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ABSTRACT 

Recently, we proposed an ensemble speaker and speaking 
environment modeling (ESSEM) framework to characterize 
speaker variability and speaking environments. In contrast to 
multi-style training, ESSEM uses single-style training to prepare 
multiple sets of environment-specific acoustic models. The 
ensemble of these acoustic models forms a prior structure of the 
environment for flexible prediction of unknown environment 
during testing. In this study, we present methods to further improve 
the precision for model characterization. We first study a weighted 
N-best information technique to well utilize the N-best 
transcription hypothesis in an unsupervised adaptation manner. 
Next, we introduce cohort selection and environment space 
adaptation techniques to online improve the resolution and 
coverage of the prior structure. With an integration of the proposed 
methods, we further improve the ESSEM performance over our 
previous study. On the Aurora-2 task, ESSEM achieves an average 
word error rate (WER) of 4.64%, corresponding to a 15.64% 
relative WER reduction over our best baseline result (5.50% to 
4.64% WER) obtained with multi-condition training. 
 
Index Terms—noise robustness, ensemble speaker and speaking 
environment modeling, N-best transcription 
 

1. INTRODUCTION 
A key issue that limits the current applicability of automatic speech 
recognition (ASR) is the inevitable mismatch between the training 
and testing conditions. The sources of the mismatch may come 
from speaker variability and speaking environment distortions. The 
exact mismatch is usually an unknown combination of these 
sources. Although some parametric functions have been developed 
to well characterize particular distortions, the exact form of the 
desired combination of speaker and speaking environment 
distortions can be complex and hard to specify. 

Many approaches have been proposed to deal with the mismatch 
issue. Among them, a category of approaches adjusts parameters of 
the original hidden Markov model (HMM) set to match the testing 
conditions. Maximum a posteriori (MAP) [1] and maximum 
likelihood linear regression (MLLR) [2] are two well-known and 
widely used approaches. More recently, some approaches prepare 
prior knowledge to facilitate the characterization of the unknown 
testing condition. The prior knowledge is usually obtained from 
multiple sets of hidden Markov models (HMM) prepared in the 
offline. The HMM sets are trained on the available training data. 
During testing, another transformation is estimated based on the 
prior knowledge to generate a new HMM set that matches the 
testing data. Examples include reference speaker weighting (RSW) 
[3], cluster adaptive training (CAT) [4], and eigenvoice [5]. 

In the mid-90s, a stochastic matching (SM) approach [6] was 
proposed to improve the ASR performance under mismatched 

conditions. The effects of speaker variability and environment 
distortions are characterized by a mapping structure. The nuisance 
parameters in the mapping structure are estimated based on the 
testing utterances. Finally, the acoustic model from the training 
condition is compensated by the mapping structure to match the 
testing utterances. More recently, we extended the original SM 
framework by including the abovementioned prior knowledge and 
proposed an ensemble speaker and speaking environment modeling 
(ESSEM) approach [7, 8]. With the prior knowledge, ESSEM 
estimates a new set of HMMs based on the stochastic matching 
criterion [6]. From our previous studies, we verified that ESSEM 
can significantly improve the ASR performance robustness under 
mismatched conditions [7, 8].  

In this paper, we investigate two directions to further improve 
the ESSEM performance. First, we address the problem that the 
decoded transcription of unsupervised adaption may not be correct 
to guide the adaptation; second, we attempt to improve the 
resolution and coverage of the prior knowledge. For the first issue, 
we study a weighted N-best information technique; for the second 
issue, we introduce two techniques—cohort selection and 
environment space adaption. With the combined enhancement, we 
achieve an average word error rate (WER) of 4.64%, 
corresponding to a 15.64% relative WER reduction over our best 
baseline of 5.50% WER obtained with multi-condition training. 

 
2. REVIEW OF THE ESSEM FRAMEWORK  

First, we briefly review the two phases of ESSEM—offline 
environment preparation and online super-vector estimation.   
 
2.1. Offline Environment Preparation 
In the offline phase, we can collect or use the Monte Carlo (MC) 
methods to obtain speech data from a wide range of different 
speaker and speaking environments. With P sets of speech data, we 
can train P sets of HMMs, �p, p=1… P. For ease of modeling, the 
entire set of mean parameters within a set of HMMs is 
concatenated into a super-vector, Vp, p=1,…, P. These P super-
vectors form an ensemble speaker and speaking environment space 
(ESS space), ΩV, where ΩV={V1 V2… VP}. 
 
2.2. Online Super-vector Estimation 
In the online phase, we estimate the target super-vector, VY, for the 
testing environment through a mapping function, Gϕ: 

)(�=V VY �G ,                                       (1) 

with 
 ),,�  |( = Y W�FPargmax�

�
Vˆ ,                  (2) 

where �̂ represents the nuisance parameters in the mapping 
function, and W is the transcription corresponding to the testing 



utterances, FY. The nuisance parameters are only used in the 
mapping procedure but not involved in the recognition procedure. 
We estimate the nuisance parameters based on the expectation-
maximization (EM) algorithm in an unsupervised adaptation 
(compensation) style, which uses the decoded transcription as the 
guide. With the estimated target super-vector, VY, we can have the 
set of acoustic models, �Y, for the testing condition.  
 

3. WEIGHTED N-BEST INFORMATION 
In an unsupervised adaptation style, we can use the best decoded 
transcription for stochastic matching (W in Eq-(2)). However, the 
decoded best transcription may not be the ground truth, especially 
in the severed noisy conditions. Using N-best transcriptions from 
the decoder is a good way to address this issue, since the ground 
truth may be embedded in other candidates. By introducing the N-
best transcriptions, we can rewrite Eq-(2) as:  

 ),,�  |( �  = Y
Nn

nn
�

W�FPargmax� Vˆ ,        (3)

where Wn and λn are the decoded transcription and weight for the 
n-th hypothesis, respectively. Based on a study about unsupervised 
speaker adaptation [9], we adopt the following equation to 
dynamically determine λn: 
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where Ln is the log-likelihood of the n-th hypothesis, and η is a 
parameter that determines the confidence of the hypotheses. Eq-(4) 
is a general formulation for using N-best transcription. When 
setting η→∞, an equal weighting is applied to the N-best 
hypotheses; when setting η=0, only the 1-best hypothesis is used in 
Eq-(3) (this case is the same as using Eq-(2)). If we use a small 
value of η, the best candidate’s likelihood will dominate Eq-(4). 
Therefore, we prefer a value around 12-15 used in discriminative 
training [10] to scale down the dominating likelihood. 
 

4. ONLINE ESS SPACE CONSTRUCTION 
Next, we present two techniques to construct the ESS space that 
provides better resolution and coverage to model the test 
conditions—cohort selection and environment space adaptation.  
 
4.1. Cohort Selection 
In our previous study, we have demonstrated that using a succinct 
environment space with higher resolution helps ESSEM to better 
characterize unknown testing environments, especially when only 
limited adaptation data is available [7]. In this section, we study a 
cohort selection technique [11] to construct a space with good 
resolution in the online phase. The concept of cohort selection 
resembles that of the family of subset selection methods [12] that 
find a subset of components from the entire set of components to 
model a signal of interest. In the implementation aspect, cohort 
selection can be seen as an extension of the best first function [8]. 
However, instead of locating one most matched environment, 
cohort selection finds N training environments (cohorts) that are 
closest to the testing environment.  

In this study, we use the likelihood to measure the closeness. 
With the selected cohort environments, we build a cohort ESS 
space,

CHV� . Finally, we use the stochastic matching algorithm to 

estimate the target super-vector, VY, for the testing condition: 
)(� =VY CH� VG .                                    (5) 

The nuisance parameters can be estimated with the EM algorithm. 

4.2. Environment Space Adaptation 
As mentioned earlier, ESSEM prepares the ESS space using the 
available training data in the offline. Thus, the ESS space may 
have a poor coverage for the testing environments that contain 
distortions not included in the training set. This poor coverage 
limits the ESSEM performance. Here, we propose an environment 
space adaptation (ESA) technique to online generate a new ESS 
space that provides better coverage for the testing conditions.  

Based on the testing utterances, ESA generates a new ESS space 
online by compensating the parameters of the original ESS space. 
The stochastic matching criterion is used for the compensation 
process with a mapping function, )(•�G :        

)(�=� VV G
�ESA

,                                 (6) 

where
ESAV� is the compensated ESS space, � denotes the nuisance 

parameters of the mapping function. The new space provides a 
better coverage for the testing condition. Finally, we estimate the 
target super-vector, VY, through stochastic matching: 

)(� =VY ESA� VG .                                  (7) 

Similarly, the set of nuisance parameters, ϕ, of the mapping 
function can be estimated by the EM algorithm as shown in Eq-(2). 
  

5. EXPERIMENTS 
We conducted experiments on the Aurora-2 database [13]. The 
multi-condition training set was used to obtain environment-
specific HMMs and to build the ESS spaces. We tested ESSEM in 
a per-utterance unsupervised compensation mode on a gender 
dependent (GD) system [7, 8]. For the GD system, two GD HMM 
sets were first trained. Then, 17 environment-specific HMM sets 
for each gender were obtained by adapting mean vectors from that 
GD HMM set to specific environments. Accordingly, two GD ESS 
spaces along with two GD HMM sets were prepared. An automatic 
gender identification (AGI) unit was used to determine the gender 
identity of each testing speaker. The full evaluation set was used to 
test the ESSEM performance. In this paper, we only report the 
results of 50 conditions (10 types of noise, 0dB to 20dB SNRs). A 
modified ETSI advanced front-end (AFE) was used for feature 
extraction, and we followed a complex back-end topology as 
presented in [14] to train HMMs. More details about the 
experimental setup can be found in our previous study [7, 8].  

In the following experiments, we tested ESSEM performance on 
our current optimal ESS space. This ESS space was refined by soft 
margin estimation (SME) [10] and minimum classification error 
(MCE) training [7, 15] in the offline phase. SME is to increase 
discrimination within each super-vector, and MCE is to increase 
the distance between each pair of super-vectors. Based on our 
preliminary experiments, this ESS space always gives the best 
performance for a same online method.  

 
5.1 Baseline 
First, we report two baseline results in Table-1. For “Baseline 
(AGI)” in Table-1, we directly used the AGI unit to identify 
speaker’s gender for each testing utterance. Then, the HMM set for 
the identified gender is used to decode the same testing utterance.  

For “Baseline(EC)” in Table-1, we followed our previous study 
[7] and adopted an environment clustering (EC) tree to obtain this 
set of testing results. First, we built a two-layer hierarchical EC 
tree to structure the 34 environments into seven clusters. In the 
first layer, the 34 environments were exactly divided into two 
groups, each corresponding to one gender. In the second layer, 



another two groups were classified roughly according to high/low 
SNR levels. We prepared a representative HMM set for each of 
these seven nodes. Each set of representative HMMs was trained in 
a multi-style training manner using the speech data belonging to its 
corresponding node. During testing, we located one cluster from 
this EC tree and used its corresponding representative HMM set to 
recognize the testing utterance. Here, the same AGI unit was used 
for the first layer of the EC tree to identify speaker’s gender. At the 
second layer, an online cluster selection was conducted to 
determine one most suitable cluster of speaking environments. 
More details about the EC-structured baseline can be found in our 
previous study [7, 8]. To have a fair comparison, we applied the 
SME criterion [10] to improve each of the GD and representative 
HMM sets used in the two baseline experiments. 

By comparing the two baselines in Table-1, we observe that 
“Baseline(EC)” provides better performance than “Baseline(AGI)”. 
This result confirms that in addition to two genders, a speaking 
environment clustering process can give us a better baseline system. 
In the following discussions, we will use “Baseline(EC)” as an 
additional set of baseline to compare with the proposed techniques. 
 
5.2 Weighted N-best Information 
Next, we present the results of weighted N-best information on the 
ESSEM framework. The environment clustering (EC) technique 
was applied on ESSEM to enhance performance [7]. We adopted 
the same hierarchical EC tree as stated in the previous section to 
prepare seven clusters. Environments belonging to a same cluster 
then formed an EC sub-space, )(� cV , c=1,2,…C (here C=7). In the 

online stage, ESSEM selected a cluster (for example, the t-th 
cluster) and located its corresponding sub-space ( )(� tV

). With the 

selected sub-space, we estimated the target super-vector, VY, by: 
)(�=V )(VY t�G ,                                (8) 

with 
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In this set of experiments, we used a linear combination (LC) 
function [8] as the mapping structure. Therefore, Eq-(8) becomes: 
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where pŵ is the p-th weighting coefficient of the LC function, and 

P(t) is the total number of super-vectors of the t-th EC sub-space.   
We used a 8-best list (N=8). Table-1 lists results of ESSEM plus 

EC with setting η→∞ and η=0. By testing many different values, 
we found η=15 gave the best performance, and we listed the 
results in Table-1. In the following ESSEM experiments, we 
integrated the weighted N-best information technique with η=15.  
 

Table-1 Average word error rates (in %) from 0dB to 20dB.  
Test Condition SetA SetB SetC Overall 
Baseline(AGI) 5.09 5.32 6.69 5.50 
Baseline(EC) 5.05 5.31 6.31 5.41 

ESSEM+EC(η→∞) 4.58 4.88 5.51 4.89 
ESSEM+EC(η=15) 4.53 4.78 5.46 4.82 
ESSEM+EC(η=0) 4.53 4.89 5.54 4.88 

5.3 Online Cohort Selection and ESA 
Next, we tested the two online methods, cohort selection and ESA. 
For cohort selection, we located 15 environments closest to the 
testing condition in the original ESS space. For the ESA technique, 
we integrated it with EC (named EC-ESA) and used the EC tree 
introduced in Section 5.1. Similar to the original EC algorithm, a 
cluster was first selected based on the testing utterances. Then, 
ESA compensated the parameters in the selected EC sub-space, 

)(� tV
, to the EC-ESA space, )(� t

ESAV
, through stochastic matching: 

)(�=� )()( tt
ESA VV

G
� .                                     (12)

In this paper, we adopted a simple mapping process for )(•�G . 
We compensated each super-vector to match the testing condition 
individually. Accordingly, Eq-(12) becomes: 

)(V=V' p�p p
G , p=1… P(t),                             (13) 

where V'p and Vp , are the compensated and original super-vectors 
for the p-th environment, and )(•

p�
G is the mapping structure for 

the p-th super-vector. Finally, we obtain the EC-ESA space by: 

}V' ... V' {V'=� )()( 21 tt
ESA PV

.                                    (14) 

Here, we used diagonal MLLR [2] for )(•
p�

G  to compensate each 

super-vector in an unsupervised manner. With the EC-ESA space, 

)(� t
ESAV

, ESSEM used the LC function as shown in Eq-(10) for the 

mapping structure to estimate the target super-vector, VY. Table-2 
lists the cohort selection and EC-ESA results as “ESSEM+cohort 
(LC)” and “ESSEM+EC-ESA(LC)”. For ease of comparison, 
Table-2 also lists the results of ESSEM with EC as “ESSEM+ 
EC(LC)”; which is the same set of results to the η=15 in Table-1.  

Table-2 Average word error rates (in %) from 0dB to 20dB.  
Test Condition SetA SetB SetC Overall 

ESSEM+EC(LC) 4.53 4.78 5.46 4.82 
ESSEM+cohort(LC) 4.53 4.71 5.49 4.79 

ESSEM+EC-ESA(LC) 4.41 4.75 4.97 4.66 
 

By comparing Table-1 and Table-2, we can see that the three 
ESSEM results are clearly better than the two baseline results. 
Next from Table-2, we observe that “ESSEM+cohort(LC)” can 
give slightly better performance than “ESSEM+EC(LC)”. Please 
note that both EC and cohort selection resemble the subset 
selection methods [12]. EC online selects one sub-space from 
many prepared EC-structured sub-spaces, while cohort selection 
online collects super-vectors to construct a cohort ESS space. The 
testing results actually confirm that online cohort selection can 
provide relatively better resolution to model the testing condition.  

We also observe that “ESSEM+EC-ESA(LC)” achieves clearly 
better performance than “ESSEM+EC(LC)”. Especially for test Set 
C, where an additional channel diction is added, EC-ESA gives a 
clear improvement of 8.97% (5.46% to 4.97% WER) relative WER 
reduction over EC alone. This result suggests that ESA can online 
generate an ESS space that has better coverage to characterize the 
testing conditions, especially for those containing distortions not 
included in the training set.  
 
5.4 Integration with Complex Online Mapping Structure 
Next, we compare the same three techniques—EC, cohort selection, 
and EC-ESA—with a more complex mapping structure, linear 



combination with a correction bias (LCB) [8]. When applying EC 
and the LCB function along with the weighted N-best information 
technique on ESSEM, Eq-(8) now becomes: 
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where b̂ is a global correction bias [8].  
Table-3 lists the results of EC as “ESSEM+EC(LCB)”. We used 

the same procedure as described in the previous section to test 
cohort selection and EC-ESA. The corresponding results are listed 
as “ESSEM+cohort(LCB)” and “ESSEM+EC-ESA(LCB)”. As 
shown in Table-3, the results for all three sets are similar. However, 
the bottom row (EC-ESA) still gives slightly better performance 
than the other two techniques and provides WER reductions of 
15.64% and 14.23%, respectively, over “Baseline(AGI)” (5.50% to 
4.64% WER) and “Baseline(EC)” (5.41% to 4.64% WER). In 
Table-4, we list the detailed EC-ESA results (in accuracy %) at 
each testing condition of the Aurora-2 task. 

Table-3 Average word error rates (in %) from 0dB to 20dB.  
Test Condition SetA SetB SetC Overall 

ESSEM+EC(LCB) 4.43 4.74 4.98 4.66 
ESSEM+cohort(LCB) 4.48 4.74 4.92 4.67 

ESSEM+EC-ESA(LCB) 4.41 4.73 4.92 4.64 
 

6. CONCLUSION 
In this paper, we study techniques to enhance online estimation in 
the ESSEM framework. We first incorporated weighted N-best 
information in an unsupervised compensation mode. Next, we 
introduced cohort selection and environmental space adaptation 
from environment clustering (EC-ESA) to construct the ESS 
spaces online. Cohort selection and EC-ESA, respectively, enable 
ESSEM to enhance the resolution and coverage of the environment 
space to better characterize the testing conditions. When compared 
with the multi-style trained baseline, ESSEM with an integration of 
these online techniques achieves a significant 15.64% word error 
reduction (5.50% to 4.64% WER) on the Aurora-2 task.  

The important issue of enhancing the precision and coverage of 
the ESS space was only discussed briefly in Section 5. SME was 
used to improve intra-environment precision while MCE was 
applied to increase the inter-environment separation, and hence 
enlarge the coverage of the ESS space with a small number of 
environment-specific super-vectors. Based on our experiments, this 
enhanced ESS space always improved performance over 
configurations without using any discriminative training for ESS 
enhancement. A detailed report will be given in a future paper.                    
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Table-4 ESSEM+EC-ESA(LCB) with the best ESS space on the Aurora-2 task (in word accuracy %).              

Set A Set B Set C Overall  
Subway    Babble   Car      Exhibition Average  Restaurant Street    Airport  Station    Average  Subway M Street M   Average   Average  

20 dB            99.60 99.55 99.55 99.48 99.55 99.75 99.30 99.40 99.69 99.54 99.69 99.46 99.58 99.55 
15 dB 99.48 99.03 99.37 99.14 99.26 99.36 99.00 99.55 99.48 99.35 99.48 99.24 99.36 99.31 
10 dB 98.74 98.43 98.72 97.90 98.45 98.37 97.64 98.48 98.61 98.28 98.28 97.67 97.98 98.28 
5 dB 96.25 95.04 96.90 94.57 95.69 95.27 94.47 95.74 95.71 95.30 95.76 94.26 95.01 95.40 
0 dB 87.07 80.02 88.70 84.20 85.00 81.61 82.98 86.10 84.88 83.89 85.35 81.56 83.46 84.25 

Average                                                                                                    96.23 94.41 96.65 95.06 95.59 94.87 94.68 95.85 95.67 95.27 95.71 94.44 95.08 95.36 


