Teaching an Old Elephant New Tricks

Nicolas Bruno
_ Microsoft Research
nicolasb@microsoft.com

ABSTRACT

In recent years, column stores (or C-stores for short) henerged
as a novel approach to deal with read-mostly data warehgagin
plications. Experimental evidence suggests that, foaaetypes of
queries, the new features of C-stores result in orders ohinate
improvement over traditional relational engines. At theedime,
some C-store proponents argue that C-stores are funddipelifta
ferent from traditional engines, and therefore their béaegnnot
be incorporated into a relational engine short of a compigite.

In this paper we challenge this claim and show that many of the

benefits of C-stores can indeed be simulated in traditiongines

with no changes whatsoever. We then identify some limitetio

of our “pure-simulation” approach for the case of more campl
queries. Finally, we predict that traditional relationabaes will
eventually leverage most of the benefits of C-stores natiaal is
currently happening in other domains such as XML data.

1. MOTIVATION

data by column results in better compression than what isipos
ble in a row-store. Some compression techniques used inr€sst
(such as dictionary or bitmap encoding) can also be appbieot-
stores. However, RLE encoding, which replaces a sequente of
same value by a pair (value, count) is a technique that cammot
directly used in a row-store, because wide tuples rarelgeagn all
attributes. The final ingredient in a C-store is the abilityperform
query processing over compressed data as much as possi[&)s
for an in-depth study on C-stores).

C-stores claim to be much more efficient than traditional-row
stores. The experimental evaluation in [15] results in@est being
164x faster on average than row-stores, and other evahsafia]
report speedups from 30x to 16,200x (!). These impressiseltse

make us wonder whether we could incorporate some of the benefi

cial features of C-stores in traditional row-stores to obtasystem
that performs very well not only in specific data-warehoussiv
cal, but throughout the spectrum of database applicatioméor-

tunately, some proponents of C-store architectures claantheir
design principles are so different from those in row-stohes they

In the last couple of decades, new database applicatiores hav cannot be effectively emulated [6], and moreover thiavill re-

emerged with different requirements than those in trad#i@®LTP
scenarios. A prominent example of this trend are data waisss)
which are characterized by read-mostly workloads, snoeflide

schemas, and ad-hoc complex aggregate queries. To addesss t

scenarios, the database industry reacted in different.ways

On one hand, traditional database vendors (e.g., Micrd&it,
and Oracle) augmented traditional database systems witfume-
tionality, such as support for more complex execution plamdti-
column index support, and the ability to automatically stauery
and maintain materialized views defined over the originéhda

quire widespread and extensive code modifications for rones
to even approach column-store performang4).

In this paper we challenge this claim by investigating ways t
simulate C-stores inside row-stores. In Section 2 we shawtho
exploit some of the distinguishing characteristics of @res$ inside
a row-storewithout any engine change$hen, in Section 3 we dis-
cuss some limitations of this approach and predict how rimres
would eventually incorporate most of the benefits of a Cestath-
out losing the ability to process non data-warehouse waddo

On the other hand, new players in the database market devisedEXpe”mental Settlng
a different way to store and process read-mostly data. Tiés | All our experiments were conducted using an Intel Xeon 3.2GH
of work was pioneered by Sybase 1Q [1] in the mid-nineties and CPU with 2GB of RAM and a 250GB 7200RPM SATA hard drive
subsequently adopted in other systems [7, 15]. The mainiidea running Windows Server 2003 and Microsoft SQL Server 2005.

such column-oriented stores (also calleestore$ is to store data
column-by-column rather than the traditiomaiv-by-rowapproach
used in traditional systems (callemv-storedn this context). Since
queries read only the columns that they truly require, quoeoy
cessing in C-stores becomes more efficient. Additionattyirsg

Permission to copy without fee all or part of this materiabianted pro-
vided that the copies are not made or distributed for direntroercial ad-
vantage, the VLDB copyright notice and the title of the padion and its
date appear, and notice is given that copying is by pernmissidhe Very
Large Data Base Endowment. To copy otherwise, or to reguhiégjuires
a fee and/or special permission from the Endowment.

Proceedings of the 2009 CIDR Conference

To validate our results, we use the same data set and worftoad
posed in the original C-store paper [15]. Specifically, wedua
TPC-H database with scale factor ten and the seven qliefes
Figure 1. Although additional data sets and workloads haenb
used in subsequent papers, the one in [15] is a representaitvo-
benchmark particularly well suited for C-stores and themefa
good “stress test” for our approach. Following [15], we assu
that the following schema is used in the C-store:

Di: (lineitem | 1l_shipdate, 1l_suppkey)
D2: (lineitem < orders | o_orderdate, l_suppkey)
D4: (lineitem < orders X customer | 1_returnflag)

!Reference [15] does not specify thevalues for queries with inequalities
on date columns (i.eQ1, Q3, Q4, andQg). Therefore, in our experiments
we used values df that resulted in a wide range of selectivity values.

Q1 (count of items shipped each day after D):

SELECT 1_shipdate, COUNT (x)

FROM lineitem

WHERE 1_shipdate > D

GROUP BY 1_shipdate

Q2 (count of items shipped for each supplier on day D):
SELECT 1_suppkey, COUNT (%)

FROM lineitem
WHERE 1_shipdate
GROUP BY 1_suppkey

Qs (count of items shipped for each supplier after day D):
SELECT 1_suppkey, COUNT (%)

FROM lineitem

WHERE 1_shipdate > D

GROUP BY 1_suppkey

Qg (latest shipdate of all items ordered after each day D):
SELECT o_orderdate, MAX (1_shipdate)

FROM lineitem, orders

WHERE 1_orderkey=o_orderkey AND o_orderdate>D
GROUP BY o_orderdate

D

Qs (for each supplier, latest shipdate of an item from an ordat was
made on day D):
SELECT 1_suppkey, MAX (1_shipdate)
FROM lineitem, orders
WHERE 1_orderkey=o_orderkey AND o_orderdate
GROUP BY 1_suppkey
Qg (for each supplier, latest ship date of an item from an ordat was
made after day D):
SELECT 1_suppkey, MAX (1_shipdate)
FROM lineitem, orders
WHERE 1_orderkey=o_orderkey AND o_orderdate > D
GROUP BY 1_suppkey
Q~ (Nations for customers (along with lost revenue) for pantt they
returned):
SELECT c_nationkey, SUM(1_extendedprice)
FROM lineitem, orders, customers
WHERE 1_orderkey=o_orderkey AND o_custkey=c_custkey
AND 1_returnflag=’R’
GROUP BY c_nationkey

D

Figure 1: Queries used in th

whereDi = (expression | sortCols) means thatwe individually
materialize all columns iaxpression after sorting it bysortCols.

In addition to our proposed strategies, we evaluate twolinase
query processing techniques:

Row: Corresponds to the traditional query processing by a row-
store for which only primary indexes have been materialized

ColOpt: Corresponds to a (loose) lower bound on any C-store im-
plementation. We achieve this lower bound by manually cal-

culating how many (compressed) pages in disk need to be
read by any C-store execution plan, and measuring the time

taken to just read the input data. In other words, we do not
consider any filtering, grouping or aggregation over theiinp
data, and thus this strategy represents the absolute mimimu
time taken by any C-store implementation. We decided to
use this baseline to avoid directly comparing different sys
tems written and optimized by different groups of people.

Figure 2 shows the execution times of batdw andco10pt for
the queries in Figure 1 (ignore the additional bars for foihe
immediate conclusion from the figure is that column storeleéu
have thepotentialto result in very large speedups with respect to
plain row-stores, as illustrated more concisely in theeddglow:

Q1 Q | Q| Q]| Q@ | Q| Qr
Speedup| 26,191x | 4,602x | 59x | 35x | 2,586x | 37x | 113x

We next explore how we can improve the performancedaf
towards that ofo10pt without any changes to existing systems.

2. SIMULATING C-STORES

There has been previous work on simulating a C-store inside a

row-store (e.g., see [3, 4, 6]). The idea is to replace eagle ta
with either vertical partitions or single-column non-dlied in-
dexes. These references show that both approaches failiterde
good performance (in fact, in general they perform even g/tiran
plain row-stores). The reason (not unexpected in hindsigtihat
single column indexes or partitions cannot be stored orqased
in compressed form due to mandatory extra tuple informdgamn,

2Due to equality predicates in columbsand1_returnflag, execution
times for querie€)2, Q5, andQy do not depend on parameter values. We
therefore show results for a single value of the parameters.

e experimental evaluation.

rids must be present in secondary indexes or vertical joarsi},
and also that tuples in different partitions or indexes atesl in
different ways, which result in many index seeks when trytimg
combine multiple column values.

2.1 Varying the Physical Design

An advantage of C-stores is that they support some sort ef “pr
computed” representation of each column via RLE comprassio
In fact, the values in a column are first sortednd then each se-
qguence ofk instances of the same values replaced by the pair
(v, k). This mapping considerably reduces the space required to
store columns (especially those earlier in the global and¢rand
also speeds up query processing of filters and aggregatemdue
some information being already pre-aggregated at thegedager.

Interestingly enough, row-stores have invested condifieien
sophisticated mechanisms to store and process pre-cotripfae-
mation, commonly denoted materialized views. Materiaiziews
not only store information in aggregated form, but can also$ed
to answer queries that do not match exactly the view defmitad
are automatically updated. Materialized view languagesrigh
enough that many of the queries in Figure 1 can be directly pre
materialized using views. For instaneg; in Figure 1 can be con-
verted into a materialized view, and then answerihgwould just
entail reading the answer from disk. This approach wouldvark
if we change parameter values (e.g., changingturnflag="R’
to1_returnflag=>A’ would prevent the view from being matched).
We therefore generalize the view definitions to match antaimee
of queries@: to Q7 when arbitrarily varying their parameter val-
ues, as illustrated below for queri€s, Qs andQ~:

MV2,3 = SELECT 1_shipdate, 1_suppkey, COUNT(*)
FROM lineitem
GROUP BY 1_shipdate, 1_suppkey
MV7 = SELECT c_nationkey, l_returnflag, SUM(1l_extendedprice)

FROM lineitem, orders, customers
WHERE 1_orderkey=o_orderkey AND o_custkey=c_custkey
GROUP BY 1_returnflag, c_nationkey
Figure 2 contrasts the execution time of the strategiedriiyale-
ment materialized views natively in SQL Server 20@6w(MV) in
the figure) and the loose lower bound of any C-store implesent

3Note that columr is not necessarily sorted inorder, but follows instead
the global ordering defined by a DBA. Column correlation, beer, still
produces clusters of the same value,imnvhich is therefore compressed.

Q1

Qs

Qa1

Qs

Qo

Q7

Execution Time
o
a

0.001

0.0001

01

Execution Time

0.01

0.001

Execution Time

Execution Time

Execution Time

0.001

HRow M Row(MV) Row(Col) ™ ColOpt

1% 5%

10% 25% 50%

Predicate Selectivity

I s

|

= Row H Row(MV) Row(Col) H ColOpt

Row(MV) Row(Col) ColOpt

1% 5%

10% 25% 50%

Predicate Selectivity

B Row(MV) Row(Col) M ColOpt

10% 25% 50%

Predicate Selectivitv

11

Row(MV) Row(Col) Colopt

1000

™ Row = Row(MV) Row(Col) = ColOpt

100

Execution Time

0.1

Execution Time

0.001

0.0001

25% 50%

10%
Predicate Selectivity

I

Row

Row(MV) Row(Col) ColOpt

Figure 2: Results of the experimental evaluation.

tion (Col0pt in the figure). The table below summarizes the average
relative performance dow (Mv) compared t@ol0pt:

| Q1 | Q@ | Q3| Q4 | Q@ | Q | Q¢
RowMV) | = | xT | 2x7 | 250X | 2.5x | T.2x1 | L,A00K

Using materialized views fof- results in a plan that is 4x slower
than the lower bound for C-stores, and €2f in a plan that is 1,400
times better than the best possible C-store implementafibese
results are interesting, since, as we discussed earletjrte for
Col0pt only considers reading the compressed input values, but
does not take into account and subsequent query procedsang.
instance, we measureg. for the Row(Mv) case and found that
roughly 40% of the execution time is spent grouping and aggre
gating results (in some form or another, that overhead maset a
be present in any implementation of C-stores, bringing tready
modest speedup further down). In conclusion, while someiegie
could beexecuted at most 2-4 times more efficiently in a C-store
implementation, others can be hundreds or even thousartisesf
more efficient by using materialized views.

While the performance of the workload using materializexiva
is impressive (and could be made even more efficient by using
the compressed representation of row-stores propose@jy {te
main drawback is generality. While materialized views caswveer
queries that are slightly different from the view definiti¢e.g.,
changing a constant value for another) they would not matioéro
common modifications. This might not be an issue in scen#nats
contain mostly reporting queries (and it should be, in few, right
approach), but can become a significant problem for apmicat
that issue significant number of ad-hoc queries. We nextoespl
a different approach for simulating C-store benefits insidew-
store without modification to traditional engines.

2.2 Varying the Logical Design

So far we discussed two extreme physical designs. On one hand
single-column indexes are flexible for varying workloads, ggen-
erally result in inefficient executions [6]. On the other Hama-
terialized views are extremely efficient but a bit narrow @oe.

We now present a technique that is based on changinpgizal
database desigmequires no modification to current query engines,
and results in efficient executions (close to those of Cesfowith-
out suffering from the specificity of materialized views.

2.2.1 Logical Database Design using C-Tables

The main idea of our approach is to extend the vertical jamtit
approach in [6] to explicitly enable the RLE encoding of ruphl-
ues. Concretely, consider a talffewith columnsa, b, andc, as
shown in Figure 3(a). Also, suppose that we want to simulae t

Ta f v ¢
(vitua)id [Ja b ¢ 1 1 5
T T 1 1 6 2 7
g i ; j Ty f v ¢
4 1 2 5 11 2
5 1 2 5 3 2 3
6 2 1 1 6 1 2
7 2 1 1 8 3 5
8 2 3 1 T v
9 2 3 2 1
10 2 3 2 > 4
11 2 3 3 3 a4
12 2 3 4 1 s

(a) Original Table. (b) Logical Representation.
Figure 3: Logical database design for row-stores.

’ =
4 el E| 2!
Hash Merch s EE"SCBEY == Index Seeh
{Agyregace) s IDL_1_shipdatel
Cost: 41 % : Cost: 0 %

"I Nested Loops ‘
(Inner Join)
Cost: 35 &

A
] Clustered Index Seek
[D1_1_suppizeyl
Cost: Z3 %

(a) Execution plan fo€)s.

3 L 4 DT
el t]vn ™
i L 1] e |
Hash Hatahi 0 Westwd Tusps 0] Sawes Augesgsle O ik e M Tadus Swek

thggregate) {Inner Join) {Agyregate) Cost: O & [D1_1_shipdate]
Cost: 42 & Cose: 36 & Cose: O & d Cost: 0 %

Ay
633]
Clustered Index Seek
ID1_1 suppley]
Cost: 23 &

(b) Optimized Execution plan faps.

1 Nested Loops & Index Seek
(Inner Join) D¢ 1 rewumflag)
Cost: 55 % Cost: O %

A
L~ Clustered Index Seek
[D4_c_nationkey]
Cost: O &

~—— Nested Loops T
(Inner Join)
Cost: O %

iz L — ey s
1!3§ @ ¥ | &1 |
Seream Aggregame =
(hayregate)
Cost: B %

So!
Cost: 0§

9 5]

Clustered Index Seek
[D4_1_extendedprice]

(c) Execution plan fo)~.
Figure 4: Execution plans using c-tables.

C-store schemél'|a, b, ¢)* (i.e., we sort byz, thenb, and finallyc).
We then proceed (conceptually) as follows. First, we sarttéile
according to the sort columns in the schema and associateto e
tuple a virtual columnid that represents the position of the tuple
in the resulting ordering (see Figure 3(a)). Then, we ge¢aarae
tableT’, per colummnz in the schema (we call thesetableg. To do
so, we “group” each sequence of the same value forthe sorted
table that additionally agree with all the previous soruoohs. We
then represent each of these groups in the original table thy a
ple (f,v,c) in the c-tablel’,, wherev is the repeated value in the
group, f is the minimumid value in the original table for the el-
ements in the group, andis the group size. Figure 3(b) shows
an example of this mapping for the table in Figure 3(a). Nbte t
some columns (especially those deep in the sort order) haile
most of the: values equal to one. If this happens for column, say,
the alternative representation that simply projects colstid andz
from the original table might be smaller and we use it insteagl.,

seeT¢ in Figure 3). Once the tables have been populated, we cre-

ate a clustered index on colunfnand a secondary covering index
with leading columnv (as we show later, the ability to have multi-
ple indexes in c-tables enables additional query execiplizms).

The meaning of a tupléf, v, ¢) in c-tableT, is that, on the orig-
inal table, all tuples from positiotf to position f + ¢ — 1 have
valuewv. An interesting property of this logical representation is
that for any pair of tuple$; andt., possibly on different c-tables,
the rangesfi, f1 + ¢1 — 1] and([f2, f2 + c2 — 1] do not partially
overlap (i.e., they are either disjoint or the one assodiati¢h the
column deeper in the sort is included in the other). This &et
lows us to exploit specific rewritings to combine informatiwom
different c-tables to answer queries.

2.2.2 Query Rewriting

Query rewriting for c-tables is an extension of the tradiéib
mechanisms to answer queries using vertical partitionsyhiich
we leverage the compressed representation of columns. @lre m

4For simplicity, in this work we assume that all the columngiappear in
the sort columns in the schema. We will later comment on thésiaption.

idea is to join different c-tables with “band” joins and ta&d-
vantage of the compressed representation during queryegsoc
ing. Consider querys in Figure 1 and the logical design derived
from schema1: (lineitem | 1_shipdate, 1_suppkey). We then
rewrite Q3 as follows:

SELECT Ti.v, SUM(T1.c)
from D1_1_suppkey T1, D1_1_shipdate TO
WHERE TO.v>D

AND T1.f between TO.f and TO.f+TO.c-1
GROUP BY Ti.v

where (i) we join c-tableB1_1_shipdate TOandDi_1_suppkey T1
using the predicateo.f < Ti.f < T0.£+T0.c-1, which exploits
the property of c-table ranges described above, and caralgpt
returns compressed 4-tuplé€st.v, T0.v, TO.f, T0.c), and (ii)
we replace theount () aggregate value witbun(T1.c), which
effectively performs the aggregation over compressed déia ex-
ecution plan for this query is shown in Figure 4(a). It firstfpems
an index seek on the secondary index for the c-table comelspg
to 1_shipdate and returns all tuples that satisfy> p. For each
resulting tuple(t,v,c), it seeks for all tuples in the c-table corre-
sponding tol_suppkey for the corresponding matches, which are
then grouped and aggregated using a hash-based operator.

2.2.3 Optimizations

The logical schema described above, along with the avaiiabl
dexes and advanced query processing strategies of theengine
allow differentmechanizablguery optimizations:

Query-specific rewriting rules: Consider again quergs and the
plan in Figure 4(a). Note that coluninshipdate is used
only to restrict tuples, but not used in the final result, ahic
only groups byL_suppkey. Additionally, note that tuples sat-
isfying1_shipdate > Dare clusteredintabliiet_1_shipdate
and therefore the rangés, f+c-1] are all consecutive. We
can rewrite)s as follows:

SELECT T1.v, SUM(T1.c)
FROM (SELECT MIN(TO.f) AS xMIN,
MAX(TO.£f+TO.c-1) AS xMAX
FROM D1_1_shipdate TO WHERE TO.v>D) TOAgg,
di_1_suppkey T1
WHERE T1.f BETWEEN TOAgg.xMin AND TOAgg.xMax
GROUP BY T1.v

This query results in the execution plan of Figure 4(b), \whic
has much fewer context switches since there is a single tuple
in the outer side of the nested loop join.

Rich query-processing engine:The complex query engine in the
row-store makes possible non-obvious, cost-based ofatimiz
tions. Consider), rewritten as follows:

SELECT Ti.v, SUM(T2.c*T2.v)
FROM d4_1_returnflag TO,
d4_c_nationkey T1,
d4_1_extendedprice T2
WHERE TO.v=’R’
AND T2.f BETWEEN T1.f AND T1.f+T1l.c-1
AND T1.f BETWEEN TO.f AND TO.f+TO.c-1
GROUP BY T1.v

The execution plan is shown in Figure 4(c). Note that af-
ter the first join that puts together columéi®rderdate and
1_suppkey, the query processor introduces an intermediate
sort operator, which produces tuples sortedrbyv values
that are later aggregated using a stream-based operator.

Additional index-based strategies: Multiple indexes on c-tables
(e.g., covering indexes onvalues) enable additional strate-
gies. Consider schem@a | a,b,c,d) and the query below:

SELECT a, b, c, d
FROM T
WHERE c=10 AND d=20

Note that the predicates are over columns deep in the sort or-
der. Therefore, C-store implementations would have teeith
scan the fulk andd columns (perhaps using late materializa-
tion), or perform seeks over(and theni) for eachcombina-

tion of (a,b) values, which could be even more expensive if
there are many distinct values. Instead, we can easily evalu
ate the query by (i) seekirgpthc-tables independently using
indexes orr values and “intersecting” partial results, and (ii)
obtaining the remaining columns as usual. This strategy can
be more efficient than any C-store alternative.

2.2.4 Experimental Results

We implemented our approach by materializing c-tables and e
ecuting the rewritten queries from Figure 1. Figure 2 shdvwesrée-
sults of our techniques (denoteek (Col) in the figure). The table
below summarizes the average slowdown of our techniquatvel
to the loose lower bound of any possible C-store implemimtat

| Q@ | Q@ | @3 | Q4 | Q5 | Qs | Q¢
Row(Col) [1.Ix [5.6x [2.3x | 2.2x | 4.2x | 2.1x | 2.0x

The performance of the workload is on average 2.7x slower tha
the lower bound for any C-store implementation. Considgtirat
(i) such implementation would have to additionally perfdilters,
grouping and aggregation, and (ii) row-store executiom®plean
coexist with our strategies (it is just a different logicalségn), we
believe that our approach enables both performance andifigxi
rivaling those of C-stores in an plainnmodifiedrow-store.

3. APEEKINTO THE FUTURE

Although the results in the previous section are very eragpur
ing, there are opportunities to further improve perforneandt
the same time, the ideas discussed below can help mitigate ce
tain limitations that appear when translating and finestgrmore
complex queries with our self-imposed restriction of makim
changes whatsoever to a traditional engine.

Storage layer: Although columns are effectively stored using RLE
encoding, we still use additional overhead per (comprgssed
tuple. Our row-store system uses 9 bytes of overhead per
tuple, which can effectively double the amount of space re-
quired to store data in a native C-store. Small changes in
page layout would certainly improve this problem [10], espe
cially because c-tables are clustered by increasing argeden
£ values, which can be effectively delta-compressed.

Column concatenation: We forced every schema to have deep
sort orders, in which all columns participated in the sont. |

some scenarios, having shorter sort sequences allow better

compression of the remaining columns. In such cases, we
need to use more complex band predicates to join columns
together. While this is possible, the optimizer and query en
gine do not recognize certain high level properties of tha,da
which prevents efficient query processing strategies. An al
ternative approach is to create user-defined operatorg usin
c# table-valued functions in our database system. These ex-
tensions would take two streams and “concatenate” them into

one, similarly to what C-stores do. We implemented such
approaches but they are not particularly efficient (they are
outside the server, the logic is quasi-interpreted andoperf
mance is not high enough). Changes in the optimizer and
execution engine would mitigate this issue.

Query hints: We had to sometimes hint the query optimizer to
pick a different plan than the default one. For instance,esom
times merge joins are picked over index nested loop joins
because the optimizer assumes that each index seek from a
tuple for the outer relation would incur random 1/Os. How-
ever, the properties of our data is such that all requests are
strictly sorted, which results in much lower execution time
Additionally, sometimes cardinality estimates are not@s a
curate as they could be by exploiting the semantics of our
data representation. In general, the optimizer lacks demai
specific information to make better choices. Adding such
logic would remove the need to specify query hints.

Software development: Our techniques require a careful rewrit-
ing of the original queries into alternatives that are much
more difficult to understand and maintain. However, all the
translation mechanisms are mechanical, and can be easily in
corporated into a middleware framework such as LINQ [2],
which enables such mappings as first class citizens. Applica
tion developers would then issue queries without congideri
whether the underlying representation (and executionsplan
follow the traditional row-store architecture, the stoas
discussed in the previous section, or even a hybrid of both.

In conclusion, although for all the queries in Figure 1 we get
most of the benefits of C-stores, there are still obstaclaspte-
vent a full simulation within a row-store. At first sight itesms that
several components in a traditional DBMS have to be adapted i
some form or another for this to be possible. Is this task muens
tal, as some C-store proponents argue, or requires justtevehry
changes similar to those that already happened in similategts?

3.1 Lessons From The (Near) Past

One way to concisely summarize the limitations of our appinoa
is that traditional engines cannot leverage the very spesifinan-
tics of c-tables. Rather than identifying and exploitingittspecial
characteristics at both the storage and query processiegslahe
system considers them as regular tables. We next reviewexiess
of events from the recent past that share several chaistatenvith
our methodology and are therefore very relevant to our dision.

3.1.1 XML Query Processing

In the last decade, XML emerged as a de facto standard far info
mation representation and exchange over the internet. X&th d
and query models are rather different from those in theioglat
model, and it was argued that native engines were the only ap-
proach to effectively query XML data. Over the years, refaai
engines went through two phases to incorporate XML support.

Mid-Tier Approach: Several pieces of work adopted a mid-tier
approach that consisted of mapping an XML schema into
the relational schema (e.g., see [11]). XML data is shred-
ded into relational form using a schema-driven approach and
queried using XPath, which is internally translated intd_SQ
queries. While this approach was successful, the question
of extending query rewrites for more complex XML frag-
ments remained open, and some complex scenarios stretched
the capabilities of relational systems, which had no domain
specific knowledge about the shredded schema.

Native Support: Driven by both performance and expressiveness with no changes to the kernel of a traditional row-store. Qfrse,
requirements, DBMS vendors started pushing XML func- we are aware of the limitations of our approach (which wedveli
tionality inside the query engine (e.g., see [13]). As an ex- are analogous to those in the XML or spatial scenarios desdri
ample, rather than building a new XML-only system, SQL above). Can row-stores go the extra mile and natively inmere
Server 2005 deeply integrated the XML capabilities into the C-store functionality? In principle, we do not see any cqtaal
existing framework, which provides general services sisch a obstacle. We predict that this will not be a straightforweask, but

backup, restore, replication, and concurrency controlil®vh at the same time nothing out of the ordinary and similar totwha

this was not an easy task, the implementation was surpris- happened multiple times in the recent past.
ingly componentized, and the resulting system is able tb bot

leverage the relational storage and query infrastrucamd, 4. CONCLUSIONS

support XML query processing in a seamlessly integrated
way (i.e., XML, purely relational, and hybrid queries casxi

too quickly for read-mostly, data warehousing scenarios.thihk
in the same system and build upon the same technology). d y Y d

several decades of active research and development haitedes
; ; in relational database systems that are robust and extenaiid
3.1.2 Spatial Query Processing that can cope with new, unexpected scenarios in a reasoagibdy
manner. Specifically, we show that relatively simple magpiat
the logical database level can result in execution straseigi row-
stores that rival those of C-stores. We also predicted tatwely
understanding C-stores can further close the gap, as itehapp
before for XML or spatial data. Whether row-stores would bkea
to incorporate all the benefits of C-stores is something gdiet
seen, but we remain cautiously optimistic about this ougzom

Location-aware devices and services are increasinglyrbiecp
commodity items. Many scientific applications rely on saktip-
erations over real-world objects. While each spatial appibn
seems to have some unique characteristic, over the yeaeshhs
been consensus on a series of primitives to perform spatelyq
processing [12]. Similarly to the XML scenario, relatiomaigines
went through phases to incorporate spatial support.

Spatial Library: Reference [9] describes a library that is built on Acknowledgments
top of a traditional database system and can perform spatial

We claim that row-stores have been considered and discarded

query processing. The idea is to store spatial data in spe- Ve thank Ravi Ramamurthy, Vivek Narasayya and Paul Larson fo

cialized but plain SQL tables, and rely on SQL functions Valuable feedback to an earlier version of this document.
and stored procedures to provide primitive spatial opesato
Pushing the logic entirely into SQL allows the query opti- 5. REFERENCES

mizer to do a very efficient]Ob at ﬁ|tering relevant ObjECtS. [1] http://wuw.sybase.com/products/databaseservers/sybaseiq.
[2] The LINQ project. Accessible at
Native Support: Recently, database systems started incorporating http://msdn.microsoft.com/data/ref/ling.

native spatial support to the query engines (e.g., see [8]). [3] D. Abadi. Debunking a myth: Column-stores vs. indexes. |
For instance, SQL Server 2008 added spatial data support http://www.databasecolumn.com/2008/07/debunking-a-
to manage location-aware data. In particular it introduces myth-columnstores. htnl. _ ,

two new built-in types to represent planar and geodetic vec- [l D: Abadi. Debunking another myth: Column-stores vsticat

- . . . partitioning. Inhttp://www.databasecolumn.com/2008/07/
tor data. An adaptive, multi-level grid based spatial index debunking-another-myth-columns.html.

provides efficient processing, and it is built on existing-B+ (5] p. Abadi. Query execution in column-oriented databasstesns.

Tree infrastructure and integrated into the query optimize Ph.D. thesis, MIT, 2008.
As with XML, spatial data coexists with traditional relatil [6] D. Abadi, S. Madden, and N. Hachem. Column-stores vs:stwes:
tuples, leverages the same basic infrastructure and ghethe How different are they really? IRroceedings of the ACM
ripheral utilities and features of the DBMS. International Conference on Management of Data (SIGM{IDP8.
[7] P.Boncz et al. MonetDB/X100: Hyper-pipelining Querydextion.
3.1.3 What About C-stores? In Proceedings of CIDR200S.

[8] Y. Fang. Spatial indexing in Microsoft SQL Server 2008. |

_A pattern that emerges fr_om _the p_revious examples is a_sr\fsllo Proceedings of the ACM International Conference on Managgm
First, new classes of applications introduce novel requéns. of Data (SIGMOD) 2008.
This is followed by specialized query engines that are dorepe- [9] J. Gray et al. There goes the neighborhood: Relatiomgkak for
cific, very efficient, but at the same time, understandabtyawain spatial data search. Technical Report MSR-TR-2004-32rddft.
scope. A little later, some of the specialized functioyaitt simu- [10] A. Holloway and D. DeWitt. Read-optimized databasesiépth. In
lated as a thin layer on top of traditional relational systefinally, Proceedings of the International Conference on Very Large
the functionality is packaged into a new data type, indegrgpro- Databases (VLDB)2008.

[11] R. Krishnamurthy et al. Recursive XML Schemas, Resgr3ML
Queries, and Relational Storage: XML-to-SQL Query Traitsta In
Proceedings of the International Conference on Data Ergyiing

cessing technique or a combination of these, and suppaateely
inside a relational system. Native support inside a geri@BMS

(at least in initial releases) is usually less efficient andsibly (ICDE), 2004.

more restrictive than a specialized engine. However, wheméw [12] O.G.C. (OGC). OpenGIS Simple Features SpecificatiorSL.
functionality becomes stable, performance is usually cnaige, http://www.opengeospatial.org/standards/sfs.

and the approach additionally results in significant sideefies: (i) [13] M. Rys. XML and relational database management systamile
all the development, deployment, and testing tools, amdhgrs, Microsoft SQL Server 2005. IRroceedings of the ACM

are transparently supported for the new functionalityn@iaintain- International Conference on Management of Data (SIGMCIDPS.

: : ; P, ; [14] M. Stonebraker. Supporting column store performanans. In
ing one complex system is easier than maintaining multialeo(http: //wiw . databasecolumn. com/2008/03/supporting-

complex!) systems, and (iii) supporting applications whitfbrid column-store-perfor. html
requirements is easier without additional data migratigupsrt. [15] M. Stonebraker et al. C-Store: A Column-oriented DBMIS.

In this paper we claim that C-stores are going through thia*th Proceedings of the International Conference on Very Large
layer simulation” phase, in which many of its benefits aretwagul Databases (VLDB)}2005.

