
Pentagons: A Weakly Relational Abstract

Domain for the Efficient Validation of Array

Accesses

Francesco Logozzo

Microsoft Research, Redmond, WA, USA

Manuel Fähndrich

Microsoft Research, Redmond, WA, USA

Abstract

We introduce Pentagons (Pntg), a weakly relational numerical abstract domain
useful for the validation of array accesses in byte-code and intermediate languages
(IL). This abstract domain captures properties of the form of x ∈ [a, b] ∧ x < y. It
is more precise than the well known Interval domain, but it is less precise than the
Octagon domain.

The goal of Pntg is to be a lightweight numerical domain useful for adaptive static
analysis, where Pntg is used to quickly prove the safety of most array accesses,
restricting the use of more precise (but also more expensive) domains to only a
small fraction of the code.

We implemented the Pntg abstract domain in Clousot, a generic abstract inter-
preter for .NET assemblies. Using it, we were able to validate 83% of array accesses
in the core runtime library mscorlib.dll in a little bit more than 3 minutes.

Key words: Abstract Domains, Abstract Interpretation, Bounds checking,
Numerical Domains, Static Analysis, .NET Framework

1 Introduction

The goal of an abstract interpretation-based static analysis is to statically
infer properties of the execution of a program that can be used to ascertain the

Email addresses: logozzo@microsoft.com (Francesco Logozzo),
maf@microsoft.com (Manuel Fähndrich).

Preprint submitted to Science of Computer Programming 24 March 2009

absence of certain runtime failures. Traditionally, such tools focus on proving
the absence of out of bound memory accesses, divisions by zero, overflows, or
null dereferences.

The heart of an abstract interpreter is the abstract domain, which captures
the properties of interest for the analysis. In particular, several numerical
abstract domains have been developed, e.g., [14,27,35], that are useful to check
properties such as out of bounds and division by zero, but also aliasing [36],
parametric predicate abstraction [12] and resource usage [30].

In this paper we present Pentagons, Pntg, a new numerical abstract domain
designed and implemented as part of Clousot, a generic static analyzer based
on abstract interpretation of MSIL [19]. We intend Clousot to be used by
developers during coding and testing phases. It should therefore be scalable,
yet sufficiently precise. To achieve this aim, Clousot is designed to adaptively
choose the necessary precision of the abstract domain, as opposed to fixing it
before the analysis (e.g., [24]). Thus, Clousot must be able to discharge most
of the “easy checks” very quickly, hence focusing the analysis only on those
pieces of code that require a more precise abstract domain or fixpoint strategy.

Clousot uses the abstract domain of Pntg to quickly analyze .NET assemblies
and discharge most of the proof obligations from the successive phases of
the analysis. As an example let us consider the code in Figure 1, taken from
the basic component library of .NET. Clousot, instantiated with the abstract
domain Pntg, automatically discovers the following invariant at program point
(∗):

0 ≤ num < array.Length ∧ 0 ≤ num2 < array.Length

This is sufficient to prove that 0 ≤ index < array.Length, i.e., the array is
never accessed outside of its bounds.

The elements of Pntg are of the form x ∈ [a, b] ∧ x < y, where x and y

are program variables and a, b are rationals. Such elements allow expressing
(most) bounds of program variables, and in particular those of array indices:
intervals [a, b] take care of the numerical part (e.g., to check array underflows
0 ≤ a), and inequalities x < y handle the symbolic reasoning (e.g., to check
array overflows x < arr.Length).

Pntg is therefore an abstract domain more precise than the Intervals, Intv [13],
as it adds symbolic reasoning, but it is less precise than Octagons, Oct [27],
as it cannot for instance capture equalities such as x + y == 22. We found
that Pntg is precise enough to validate 83% of the array bound accesses (lower
and upper) in mscorlib.dll, the main library in the .NET platform, in less
than 4 minutes. Similar results are obtained for the other assemblies of the
.NET framework. Thus, Pntg fits well with the programming style adopted in
this library. Nevertheless, it is not the ultimate abstract domain for bounds

2

int BinarySearch(ulong[] array , ulong value)
{

int num = 0;
int num2 = array.Length − 1;
while (num <= num2)
{ (∗)

int index = (num + num2) >> 1;
ulong num4 = array[index];
if (value == num4)

return index ;
if (num4 < value)

num = index + 1;
else

num2 = index − 1;
}
return ˜num;
}

Fig. 1. Example from mscorlib.dll. Pntg infers the loop invariant
0 ≤ num ∧ num2 < array.Length which is enough to prove that
0 ≤ index < array.Length holds at array access.

analysis. For instance, when used on part of Clousot’s implementation, it
validates only 72% of the accesses.

2 Basics of Abstract interpretation

Abstract interpretation is a theory of approximations, [13]. It captures the
intuition that semantics are more or less precise depending on the observation
level. The observation level is formalized by the notion of an abstract domain.
An abstract domain D̄ is a complete lattice 〈E,v,⊥,>,t,u〉, where E is the
set of abstract elements, ordered according to relation v. The smallest ab-
stract element is ⊥, the largest is >. The join t, and the meet u, are also
defined. When the abstract domain D̄ does not respect the ascending chain
condition, then a widening operator O must be used to enforce the termination
of the analysis. With a slight abuse of notation, sometimes we will confuse an
abstract domain D̄ with the set of its elements E.

A domain D̄ is the abstraction of a concrete domain C = 〈C, �, ⊥, >,g,f〉,
if it exists a pair of monotonic functions (Galois connection) 〈α, γ〉 such that:
(i) α ∈ [C → D̄] (abstraction); (ii) γ ∈ [D̄ → C] (concretization); and (iii)
∀c ∈ C.∀d ∈ D̄. α(c)vd ⇔ c � γ(d) (soundness). In a Galois connection, one
adjoint determines the other [13], and in particular the concretization function
uniquely defines the abstraction: α = λc. u {d | c � γ(d)}, so that often we

3

will omit of the two.

The best abstract transfer function for a concrete transfer function t ∈ [C →
C], is ta∗ = α ◦ t ◦ γ [13]. In general, the best abstract transfer function is not
computable, and a sound approximation ta, such that ∀d̄ ∈ D̄. ta∗(d̄) v ta(d̄),
is often good enough.

Given a concrete domain C and two domains D̄1 and D̄2, related to C respec-
tively by two Galois connections 〈α1, γ1〉 and 〈α2, γ2〉, then the relation ≡
defined as 〈d1, d2〉 ≡ 〈d′1, d′2〉 iff γ1(d1) f γ2(d2) = γ1(d

′
1) f γ2(d

′
2) is an equiv-

alence relation. The quotient domain (D̄1 × D̄2)/≡ is the reduced Cartesian
product of D̄1 and D̄2. We let D̄1 ⊗ D̄2 denote the reduced product of two
abstract domains.

3 Numerical Abstract Domains

A numerical abstract domain N̄ is an abstract domain which approximates
sets of numerical values, e.g., one such concretization is γ ∈ [N̄ → P(Σ)],
where Σ = [Vars→ Z] is an environment, mapping variables to integers.

When designing numerical abstract domains, one wants to fine tune the cost-
precision ratio. Consider the points in Figure 2(a). They represent the concrete
values that two variables, index and a.Length, can take at a given program
point for all possible executions. As there may be many such values or an un-
bounded number of them, computing this set precisely is either too expensive
or infeasible. Abstract domains over-approximate such sets and thereby make
them tractable.

3.1 Intervals

A first abstraction of the points in Fig 2(a) can be made by retaining only
the minimum and maximum values of variables index and a.Length. This
is called interval abstraction. Graphically, it boils down to enveloping the
concrete values with a rectangle, as depicted in Figure 2(b). The abstract
domain of intervals is very cheap, as it requires storing only two integers for
each variable, and all the operations can be performed in linear time (w.r.t. the
number of variables). However, it is also quite imprecise, in particular because
it cannot capture relations between variables. For instance, in Figure 2(b) the
fact that index < a.Length is lost.

4

(a) Concrete points (b) Intervals

(c) Octagons (d) Pentagons

Fig. 2. The concrete points, and some approximations depending on the numerical
abstract domain

3.2 Octagons

A more precise abstraction is obtained by using the abstract domain of Oc-
tagons, Oct. Oct keeps relations of the form ±x ± y ≤ k. When applied to
our concrete points, the octagon enveloping them is shown in Figure 2(c). Oct
can capture relations between two variables—desirable when analyzing array
bounds—but its complexity is O(n2) in space and O(n3) in time. The cubic
complexity is a consequence of the closure algorithm used by all the domain
operations. Bagnara et al. gave a precise bound for it in [3]. The standard
closure operator on Oct performs 20n3 + 24n2 coefficient operations, that can
be reduced to 16n3 + 4n2 + 4n with a smarter algorithm.

While having polynomial complexity, Oct unfortunately does not scale if many
variables are kept in the same octagon. For this reason the technique of buckets
has been independently introduced in [6] and [37]. The intuition behind it is
to create many octagons, each relating few variables, e.g., no more than 4.
The problem with this technique is how to choose the bucketing of variables.
Existing heuristics use the structure of the source program.

5

Order: [a1, b1] vi [a2, b2]⇐⇒ a1 ≥ a2 ∧ b1 ≤ b2

Bottom: [a, b] = ⊥i ⇐⇒ a > b

Top: [a, b] = >i ⇐⇒ a = −∞∧ b = +∞

Join: [a1, b1] ti [a2, b2] = [min(a1, a2),max(b1, b2)]

Meet: [a1, b1] ui [a2, b2] = [max(a1, a2),min(b1, b2)]

Widening: [a1, b1]Oi[a2, b2] = [a1 ≤ a2?a2 : −∞, b1 ≥ b2?b2 : +∞]

Fig. 3. Lattice operations over single intervals

3.3 Pentagons

The approximation of the concrete points with Pntg is given in Figure 2(d).
Elements of Pntg have the form of x ∈ [a, b]∧x < y, where x and y are variables
and a and b belong to some underlying numerical set as Z or Q, extended with
−∞ and +∞. A pentagon keeps lower and upper bounds for each variable, so
it is as precise as intervals, but it also keeps strict inequalities among variables
so that it enables a (limited) form of symbolic reasoning. It is worth noting
that the region of the plane that is delimited by a (two dimensional) pentagon
may not be closed. In fact, if the underlying numerical values are in Q, then
x < y denotes an open surface of Q2, whereas if they are in Z, then x < y is
equivalent to x ≤ y− 1, which is a closed region of Z2.

We found pentagons quite efficient in practice. The complexity is O(n2), both
in time and space. Furthermore, in our implementation we perform the ex-
pensive operation (the closure) either lazily or in an incomplete (but sound)
way, so that the domain shows an almost linear behavior in practice.

4 Interval Environments

The elements of the abstract domain of intervals, Intv, are {[i, s] | i, s ∈ Z ∪
{−∞,+∞}}. The formal definition of the lattice operations on intervals is
recalled in Figure 3. The order is the interval inclusion, the bottom element
is the empty interval (i.e., an interval where s < i), the largest element is the
line [−∞,+∞], the join and the meet are respectively the convex hull and the
intersection of intervals. The widening preserves the bounds which are stable.

The concretization function, γIntv ∈ [Intv → P(Z)] is defined as γIntv([i, s]) =
{z ∈ Z | i ≤ z ≤ s}.

The abstract domain of interval environments, Boxes, is the functional lifting
of Intv, i.e., Boxes = [Vars → Intv]. The lattice operations are hence the

6

Order: b1 vb b2 ⇐⇒ ∀x ∈ b1.b1(x) vi b2(x)

Bottom: b = ⊥b ⇐⇒ ∃x ∈ b.b(x) = ⊥i

Top: b = >b ⇐⇒ ∀x ∈ b.b(x) = >i

Join: b1 tb b2 = λx.b1(x) ti b2(x)

Meet: b1 ub b2 = λx.b1(x) ui b2(x)

Widening: b1Obb2 = λx.b1(x)Oib2(x)

Fig. 4. Lattice operations of interval environments

Order: s1 vs s2 ⇐⇒ ∀x ∈ s2.s1(x) ⊇ s2(x)

Bottom: s = ⊥s ⇐⇒ ∃x, y ∈ s.y ∈ s(x) ∧ x ∈ s(y)

Top: s = >s ⇐⇒ ∀x ∈ s.s(x) = ∅

Join: s1 ts s2 = λx.s1(x) ∩ s2(x)

Meet: s1 us s2 = λx.s1(x) ∪ s2(x)

Widening: s1Oss2 = λx.s1(x) ⊆ s2(x)?s2(x) : ∅

Fig. 5. Lattice operations of strict upper bounds

functional extension of those in Figure 3, as shown by Figure 4.

The concretization of a box, γBoxes ∈ [Boxes→ P(Σ)] is defined as γBoxes(f) =
{σ ∈ Σ | ∀x.x ∈ f =⇒ σ(x) ∈ γIntv(f(x))}.

The assignments and the guards in the interval environment are defined as
usual in interval arithmetic [11].

5 Strict upper bounds

The abstract domain of strict upper bounds Sub is a special case of the zone
abstract domains [28,17], which keeps symbolic information in the form of
x < y. We represent elements of Sub with maps x 7→ {y1, . . . yn} with the
meaning that x is strictly smaller than each of the yi. Maps enable very efficient
implementations. The formal definition of the lattice operations for Sub is in
Figure 5.

Roughly, the fewer constraints the less information is present. As a conse-
quence, the order is given by the (pointwise) superset inclusion, the bottom
environment is one which contains a contradiction x < y∧ y < x and the lack
of information, i.e., the top element is represented by the empty set. The join
is (pointwise) set intersection: at a join point we want to keep those relations

7

that hold on both (incoming) branches. The meet is (pointwise) set union:
relations that hold on either the left or the right branch. Finally, widening is
defined in the usual way: we keep those constraints that are stable in successive
iterations.

The concretization function, γSub ∈ [Sub → P(Σ)] is defined as γSub(s) =
∩x∈s{σ ∈ Σ | y ∈ s(x) =⇒ σ(x) < σ(y)}.

We deliberately skipped the discussion of the closure operation until now.
One may expect to endow the Sub abstract domain with a saturation rule for
transitivity such as

y ∈ s(x) z ∈ s(y)

z ∈ s(x)

and apply it to the abstract values prior to applying the join in Figure 5,
thereby inferring and retaining the maximum possible constraints. However
it turns out that the systematic application of the saturation rule requires
O(n3) operations, which voids the efficiency advantage of Pntg. In Clousot,
we chose to not perform the closure, and instead improved the precision of
individual transfer functions. They infer new relations x < y and use a limited
transitivity driven by the program under analysis. So, for instance:

Jx := y− 1K(s) = s[x 7→ {y} ∪ s(y)], if x does not appear in s

Jx == yK(s) = s[x, y 7→ s(x) ∪ s(y)]

Jx < yK(s) = s[x 7→ s(x) ∪ s(y) ∪ {y}]

Jx ≤ yK(s) = s[x 7→ s(x) ∪ s(y)]

because we know that (i) if we subtract a positive constant from a variable we
obtain a result strictly smaller 1 , that (ii) when we compare two variables for
equality they must satisfy the same constraints, and that (iii) for each z such
that y < z, if x < y or x ≤ y then x < z.

6 Pentagons

A first approach to combine the numerical properties captured by Intv, and the
symbolic ones captured by Sub is to consider the Cartesian product Intv×Sub.
Such an approach is equivalent to running the two analyses in parallel, without
any exchange of information between the two domains. A better solution is
to perform the reduced Cartesian product Intv ⊗ Sub. Roughly, the reduced
Cartesian product of a product lattice smashes together the pairs that have

1 In this paper we ignore overflows. However our abstract semantics of arithmetic
expressions in Clousot takes care of them.

8

the same concrete meaning. The Pntg abstract domain is an abstraction of
the reduced product and is more precise than the Cartesian product.

The lattice operations are defined in Figure 6. The functions sup and inf are
defined as inf([a, b]) = a and sup([a, b]) = b.

The order on Pntg is a refined version of the pairwise order: a pentagon 〈b1, s1〉
is smaller than a pentagon 〈b2, s2〉 iff the interval environment b1 is included
in b2 and for all the symbolic constraints x < y in s2, either x < y is an
explicit constraint in s1 or it is implied by the interval environment b1, i.e.,
the numerical upper bound for x is strictly smaller than the numerical lower
bound for y.

A pentagon is bottom if either its numerical component or the symbolic com-
ponent are. A pentagon is top if both the numerical component and the sym-
bolic component are.

For the numerical part, the join operator pushes the join to the underlying
Intv abstract domain, and for the symbolic part, it keeps the constraints which
are either explicit in the two operators or which are explicit in one operator,
and implied by the numerical domain in the other component. We will further
discuss the join, cardinal for the scalability and the precision of the analysis
below.

The meet and the widening operators simply delegate the meet and the widen-
ing to the underlying abstract domains. Note that we do not perform any
closure before widening in order to avoid well known convergence problems
arising from the combination of widening and closure operations [27].

6.1 Cost and Precision of the Join

One may ask why we defined the join over Pntg as in Figure 6. In particular,
a more natural definition may be to first close the two operands, by deriving
all the symbolic and numerical constraints, and then perform the join. This is
for instance how the standard join of Oct works. More formally one may want
to have a closure for a pentagon 〈b, s〉 defined by:

b∗ =
d

x<y∈s Jx < yK(b)

s∗ = λx.s(x) ∪ {y ∈ b | x 6= y =⇒ sup(b∗(x)) < inf(b∗(y))}

The closure first refines the interval environment by assuming all the strict in-
equalities of the Sub domain. Then, it closes the element of the Sub domain by
adding all the strict inequalities implied by the numerical part of the abstract
domain.

9

Order: 〈b1, s1〉 vp 〈b2, s2〉 ⇐⇒ b1 vb b2

∧(∀x ∈ s2∀y ∈ s2(x).y ∈ s1(x) ∨ sup(b1(x)) < inf(b1(y)))

Bottom: 〈b, s〉 = ⊥p ⇒ b = ⊥b ∨ s = ⊥s

Top: 〈b, s〉 = >p ⇐⇒ b = >b ∧ s = >s

Join: 〈b1, s1〉 tp 〈b2, s2〉 =

let bt = b1 tb b2

let st = λx.s′(x) ∪ s′′(x) ∪ s′′′(x)

where s′ = λx.s1(x) ∩ s2(x)

and s′′ = λx.{y ∈ s1(x) | sup(b2(x)) < inf(b2(y))}

and s′′′ = λx.{y ∈ s2(x) | sup(b1(x)) < inf(b1(y))}

in 〈bt, st〉

Meet: 〈b1, s1〉 up 〈b2, s2〉 = 〈b1 ub b2, s1 us s2〉

Widening: 〈b1, s1〉Op〈b2, s2〉 = 〈b1Obb2, s1Oss2〉

Fig. 6. The lattice operations over Pentagons

As a consequence, the closure-based join t∗p can be defined as

〈b1, s1〉 t∗p 〈b2, s2〉 = 〈b∗1 tb b
∗
2, s
∗
1 ts s

∗
2〉.

The complexity of t∗p is O(n2), as for getting s∗ we need to consider all the
pairs of intervals in b∗.

Performing a quadratic operation at each join point imposes a serious slow-
down of the analysis. We experienced the quadratic blowup in our tests (Sec-
tion 8).

As a consequence we defined a safe approximation of the join as in Figure 6.
The idea behind tp is to avoid materializing new symbolic constraints, but
just to keep those which are present in one of the two operators, and implied
by the numerical part of the other operand. If needed, some implied relations
may be recovered later (hence lazily), after the join point. The next example
illustrates this on an assertion following a join point.

Example. Let us consider the code in Figure 7(a), to be analyzed with some
initial pentagon 〈b, s〉 which does not mention x and y. Using t∗p, one gets the
post-state

p1 = 〈b[x 7→ [−2, 0], y 7→ [1, 3]], s[x 7→ {y}]〉.
With tp the result is

p2 = 〈b[x 7→ [−2, 0], y 7→ [1, 3]], s]〉.

10

if (...)

x = 0; y = 3;

else

x = −2; y = 1;

(a) Non-strict abstraction

if (...)

x = 0; y = 3;

else

x = −2; y = 0;

(b) Strict abstraction

Fig. 7. Difference in precision between t∗p and tp

Suppose that we would like to discharge assert x < y following the condi-
tional. The first pentagon, p1 already contains the constraint x < y, thus
proving the assertion is as complex as a simple table lookup. On the other
hand, the symbolic part of p2 does not contain the explicit constraint x < y,
but it is implied by the numerical part. Proving the assertion with p2 requires
two table lookups and an integer comparison. 2

One may argue that tp is just a lazy version of t∗p. However it turns out that
the abstraction is strict, in that there are cases where tp introduces a loss of
information that cannot be recovered later, as shown by the next example.

Example. Let us consider the code in Figure 7(b), to be analyzed with some
initial pentagon 〈b, s〉, which does not mention x and y. Using the closure-
based join, t∗p one obtains the pentagon

p3 = 〈b[x 7→ [−2, 0], y 7→ [0, 3]], s[x 7→ {y}]〉.

which implies that x and y cannot be equal to 0 at the same time. On the
other hand, tp returns

p4 = 〈b[x 7→ [−2, 0], y 7→ [0, 3]], s]〉.

which does not exclude the case when x = y = 0. As a consequence, assert x+
y 6= 0 cannot be proved using p4, whereas it can be with p3. 2

Even if the previous example shows that there may be some loss of precision
induced by using tp, we found it negligible in practice (see Sect. 8). We also
tried a hybrid solution, where we fixed some n. If the cardinality of the abstract
elements to join was n < n, then the we used t∗p, otherwise we used tp.
However, we did not find any values for n with a better cost-precision trade-
off.

6.2 Transfer Functions

Analysis precision also heavily depends on the precision of the transfer func-
tions. Using Pntg we can refine the transfer functions for some MSIL instruc-

11

assume x >= 0 & y >= 0;

if (x > y)

r := sub x y;

assert r >= 0;

(a) Underflow checking

assume len >= 0;

r := rem x len;

assert r < len;

(b) Overflow checking

Fig. 8. Common code patterns in mscorlib.dll. The instructions sub and rem
denote respectively subtraction and remainder. Proving the two assertions requires
a combination of numerical and symbolic information.

tions which have a non-trivial behavior depending on the operators. We illus-
trate the situation with two representative MSIL instructions: subtraction and
remainder. The precise handling of subtraction is cardinal to prove the absence
of array underflows, whereas the precise handling of remainder is cardinal to
prove the absence of array overflows.

6.2.1 Subtraction

The concrete semantics for sub x y subtracts x from y and pushes the result
onto the evaluation stack, [16].

The transfer function for sub in Intv first evaluates x and y to intervals, then it
performs interval subtraction. For instance, in an interval environment b such
that b = [x 7→ [−1, 2], y 7→ [0, 4]] then Jr := sub x yK(b) = b[r 7→ [−5, 2]].

On the other hand, when the bounds are not finite, the interval transfer func-
tion for sub may be quite imprecise, as shown by the next example.

Example. Let us consider the code snippet in Figure 8(a), to be analyzed with
Intv. The abstract state after the assume statement is b1 = [x 7→ [0,+∞], y 7→
[0,+∞]]. The guard refines b1 to b2 = [x 7→ [1,+∞], y 7→ [0,+∞]], as it can
never be the case that x == y == 0. The assignment does not derive any
interesting bound for r, as [1,+∞] − [0,+∞] = >i, so that the assertion
cannot be proved. 2

The code snippet if Figure 8(a) abstracts away a common pattern we have
found in .NET assemblies. A precise handling of such situations is cardinal to
prove the absence of array access underflows. In Pentagons, we refine the nu-
merical information captured by Intv with the symbolic information captured
by Sub. Assuming r to be a fresh variable, the transfer function for sub in

12

Pntg is defined as:

Jr := sub x yK(〈b, s〉) = 〈b[r 7→ (b(x)− b(y)) ui (x ∈ s(y)?[1,+∞] : >i)],

s[r 7→ b(inf(y)) > 0?{x} ∪ s(x) : ∅]

because i) if we know that y < x, then x − y should be at least 1, and ii) if
we subtract a strictly positive quantity from x, then r < x, and if t is a strict
upper bound for x, then it is for r, too.

Example. Let us consider the code in Figure 8(a) to be analyzed with Pntg.
The abstract state after the assume statement is p1 = 〈[x 7→ [0,+∞], y 7→
[0,+∞]], ∅〉. The guard is precisely captured by the symbolic component of
the abstract domain, so p1 is refined to p2 = 〈[x 7→ [1,+∞], y 7→ [0,+∞]], y 7→
{x}〉. The transfer function for sub uses such information to derive a tighter
bound for r. The abstract state after the assignment is p3 = 〈[r 7→ [0,+∞], x 7→
[1,+∞], y 7→ [0,+∞]], y 7→ {x}〉, which is enough to prove the assertion. 2

6.2.2 Remainder

Intuitively, rem u d computes the remainder of the division u/d. The precise
handling of the remainder is important as many expressions used to access
arrays in mscorlib.dll include the remainder operation. According to the
definition of rem in Part. III, Sect. 3.55 of [16], the sign of the result is the
sign of u and 0 ≤ |rem u d| < |d| holds. Therefore in order to derive the
constraint rem u d < d one must know that d ≥ 0.

The transfer function for rem in Intv can infer useful upper bounds whenever
d is finite, but it infers unhelpful bounds when d is infinite.

The transfer function for rem in Sub cannot infer lower bounds, and worse, no
upper bounds, for it cannot determine the sign of d.

The transfer function for rem in Pntg has the necessary information. It uses
Intv to determine if d is non-negative in the pre-state, then constrains the
result using Sub, modeling the assignment more precisely.

Jr := rem u dK(〈b, s〉) = 〈Jr := rem u dK(b), s[x 7→ (inf(b(d)) ≥ 0)?{d} : ∅〉.

Example Let us consider the code in Figure 8(b). Intervals alone cannot prove
the assertion: The upper bound for len is +∞, so that any interesting relation
between r and len can be inferred. Strict upper bounds do not capture the
numerical assumption len ≥ 0, so they cannot deduce that r < len . The
transfer function for rem for Pentagons is precise enough to deduce from the
sign len to deduce that r < len and hence to prove the assertion. 2

13

Fig. 9. The Clousot architecture.

7 Clousot

We have implemented the abstract domain Pntg in our analyzer for .NET
assemblies, Clousot. Clousot is part of the Code Contracts tools [5]. Code
Contracts provide a language-agnostic way to express coding assumptions in
.NET programs. The contracts take the form of preconditions, postconditions,
and object invariants. Clousot checks each method in isolation, by assuming
the precondition and asserting the postcondition.

The detailed structure of the analyzer is given in Figure 9. Clousot directly
analyzes assemblies as produced by different .NET compilers as csc (for
C#), vbc (for VB), fsc (for F#), etc. At the bottom of the stack are the
code providers, which provide a low-level and stack-based, view of the code.
Clousot has a pluggable architecture that allows for different code providers
and contract providers. For instance, one code provider can read assemblies
from disk, another could be a compiler, providing the code being compiled
directly.

The basic code fragment used is a subroutine. We use subroutines to represent
several different aspects of code, such as fault/finally handlers, pre- and post-
conditions, and the normal method bodies. These snippets are composed to
form a complete control flow graph. This approach makes it easy, for example,
to form inheritance chains for object invariants and postconditions, as well as
sharing precondition subroutines from all call-sites.

The higher abstraction levels take care of presenting a uniform view of the
code for specific analyses. They take care of (i) injecting contracts as assume/

14

if (∗)

x := −1;

else

x := 1;

assert x < 0||x > 0;

(a) Disjunctive assertion

Caller()

return FreshArray(5);

FreshArray(int l)

return new int[l− 2];

(b) Overflow checking

Fig. 10. Assertion checking and precondition propagation in Clousot. In the first
case, a local backward analysis is used to discharge the assertion in the two incom-
ing paths. In the second case, the implicit proof obligation l ≥ 2 of NewArray is
propagated to the caller.

assert instructions; (ii) removing the evaluation stack; (iii) abstracting the
heap; and, (iv) reconstructing the expressions that were lost by compila-
tion [25].

The value analyses at the top of the stack view the code as a normalized
scalar program (similar to SSA form), where all the heap accesses have been
resolved and the contracts have been turned into a series of assume and assert

statements. In particular, when analyzing a public method m, of a class C, the
precondition of m and the object invariant of C are turned into assumptions
at the entry point, and the postcondition and the object invariant of C are
injected as assertions at the exit point of m. When analyzing a method which
invokes m, the precondition of m is asserted at the program point just before
the call, and the postcondition is assumed just after the call.

Clousot has two main phases: Analysis and checking. The analysis phase is a
forward abstract interpretation instantiated with a user-specified abstract do-
main. The entry (abstract) state is propagated through the method body, and
loops are handled with usual fixpoint computation. In theory, Clousot infers
an invariant for each program point. In practice, it stores only the invariants
at the loop headers to save memory.

In the checking phase, Clousot collects the proof obligations and tries to
validate them. There are two kinds of proof obligations: (i) implicit, as for
instance array bounds checking and non-null dereferences; and (ii) explicits as
preconditions, postconditions, and user-provided assertions. If Clousot can-
not discharge a proof obligation, it iteratively refines the inferred invariants
re-analyzing the method with more precise abstract domains, as e.g. SubPoly-
hedra [23]. If the iterative refinement fails, then the analyzer performs a local
backward analysis trying to validate the assertion for all the incoming paths.
This is useful to prove disjunctive assertions. For instance, in Figure 10(a),
Pntg (as well as other non-disjunctive abstract domains) cannot validate the
assertion. However, it can be propagated backwards to the two branches of

15

Bounds Intv Intv × Sub

Assembly checked Valid % Time Valid % Time

mscorlib.dll 17 181 12 538 72.98 3:38 14 263 83.02 3:03

System.dll 11 891 9 574 80.51 3:01 10 319 86.78 2:28

System.Web.dll 14 165 12 350 87.19 3:39 13 030 91.99 2:49

System.Design.dll 10 519 9 322 88.62 2:56 10 132 96.32 2:18

Average 81.45 88.82

Fig. 11. The experimental results of the analyzer instantiated with Intervals alone,
and with Intervals combined with Strict inequalities.

the conditional, and then discharged in each of them. If the backward analysis
fails, Clousot tries to push the proof obligation to the callers of the method.
For instance, in Figure 10(b), the array creation induces an implicit proof
obligation l ≥ 2 which cannot be discharged locally. Clousot propagates it to
the callers and checks it at the call sites (in the example 5 ≤ 2 trivially holds).
If none of the checking above succeed, then Clousot reports a warning to the
user.

8 Experimental Results

We present the experimental results of instantiating Clousot with Pntg. For
arrays, Clousot tries to validate that (i) the expression for a newarr instruc-
tion is non-negative, and (ii) the index for the ldelem, stelem, and ldelema

instructions is greater than or equal to zero and strictly smaller than the length
of the array.

Figure 11, 12 and 13 summarize the results of running the analysis on a
subset of the .NET framework assemblies. The analyzed assemblies are taken
from the directory %WINDIR%\Microsoft\ Framework\v2.0.50727 of our lap-
top without modification or preprocessing. The annotation of the framework
libraries is ongoing [5]. To provide an uniform test bench, we turned off the
inter-method capabilities of Clousot. All experiments were conducted on a
Centrino 2 duo processor at 2.16 GHz, with 4 GB of RAM, running Windows
Vista.

We ran the analysis with five different domains: Intv alone and the Cartesian
product Intv×Sub (Figure 11); Pntg without and with constraint closure (Fig-
ure 12); and Oct (Figure 13). We set a time out of 2 minutes per method. In
order to provide an uniform test bench, we switched off the backward analysis
and the precondition inference.

16

Pntg tp Pntg t∗p
Assembly Valid % Time Valid % Time Timeout

mscorlib.dll 14 293 83.19 3:10 14 220 82.77 10:33 1

System.dll 10 321 86.80 2:36 10 143 85.30 9:43 1

System.Web.dll 13 034 92.02 2:55 13 048 92.11 8:30 0

System.Design.dll 10 135 96.35 2:21 9 947 94.56 7:39 1

Average 88.89 88.10 3

Fig. 12. The experimental results of the analyzer instantiated with Pentagons and
two different joins.

The results show that with Pntg, Clousot is able to validate on average 88.9%
of all array accesses in a little bit more than 3 minutes for the analyzed .NET
assemblies. As for the memory footprint, the analyzer never exceeded 300
Mbytes of RAM.

8.1 Pentagons and non relational domains

Figure 11 shows that combining Intv with symbolic upper bounds validates
on average almost 10% more array accesses than Intv alone for a modest ex-
tra cost. Pntg without closure validate 78 extra accesses. Pntg with closure
produces almost no extra precision but the analysis time sensibly increases.
The analysis of three methods was aborted because it reached the 2 minutes
timeout. We manually inspected those methods. They turned out to be long
methods (more than 1 300 instructions) with complex control flow graphs
using many distinct integer constants. Constants are captured by the numer-
ical component of Pntg. At join points, the closure step of t∗p materialized a
quadratic number of new symbolic constraints which caused the slow down.

8.2 Pentagons and Octagons

Figure 13 presents the running times of Clousot instantiated with Octagons.
Our implementation of Oct uses sharing and sparse arrays to optimize perfor-
mances. Octagons caused an explosion of the analysis time: 35 methods timed
out. A larger timeout did not helped. We inspected some of those methods.
Once again, the problem is related to the propagation of numerical constants.
For instance, if b = 1 and y = 2, then the closure operation on Oct deduces the
constraints b− y ≤ −1, b + y ≤ 3, −b− y ≤ −3 and −b + y ≤ 1. However, if
b and y correspond in the source code respectively to a bool variable and int

17

variable (Boolean are compiled to integers) then those constraints are mean-
ingless. It turns out that octagon constraints may relate too many logically
unrelated variables. This behavior has already been observed by Miné [29]
and Venet [37], who proposed a solution based on the use of buckets. The
main idea behind buckets is to decompose an octagon of n variables into a set
of k smaller octagons (buckets) each one with at most n/k variables (typically
four). Buckets may share some variables (pivots).

In our setting, i.e. the analysis of MSIL, it is not clear how to partition
variables into buckets or how to select the pivots. Syntactic scope-based ap-
proaches do not work: in MSIL nested scopes inside methods are flatten. Se-
mantic based approaches as some form of backward analysis or type inference
may be as expensive as the analysis with Pntg itself.

Pentagons are not a replacement for Oct. Octagons can validate array accesses
which are out of the scope of Pntg, for instance because they involve the
relation between two variables and a numerical offset. We manually inspected
the analysis logs for mscorlib.dll. Octagons can validate 177 more array
accesses than Pentagons. To increase precision, Clousot allows a combination
of Pntg and Oct where constants are represented only in Pntg and Oct only
tracks symbolic relations involving exactly two variables, that is constraints
in the form x− y ≤ k or x + y ≤ k.

In general we found Oct not to be a good compromise for Clousot. On one
hand, the cost to validate implicit proof obligation as array accesses with Oct is
too elevated to be used in a build environment. On the other hand, Oct are not
expressive enough to support assume/guarantee reasoning. In our experience,
while most (numerical) preconditions have the shape of Octagonal constraints
(e.g.x− y < k), proving that they are established at the call site it requires a
relatively complex reasoning that often involves more than just variables (e.g..
Figure 1 of [23]). Pntg provide a better compromise than Oct in the managed
contracts setting. They allow to quickly discharge “easy” proof obligations,
and to leave the more complex ones to more expressive yet expensive abstract
domains as SubPolyhedra.

9 Related work

Early works on numerical abstract domains focused on program optimization.
Kildall described constant propagation in [21], the first example of a numer-
ical abstract domain. Karr refined constant propagation using linear equali-
ties [20]. Cousot and Cousot [13] introduced Intv as an example of abstract
interpretation applied to bounds checking elimination.

18

Oct

Assembly Time Timeout

mscorlib.dll 1:38:43 20

System.dll 1:09:00 13

System.Web.dll 21:49 1

System.Design.dll 17:44 1

35

Fig. 13. The execution times of the analyzer instantiated with Octagons

Cousot and Halbwachs noticed that numerical abstract domain can be used for
program verification [14]. They used Polyhedra, a numerical abstract domain
to infer linear inequalities, i.e. constraints in the form a1 ·x1 +a2 ·x2 . . . anxn· ≤
k. Polyhedra are very powerful: they can be used for bounds checking, integer
overflow detection, timing analysis, alias analysis, etc. On the other hand, they
encounter serious scalability issues [18]. Later research focused on optimizing
Polyhedra.

The model checking and the constraint programming communities developed
Difference bounds matrices (DBM) to handle constraints in the form x −
y ≤ k or x ≤ k. DBM are used to model-check timed automata [2,9] or
answer queries [32]. Miné extended DBM to fully-featured abstract domain
(Oct, [26,27]) able to infer constraints in the form ±x ± y ≤ k in polynomial
time. A nice property of Oct is that the underlying implementation can be
easily parallelized, e.g. to exploit the power of modern graphics cards [4].
Octagons have been generalized by Octahedra which capture linear constraints
with unary coefficients: ±x1± x2 · · ·± xn ≤ k. Octahedra have an exponential
worst case complexity which is reached in practice, [8].

Sankaranarayanan et al. proved that a polynomial time algorithm for linear
inequalities inference can be obtained either (i) by fixing the number of linear
equations before the analysis [34], or (ii) by fixing a partial order between the
variables in the program [33]. In our setting, neither of the two hypotheses is
realistic.

Laviron and Logozzo introduced SubPolyhedra [23], which retain the same
expressive power of Polyhedra, but they give up some of the inference power
in order to achieve scalability. SubPolyhedra precision can be finely tuned
using hints.

Popeea et al. [31] presented an interesting analysis to infer sufficient pre-
conditions to eliminate bounds check inside method bodies. They underlying
domain to their technique is Polyhedra. It would be interesting to see if faster

19

results can be obtained using Pntg.

Xi and Pfenning [38] presented a type checker to eliminate array bound check-
ing in ML programs. Courbot et al. [10] advocated the use of formal methods
to optimize Java programs. Unlike those two approaches, Pntg can synthesize
loop invariants, hence presenting an higher level of automation.

Our analysis competes in performance with analyses developed to be used by
the JIT, but it seems more precise: we got an average precision close to 89%
versus the 45% reported in [7].

Dor et al. [15] use Poly and Allamigeon et al. [1] use Intv and a whole program
analysis to check overruns in string manipulation. For the modular nature of
the code that we analyze we cannot perform a whole program analysis, and
the use of Intv without any symbolic reasoning on upper bounds produces an
analysis which is too imprecise (cf. Figure 11). Larochelle et al. [22] present
an approach for buffer overrun checking similar to ours, using contracts and
static checking. However, their static analysis is limited by the syntax-oriented
handling of loop invariants.

10 Conclusions

We presented a new numerical abstract domain, Pntg. We described its lattice
operations, discussed its complexity and presented an optimized algorithm for
the join operator which runs in (almost) linear time (instead of quadratic).

This abstract domain sits, as precision and cost are concerned, in between the
abstract domains of intervals and octagons.

We used Pntg to validate on average over 89% of array accesses in four major
.NET assemblies in a couple of minutes. The remaining unproven accesses are
discharge by using more precise, yet expensive domains on demand.

Acknowledgments. We would like to thank the Anindya Banerjee, Corneliu
Popeea, Pietro Ferrara and Vincent Laviron.

References

[1] X. Allamigeon, W. Godard, and C. Hymans. Static analysis of string
manipulations in critical embedded C programs. In SAS’06. Springer-Verlag,
August 2006.

20

[2] R. Alur and D. L. Dill. Automata for modeling real-time systems. In ICALP’90,
July 1990.

[3] R. Bagnara, P. M. Hill, E.Mazzi, and E. Zaffanella. Widening operators for
weakly-relational numeric abstractions. In SAS’05. Springer-Verlag, September
2005.

[4] F. Banterle and R. Giacobazzi. A fast implementation of the octagon abstract
domain on graphics hardware. In SAS’07, August 2007.

[5] M. Barnett, M. Fähndrich, and F. Logozzo. Codecontracts for .net.
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx.

[6] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In PLDI’03. ACM Press, June 2003.

[7] R. Bod́ık, R. Gupta, and V. Sarkar. ABCD: Eliminating array bounds checks
on demand. In PLDI’00. ACM Press, 2000.

[8] R. Clarisó and J. Cortadella. The octahedron abstract domain. Sci. Comput.
Program., 64(1), 2007.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

[10] A. Courbot, M. Pavlova, G. Grimaud, and J.-J. Vandewalle. A low-footprint
java-to-native compilation scheme using formal methods. In CARDIS’06,
LNCS. Springer-Verlag, April 2006.

[11] P. Cousot. The calculational design of a generic abstract interpreter. In
Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.

[12] P. Cousot. Verification by abstract interpretation. In Verification: Theory and
Practice. Springer-Verlag, 2003.

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL’77. ACM Press, January 1977.

[14] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78. ACM Press, January 1978.

[15] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for statically
detecting all buffer overflows in c. In PLDI’03. ACM Press, 2003.

[16] ECMA. Standard ECMA-335, Common Language Infrastructure (CLI).
http://www.ecma-international.org/publications/standards/Ecma-335.htm,
Ecma International, 2006.

[17] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy
iteration on relational domains. In ESOP’07, April 2007.

21

[18] N. Halbwachs, D. Merchat, and L. Gonnord. Some ways to reduce the space
dimension in polyhedra computations. Formal Methods in System Design,
29(1):79–95, 2006.

[19] ECMA Int. Standard ECMA-355, Common Language Infrastructure, June
2006.

[20] M. Karr. On affine relationships among variables of a program. Acta
Informatica, 6(2):133–151, July 1976.

[21] G. A. Kildall. A unified approach to global program optimization. In POPL
’73. ACM Press, October 1973.

[22] D. Larochelle and D. Evans. Statically detecting likely buffer overflow
vulnerabilities. In 2001 USENIX Security Symposium, August 2001.

[23] V. Laviron and F. Logozzo. Subpolyhedra: a (more) scalable approach to infer
linear inequalities. In VMCAI’09, January 2009.

[24] F. Logozzo. Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of Java classes. In VMCAI’07. Springer-Verlag,
January 2007.

[25] F. Logozzo and M. A. Fähndrich. On the relative completeness of bytecode
analysis versus source code analysis. In CC’08, LNCS. Springer-Verlag, March
2008.

[26] A. Miné. A new numerical abstract domain based on difference-bounds
matrices. In PADO’01. Springer-Verlag, May 2001.

[27] A. Miné. The octagon abstract domain. In WCRE 2001. IEEE Computer
Society, October 2001.

[28] A. Miné. A few graph-based relational numerical abstract domains. In SAS’02,
September 2002.

[29] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École
Polythechnique, 2004.

[30] J. Navas, Ed. Mera, P. López-Garćıa, and M. V. Hermenegildo. User-definable
resource bounds analysis for logic programs. In ICLP’07. Springer-Verlag,
September 2007.

[31] C. Popeea, D. N. Xu, and W.-N. Chin. A practical and precise inference and
specializer for array bound checks elimination. In PEPM’08, 2008.

[32] P. Z. Revesz. The constraint database approach to software verification. In
VMCAI’07, January 2007.

[33] S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program analysis using
symbolic ranges. In SAS’07, August 2007.

[34] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In VMCAI’05, pages 25–41, January
2005.

22

[35] A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an
abstract domain. In LOPSTR’02. Springer-Verlag, 2002.

[36] A. Venet. Nonuniform alias analysis of recursive data structures and arrays. In
SAS’02. Springer-Verlag, September 2002.

[37] A. Venet and G. P. Brat. Precise and efficient static array bound checking for
large embedded c programs. In PLDI’04. ACM Press, July 2004.

[38] H. Xi and F. Pfenning. Eliminating array bound checking through dependent
types. In PLDI’98. ACM Press, 1998.

23

