analysis
In order to study the contribution of context information,

we compare three CRF models with different features: CRF-
B (CRF with Basic features2), CRF-B-C (CRF with Basic
features + Click-based label confidence) and CRF-B-C-T (
CRF with Basic features + Click-based label confidence +
Taxonomy-based association ), respectively. In our exper-
iments, we choose Google Directory as our external Web
directory for calculating general label confidence and click-
based label confidence. We set M , i.e., the number of used
search results of a Web directory, to be 10, which equals the
number of search results in a search page.

In this section, we evaluate the overall precision, overall
recall and overall F1 score with different K for each tested
approach. We set the maximum K to be 5.
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Figure 5: The average overall precision of CRF-B,
CRF-B-C, CRF-B-C-T and two baselines with dif-
ferent K.

Figure 5 compares the average overall precision of CRF-B,
CRF-B-C, CRF-B-C-T to the two baselines with different
K values. From this figure we can see that all tested ap-
proaches’ average overall precision numbers drop when we
increase K. Compared with the non-context-aware baseline
BC, the average overall precision of CRF-B, CRF-B-C and
CRF-B-C-T is improved across different K by 50%, 52% and
57% , respectively. Compared with the naive context-aware
baseline CC, average overall precision of CRF-B, CRF-B-C
and CRF-B-C-T is also improved by 2%, 3% and 7%, re-
spectively.

Similarly, Figure 6 compares the average overall recall of
CRF-B, CRF-B-C, CRF-B-C-T and the two baselines with
different K. From this figure we can see that all tested
approaches’ average overall recall values increase when we
increase K. It is reasonable because the probability that the
ground truth label is covered by the predicted results will in-
crease with more predicted category labels. Compared with
the non-context-aware baseline BC, the average overall re-
call of CRF-B, CRF-B-C and CRF-B-C-T is improved across

2Basic features mean Query terms, General label confidence and
Direct association between adjacent labels
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Figure 6: The average overall recall of CRF-B, CRF-
B-C, CRF-B-C-T and two baselines with different
K.

different K by 33%, 35% and 37% , respectively. Compared
with the naive context-aware baseline CC, the average over-
all precision of CRF-B, CRF-B-C and CRF-B-C-T is also
improved by 2%, 3% and 4%, respectively.
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Figure 7: The average overall F1 scores of CRF-B,
CRF-B-C, CRF-B-C-T and two baselines with dif-
ferent K.

Figure 7 compares the average overall F1 scores of CRF-B,
CRF-B-C, CRF-B-C-T and the two baselines with different
K. From this figure, we can see the CRF-B, CRF-B-C and
CRF-B-C-T can improve the average F1 scores by 46%, 48%
and 52%, respectively, when compared to the non-context-
aware baseline BC. Compared with the naive context-aware
baseline CC, the average overall F1 scores of CRF-B, CRF-
B-C and CRF-B-C-T are also improved by 2%, 3% and 6%,
respectively.

We conduct a series of paired T-tests of 0.95 confidence
level which show that the improvements of our approaches
on overall precision, overall recall and overall F1 are all sta-
tistically significant. We also study the variances of overall
precision, overall recall and overall F1 scores of all tested
approaches in the ten-fold cross validation. Table 2 shows
the mean deviations of these values of each tested approach
in the ten-fold cross validation with K = 1 and K = 2, re-
spectively. Notice that when K = 1, the overall precision,
overall recall and over all F1 scores are same for each tested
approach. From this table we can see that the variances of
all three CRFs’ performance are consistently smaller than
the collaborating classifier. It implies that there is indeed
a major advantage of using CRFs for extracting context in-
formation, as compared to the collaborating classifier based
on a naive context-aware strategy.

We also compare the performance of our proposed ap-
proaches and the two baseline methods on user-session data
with different lengths, where the shortest length is two.
From the experiments, we find that the performance of all
tested approaches on length-two sessions is a little better
than sessions with more queries. This is because it is often
the case that the shorter the sessions are, the more likely
the queries are common queries that are easy to be classi-



K Approach Overall P Overall R Overall F1

1

BC 6.77× 10−3 - -
CC 1.97× 10−2 - -
CRF-B 7.87× 10−3 - -
CRF-B-T 1.03× 10−2 - -
CRF-B-C-T 1.8× 10−2 - -

2

BC 6.48× 10−4 1.30× 10−3 8.64× 10−4

CC 1.58× 10−2 2.43× 10−2 1.94× 10−2

CRF-B 2.31× 10−3 6.34× 10−3 3.47× 10−3

CRF-B-C 5.57× 10−3 1.17× 10−2 7.47× 10−3

CRF-B-C-T 6.81× 10−3 9.88× 10−3 8.20× 10−3

Table 2: Mean deviations of overall precision, overall
recall and overall F1 scores of each tested approach
in the ten-fold cross validation.

fied. Moreover, for sessions with more than two queries, we
compare the performance of CRFs by considering different
lengths of search context. We find that considering longer
search context does not significantly improve the perfor-
mance as compared to considering only one previous query
and its corresponding clicked URLs.

From the above experiments, we can come to the following
conclusions: 1) Firstly, all three CRF models and collabo-
rating classifier consistently outperform the bridging classi-
fier on the task of query classification given search context,
which implies the effectiveness of context information; 2)
Secondly, all three CRF models consistently outperform the
collaborating classifier, which is a naive context-aware base-
line. It implies that it’s an effective approach of modeling
context information by CRFs; 3) Thirdly, CRF-B-C outper-
forms CRF-B, which shows that click information is a good
source of context information for query classification; 4) Fi-
nally, CRF-B-C-T outperforms CRF-B-C, which indicates
that the taxonomy-based association between adjacent la-
bels is useful for the query classification problem with search
context.

6.5 Case Study
In addition to the study on the overall performance of

CRF-B, CRF-B-C, CRF-B-C-T and the two baselines, we
also study the cases in which our approach outperforms the
baselines.

Context info: travel guide → www.worldtravelguide.net
Query: santa fe new mexico
Snippet of the clicked URL: Santa Fe Travel Information
and Travel Guide - USA - Lonely Planet
Ground truth: Living\Travel & Vacation

Category Labels

Bridging classifier
Information\Local & Regional
Living\Travel & Vacation

Collaborating classifier
Living\Travel & Vacation
Information\Local & Regional

CRF-B-C-T
Living\Travel & Vacation
Information\Local & Regional

Table 3: An example of query classification with a
search context.

Table 3 shows an example of query classification with a
search context. In this example, the test query is “santa fe
new mexico”. Without considering the context, this query
may have multiple possible search intents. One possible in-

tent is that the user wants to know some general information
of the city of Santa Fe, such as the area, the population of
this city, etc. In this case, the query should be classified
into the “Information\Local & Regional” category. Another
possible intent is that the user wants to go on a vocation in
the city of Santa Fe and need some travel information about
this city, such as hotels and tourist attractions. In this case,
the query should be classified into the “Living\Travel & Va-
cation” category. However, given the context with the query
“travel guide” in which the user visits a web site related
to travel, the appropriate category of this query should be
narrowed down to “Living\Travel & Vacation”. From Ta-
ble 3, we can see that both CRF-B-C-T and the collaborat-
ing classifier give the correct category label in the first po-
sition because they consider contextual information, while
the bridging classifier’s first label is not appropriate. This
case exemplifies the effectiveness of considering context in-
formation.

Context info: FIFA → fifa08.ea.com
Query: FIFA news
Snippet of the clicked URL: FIFA 08 News, Videos
Ground truth: Entertainment\Games & Toys

Category Labels

Bridging classifier
Sports\Soccer

Entertainment\Games & Toys

Collaborating classifier
Sports\Soccer

Entertainment\Games & Toys

CRF-B-C-T
Entertainment\Games & Toys

Sports\Soccer

Table 4: Another example of query classification
with a search context.

Table 4 shows another example of query classification given
the search context. In this example, the test query is “FIFA
news”. Without considering the context, this query may
have two possible meanings: news of the International Fed-
eration of Association Football, or news on a soccer video
game named “FIFA”. And the corresponding categories are
“Sports\Soccer” and “Entertainment\Games & Toys”, re-
spectively. However, given the context that the user has
issued a query “FIFA” and clicked a URL which is related
to the video game “FIFA” , the appropriate category is most
likely“Entertainment\Games & Toys”. From Table 4 we can
see that CRF-B-C-T gives the correct category label in the
first position, while the collaborating classifier and bridging
classifier’s first labels are not appropriate. This case exem-
plifies that CRF-B-C-T leverage search context better than
the collaborating classifier.

6.6 Efficiency of Our Approach
Our approach consists of an offline part and an online part.

In the offline part, the time cost of our approach comes from
the training cost for the CRF model. Figure 8 (a), (b) and
(c) show the convergence curves of CRF-B, CRF-B-C and
CRF-B-C-T, respectively. From these figures we can see the
objective function value of CRF-B-C converges to a better
optima as compared to CRF-B and the objective function
value of CRF-B-C-T converges to a better optima point than
CRF-B-C. This implies that considering click information
and taxonomy-based association between adjacent category
labels can help build a stronger CRF model. The training
algorithms are implemented on an Intel Core2 2×2.0G, 4G



main memory machine. Each iteration of these algorithms
takes about 300 milliseconds. Therefore, the time cost of
training a CRF is acceptable as an off line process.
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Figure 8: Objective function values per iteration of
training CRF-B, CRF-B-C and CRF-B-C-T.

It is well known that Web users often have strict require-
ments on the response time of online applications. Thus,
the efficiency of an online application is an important prob-
lem. In the online part, the time cost of our approach comes
from calculating features and inference. In the stage of cal-
culating features, the main cost comes from the process of
calculating label confidence. This process can be very fast
for a commercial search engine since most modern search
engines have their own Web directories locally. Moreover, if
we calculate these features offline in advance and store them
in local servers, the process will be even faster. Besides, the
stage of reference is very fast (less than 0.1 millisecond).
This is because usually the length of search context is short
and the number of possible categories for a query is small
as well. For improving the efficiency of inference further,
we can consider only one previous query and its correspond-
ing clicked URLs as search context, since our experiments
show that such context information is effective enough for
improving the quality of QC significantly.

7. CONCLUSIONS AND FUTURE WORK
Web query classification is an important problem with

wide applications. However, although many existing works
have studied this problem, none of them considered the
search context together with query classification. In this
paper, we propose a novel approach for leveraging context
information to classify queries by modeling search context
though CRFs. Experiments on a real data set extracted from
a commercial search engine log clearly show that our ap-
proach consistently outperforms a non-context-aware base-
line and a naive context-aware baseline.

Our current approach cannot handle the first-query prob-
lem well, which is the problem of not being able to find a
search context if the query is located at the beginning of a
search session. However, if we can capture some events that
occurred a little earlier at the beginning of the session, such
as events of Web page browsing, we can solve the first query
problem well. In our future research, we plan to study this
problem in detail.
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