
Teaching an Old Elephant New Tricks

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

ABSTRACT
In recent years, column stores (or C-stores for short) have emerged
as a novel approach to deal with read-mostly data warehousing ap-
plications. Experimental evidence suggests that, for certain types of
queries, the new features of C-stores result in orders of magnitude
improvement over traditional relational engines. At the same time,
some C-store proponents argue that C-stores are fundamentally dif-
ferent from traditional engines, and therefore their benefits cannot
be incorporated into a relational engine short of a completerewrite.
In this paper we challenge this claim and show that many of the
benefits of C-stores can indeed be simulated in traditional engines
with no changes whatsoever. We then identify some limitations
of our “pure-simulation” approach for the case of more complex
queries. Finally, we predict that traditional relational engines will
eventually leverage most of the benefits of C-stores natively, as is
currently happening in other domains such as XML data.

1. MOTIVATION
In the last couple of decades, new database applications have

emerged with different requirements than those in traditional OLTP
scenarios. A prominent example of this trend are data warehouses,
which are characterized by read-mostly workloads, snowflake-like
schemas, and ad-hoc complex aggregate queries. To address these
scenarios, the database industry reacted in different ways.

On one hand, traditional database vendors (e.g., Microsoft, IBM,
and Oracle) augmented traditional database systems with new func-
tionality, such as support for more complex execution plans, multi-
column index support, and the ability to automatically store, query
and maintain materialized views defined over the original data.

On the other hand, new players in the database market devised
a different way to store and process read-mostly data. This line
of work was pioneered by Sybase IQ [1] in the mid-nineties and
subsequently adopted in other systems [7, 15]. The main ideain
such column-oriented stores (also calledC-stores) is to store data
column-by-column rather than the traditionalrow-by-rowapproach
used in traditional systems (calledrow-storesin this context). Since
queries read only the columns that they truly require, querypro-
cessing in C-stores becomes more efficient. Additionally, storing

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.
Proceedings of the 2009 CIDR Conference

data by column results in better compression than what is possi-
ble in a row-store. Some compression techniques used in C-stores
(such as dictionary or bitmap encoding) can also be applied to row-
stores. However, RLE encoding, which replaces a sequence ofthe
same value by a pair (value, count) is a technique that cannotbe
directly used in a row-store, because wide tuples rarely agree on all
attributes. The final ingredient in a C-store is the ability to perform
query processing over compressed data as much as possible (see [5]
for an in-depth study on C-stores).

C-stores claim to be much more efficient than traditional row-
stores. The experimental evaluation in [15] results in C-stores being
164x faster on average than row-stores, and other evaluations [14]
report speedups from 30x to 16,200x (!). These impressive results
make us wonder whether we could incorporate some of the benefi-
cial features of C-stores in traditional row-stores to obtain a system
that performs very well not only in specific data-warehouse verti-
cal, but throughout the spectrum of database applications.Unfor-
tunately, some proponents of C-store architectures claim that their
design principles are so different from those in row-storesthat they
cannot be effectively emulated [6], and moreover that“it will re-
quire widespread and extensive code modifications for row-stores
to even approach column-store performance”[4].

In this paper we challenge this claim by investigating ways to
simulate C-stores inside row-stores. In Section 2 we show how to
exploit some of the distinguishing characteristics of C-stores inside
a row-storewithout any engine changes. Then, in Section 3 we dis-
cuss some limitations of this approach and predict how row-stores
would eventually incorporate most of the benefits of a C-store with-
out losing the ability to process non data-warehouse workloads.

Experimental Setting
All our experiments were conducted using an Intel Xeon 3.2GHz
CPU with 2GB of RAM and a 250GB 7200RPM SATA hard drive
running Windows Server 2003 and Microsoft SQL Server 2005.
To validate our results, we use the same data set and workloadpro-
posed in the original C-store paper [15]. Specifically, we used a
TPC-H database with scale factor ten and the seven queries1 of
Figure 1. Although additional data sets and workloads have been
used in subsequent papers, the one in [15] is a representative micro-
benchmark particularly well suited for C-stores and therefore a
good “stress test” for our approach. Following [15], we assume
that the following schema is used in the C-store:

D1: (lineitem | l_shipdate, l_suppkey)
D2: (lineitem ⊲⊳ orders | o_orderdate, l_suppkey)
D4: (lineitem ⊲⊳ orders ⊲⊳ customer | l_returnflag)

1Reference [15] does not specify theD values for queries with inequalities
on date columns (i.e.,Q1, Q3, Q4, andQ6). Therefore, in our experiments
we used values ofD that resulted in a wide range of selectivity values.



- Q1 (count of items shipped each day after D):
SELECT l_shipdate, COUNT (*)
FROM lineitem
WHERE l_shipdate > D
GROUP BY l_shipdate

- Q2 (count of items shipped for each supplier on day D):
SELECT l_suppkey, COUNT (*)
FROM lineitem
WHERE l_shipdate = D
GROUP BY l_suppkey

- Q3 (count of items shipped for each supplier after day D):
SELECT l_suppkey, COUNT (*)
FROM lineitem
WHERE l_shipdate > D
GROUP BY l_suppkey

- Q4 (latest shipdate of all items ordered after each day D):
SELECT o_orderdate, MAX (l_shipdate)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey AND o_orderdate>D
GROUP BY o_orderdate

- Q5 (for each supplier, latest shipdate of an item from an order that was
made on day D):
SELECT l_suppkey, MAX (l_shipdate)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey AND o_orderdate = D
GROUP BY l_suppkey

- Q6 (for each supplier, latest ship date of an item from an order that was
made after day D):
SELECT l_suppkey, MAX (l_shipdate)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey AND o_orderdate > D
GROUP BY l_suppkey

- Q7 (Nations for customers (along with lost revenue) for parts that they
returned):
SELECT c_nationkey, SUM(l_extendedprice)
FROM lineitem, orders, customers
WHERE l_orderkey=o_orderkey AND o_custkey=c_custkey
AND l_returnflag=’R’

GROUP BY c_nationkey

Figure 1: Queries used in the experimental evaluation.

whereDi = (expression | sortCols) means that we individually
materialize all columns inexpression after sorting it bysortCols.

In addition to our proposed strategies, we evaluate two baseline
query processing techniques:

Row: Corresponds to the traditional query processing by a row-
store for which only primary indexes have been materialized.

ColOpt: Corresponds to a (loose) lower bound on any C-store im-
plementation. We achieve this lower bound by manually cal-
culating how many (compressed) pages in disk need to be
read by any C-store execution plan, and measuring the time
taken to just read the input data. In other words, we do not
consider any filtering, grouping or aggregation over the input
data, and thus this strategy represents the absolute minimum
time taken by any C-store implementation. We decided to
use this baseline to avoid directly comparing different sys-
tems written and optimized by different groups of people.

Figure 2 shows the execution times of bothRow andColOpt for
the queries in Figure 1 (ignore the additional bars for now)2. The
immediate conclusion from the figure is that column stores indeed
have thepotential to result in very large speedups with respect to
plain row-stores, as illustrated more concisely in the table below:

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Speedup 26,191x 4,602x 59x 35x 2,586x 37x 113x

We next explore how we can improve the performance ofRow

towards that ofColOpt without any changes to existing systems.

2. SIMULATING C-STORES
There has been previous work on simulating a C-store inside a

row-store (e.g., see [3, 4, 6]). The idea is to replace each table
with either vertical partitions or single-column non-clustered in-
dexes. These references show that both approaches fail to deliver
good performance (in fact, in general they perform even worse than
plain row-stores). The reason (not unexpected in hindsight) is that
single column indexes or partitions cannot be stored or processed
in compressed form due to mandatory extra tuple information(e.g.,

2Due to equality predicates in columnsD andl_returnflag, execution
times for queriesQ2, Q5, andQ7 do not depend on parameter values. We
therefore show results for a single value of the parameters.

rids must be present in secondary indexes or vertical partitions),
and also that tuples in different partitions or indexes are sorted in
different ways, which result in many index seeks when tryingto
combine multiple column values.

2.1 Varying the Physical Design
An advantage of C-stores is that they support some sort of “pre-

computed” representation of each column via RLE compression.
In fact, the values in a column are first sorted3, and then each se-
quence ofk instances of the same valuev is replaced by the pair
(v, k). This mapping considerably reduces the space required to
store columns (especially those earlier in the global ordering) and
also speeds up query processing of filters and aggregates dueto
some information being already pre-aggregated at the storage layer.

Interestingly enough, row-stores have invested considerably on
sophisticated mechanisms to store and process pre-computed infor-
mation, commonly denoted materialized views. Materialized views
not only store information in aggregated form, but can also be used
to answer queries that do not match exactly the view definition, and
are automatically updated. Materialized view languages are rich
enough that many of the queries in Figure 1 can be directly pre-
materialized using views. For instance,Q7 in Figure 1 can be con-
verted into a materialized view, and then answeringQ7 would just
entail reading the answer from disk. This approach would notwork
if we change parameter values (e.g., changingl_returnflag=’R’

tol_returnflag=’A’ would prevent the view from being matched).
We therefore generalize the view definitions to match any instance
of queriesQ1 to Q7 when arbitrarily varying their parameter val-
ues, as illustrated below for queriesQ2, Q3 andQ7:
MV2,3 = SELECT l_shipdate, l_suppkey, COUNT(*)

FROM lineitem

GROUP BY l_shipdate, l_suppkey

MV7 = SELECT c_nationkey, l_returnflag, SUM(l_extendedprice)
FROM lineitem, orders, customers

WHERE l_orderkey=o_orderkey AND o_custkey=c_custkey
GROUP BY l_returnflag, c_nationkey

Figure 2 contrasts the execution time of the strategies thatimple-
ment materialized views natively in SQL Server 2005 (Row(MV) in
the figure) and the loose lower bound of any C-store implementa-

3Note that columnc is not necessarily sorted inc order, but follows instead
the global ordering defined by a DBA. Column correlation, however, still
produces clusters of the same value inc, which is therefore compressed.



Q1 ���������������������
�� �� ��� ��� ������	
��
����� ��������� �����������

��� ��� !"# ��� $�%# $�%&'(
Q2 )*))+)*)+)*+++)

,-. ,-./012 ,-./3-42 3-456789:;<=>?@A>B:
Q3 CDEEECECC

EF GF ECF HGF GCFIJKLMNOPQROSK TUVWXYZ[V \V]VY[X̂ X[_
`ab `abcdef `abcgahf gahijk

Q4 lmllnlmlnlmnnnl no po nlo qpo plorstuvwxyz{x|t }~������� �����������
��� ������� �������� ������

Q5 ���������������
��� ������� ������ � �� ¡¢£¤¥¦§̈©ª«¬­ª®¦

Q6 ¯°±±±¯±¯¯±¯¯¯
±² ³² ±¯² ´³² ³¯²µ¶·̧¹º»¼½¾»¿· ÀÁÂÃÄÅÆÇÂ ÈÂ ÉÂÅÇÄÊÄÇË

ÌÍÎ ÌÍÎÏÐÑÒ ÌÍÎÏÓÍÔÒ ÓÍÔÕÖ×
Q7 ØÙØØØÚØÙØØÚØÙØÚØÙÚÚÚØÚØØ

ÛÜÝ ÛÜÝÞßàá ÛÜÝÞâÜãá âÜãäåæçèéêëìíîïðíñé
Figure 2: Results of the experimental evaluation.

tion (ColOpt in the figure). The table below summarizes the average
relative performance ofRow(MV) compared toColOpt:

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row(MV) = 4x↑ 2x↑ 250x↓ 2.5x↑ 1.2x↑ 1,400x↓

Using materialized views forQ2 results in a plan that is 4x slower
than the lower bound for C-stores, and forQ7 in a plan that is 1,400
times better than the best possible C-store implementation. These
results are interesting, since, as we discussed earlier, the time for
ColOpt only considers reading the compressed input values, but
does not take into account and subsequent query processing.For
instance, we measuredQ2 for the Row(MV) case and found that
roughly 40% of the execution time is spent grouping and aggre-
gating results (in some form or another, that overhead must also
be present in any implementation of C-stores, bringing the already
modest speedup further down). In conclusion, while some queries
could beexecuted at most 2-4 times more efficiently in a C-store
implementation, others can be hundreds or even thousands oftimes
more efficient by using materialized views.

While the performance of the workload using materialized views
is impressive (and could be made even more efficient by using
the compressed representation of row-stores proposed in [10]), the
main drawback is generality. While materialized views can answer
queries that are slightly different from the view definition(e.g.,
changing a constant value for another) they would not match other
common modifications. This might not be an issue in scenariosthat
contain mostly reporting queries (and it should be, in fact,the right
approach), but can become a significant problem for application
that issue significant number of ad-hoc queries. We next explore
a different approach for simulating C-store benefits insidea row-
store without modification to traditional engines.

2.2 Varying the Logical Design
So far we discussed two extreme physical designs. On one hand,

single-column indexes are flexible for varying workloads, but gen-
erally result in inefficient executions [6]. On the other hand, ma-
terialized views are extremely efficient but a bit narrow in scope.
We now present a technique that is based on changing thelogical
database design, requires no modification to current query engines,
and results in efficient executions (close to those of C-stores) with-
out suffering from the specificity of materialized views.

2.2.1 Logical Database Design using C-Tables
The main idea of our approach is to extend the vertical partition

approach in [6] to explicitly enable the RLE encoding of tuple val-
ues. Concretely, consider a tableT with columnsa, b, andc, as
shown in Figure 3(a). Also, suppose that we want to simulate the

(virtual) id a b c
1 1 1 1
2 1 1 4
3 1 2 4
4 1 2 5
5 1 2 5
6 2 1 1
7 2 1 1
8 2 3 1
9 2 3 2
10 2 3 2
11 2 3 3
12 2 3 4

Ta f v c
1 1 5
6 2 7

Tb f v c
1 1 2
3 2 3
6 1 2
8 3 5

Tc f v
1 1
2 4
3 4
4 5
... ...

(a) Original Table. (b) Logical Representation.
Figure 3: Logical database design for row-stores.



(a) Execution plan forQ3.

(b) Optimized Execution plan forQ3.

(c) Execution plan forQ7.
Figure 4: Execution plans using c-tables.

C-store schema(T |a, b, c)4 (i.e., we sort bya, thenb, and finallyc).
We then proceed (conceptually) as follows. First, we sort the table
according to the sort columns in the schema and associate to each
tuple a virtual columnid that represents the position of the tuple
in the resulting ordering (see Figure 3(a)). Then, we generate one
tableTx per columnx in the schema (we call thesec-tables). To do
so, we “group” each sequence of the same value forc in the sorted
table that additionally agree with all the previous sort columns. We
then represent each of these groups in the original table by atu-
ple (f, v, c) in the c-tableTx, wherev is the repeated value in the
group,f is the minimumid value in the original table for the el-
ements in the group, andc is the group size. Figure 3(b) shows
an example of this mapping for the table in Figure 3(a). Note that
some columns (especially those deep in the sort order), willhave
most of thec values equal to one. If this happens for column, say,x,
the alternative representation that simply projects columnsid andx

from the original table might be smaller and we use it instead(e.g.,
seeTC in Figure 3). Once the tables have been populated, we cre-
ate a clustered index on columnf and a secondary covering index
with leading columnv (as we show later, the ability to have multi-
ple indexes in c-tables enables additional query executionplans).

The meaning of a tuple(f, v, c) in c-tableTx is that, on the orig-
inal table, all tuples from positionf to positionf + c − 1 have
value v. An interesting property of this logical representation is
that for any pair of tuplest1 andt2, possibly on different c-tables,
the ranges[f1, f1 + c1 − 1] and[f2, f2 + c2 − 1] do not partially
overlap (i.e., they are either disjoint or the one associated with the
column deeper in the sort is included in the other). This factal-
lows us to exploit specific rewritings to combine information from
different c-tables to answer queries.

2.2.2 Query Rewriting
Query rewriting for c-tables is an extension of the traditional

mechanisms to answer queries using vertical partitions, inwhich
we leverage the compressed representation of columns. The main
4For simplicity, in this work we assume that all the columns inT appear in
the sort columns in the schema. We will later comment on this assumption.

idea is to join different c-tables with “band” joins and takead-
vantage of the compressed representation during query process-
ing. Consider queryQ3 in Figure 1 and the logical design derived
from schemaD1:(lineitem | l_shipdate, l_suppkey). We then
rewriteQ3 as follows:

SELECT T1.v, SUM(T1.c)
from D1_l_suppkey T1, D1_l_shipdate T0
WHERE T0.v>D
AND T1.f between T0.f and T0.f+T0.c-1

GROUP BY T1.v

where (i) we join c-tablesD1_l_shipdate T0 andD1_l_suppkey T1

using the predicateT0.f ≤ T1.f < T0.f+T0.c-1, which exploits
the property of c-table ranges described above, and conceptually
returns compressed 4-tuples(T1.v, T0.v, T0.f, T0.c), and (ii)
we replace thecount(*) aggregate value withsum(T1.c), which
effectively performs the aggregation over compressed data. The ex-
ecution plan for this query is shown in Figure 4(a). It first performs
an index seek on the secondary index for the c-table corresponding
to l_shipdate and returns all tuples that satisfyv > D. For each
resulting tuple(f,v,c), it seeks for all tuples in the c-table corre-
sponding tol_suppkey for the corresponding matches, which are
then grouped and aggregated using a hash-based operator.

2.2.3 Optimizations
The logical schema described above, along with the available in-

dexes and advanced query processing strategies of the queryengine
allow differentmechanizablequery optimizations:

Query-specific rewriting rules: Consider again queryQ3 and the
plan in Figure 4(a). Note that columnl_shipdate is used
only to restrict tuples, but not used in the final result, which
only groups byl_suppkey. Additionally, note that tuples sat-
isfyingl_shipdate > D are clustered in tableD1_l_shipdate
and therefore the ranges[f, f+c-1] are all consecutive. We
can rewriteQ3 as follows:

SELECT T1.v, SUM(T1.c)
FROM (SELECT MIN(T0.f) AS xMIN,

MAX(T0.f+T0.c-1) AS xMAX
FROM D1_l_shipdate T0 WHERE T0.v>D) T0Agg,
d1_l_suppkey T1

WHERE T1.f BETWEEN T0Agg.xMin AND T0Agg.xMax
GROUP BY T1.v

This query results in the execution plan of Figure 4(b), which
has much fewer context switches since there is a single tuple
in the outer side of the nested loop join.

Rich query-processing engine:The complex query engine in the
row-store makes possible non-obvious, cost-based optimiza-
tions. ConsiderQ7, rewritten as follows:

SELECT T1.v, SUM(T2.c*T2.v)
FROM d4_l_returnflag T0,

d4_c_nationkey T1,
d4_l_extendedprice T2

WHERE T0.v=’R’
AND T2.f BETWEEN T1.f AND T1.f+T1.c-1
AND T1.f BETWEEN T0.f AND T0.f+T0.c-1

GROUP BY T1.v

The execution plan is shown in Figure 4(c). Note that af-
ter the first join that puts together columnso_orderdate and
l_suppkey, the query processor introduces an intermediate
sort operator, which produces tuples sorted byT1.v values
that are later aggregated using a stream-based operator.



Additional index-based strategies:Multiple indexes on c-tables
(e.g., covering indexes onv values) enable additional strate-
gies. Consider schema(T | a,b,c,d) and the query below:

SELECT a, b, c, d
FROM T
WHERE c=10 AND d=20

Note that the predicates are over columns deep in the sort or-
der. Therefore, C-store implementations would have to either
scan the fullc andd columns (perhaps using late materializa-
tion), or perform seeks overc (and thend) for eachcombina-
tion of (a,b) values, which could be even more expensive if
there are many distinct values. Instead, we can easily evalu-
ate the query by (i) seekingbothc-tables independently using
indexes onv values and “intersecting” partial results, and (ii)
obtaining the remaining columns as usual. This strategy can
be more efficient than any C-store alternative.

2.2.4 Experimental Results
We implemented our approach by materializing c-tables and ex-

ecuting the rewritten queries from Figure 1. Figure 2 shows the re-
sults of our techniques (denotedRow(Col) in the figure). The table
below summarizes the average slowdown of our techniques relative
to the loose lower bound of any possible C-store implementation:

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row(Col) 1.1x 5.6x 2.3x 2.2x 4.2x 2.1x 2.0x

The performance of the workload is on average 2.7x slower than
the lower bound for any C-store implementation. Considering that
(i) such implementation would have to additionally performfilters,
grouping and aggregation, and (ii) row-store execution plans can
coexist with our strategies (it is just a different logical design), we
believe that our approach enables both performance and flexibility
rivaling those of C-stores in an plain,unmodifiedrow-store.

3. A PEEK INTO THE FUTURE
Although the results in the previous section are very encourag-

ing, there are opportunities to further improve performance. At
the same time, the ideas discussed below can help mitigate cer-
tain limitations that appear when translating and fine-tuning more
complex queries with our self-imposed restriction of making no
changes whatsoever to a traditional engine.

Storage layer: Although columns are effectively stored using RLE
encoding, we still use additional overhead per (compressed)
tuple. Our row-store system uses 9 bytes of overhead per
tuple, which can effectively double the amount of space re-
quired to store data in a native C-store. Small changes in
page layout would certainly improve this problem [10], espe-
cially because c-tables are clustered by increasing and dense
f values, which can be effectively delta-compressed.

Column concatenation: We forced every schema to have deep
sort orders, in which all columns participated in the sort. In
some scenarios, having shorter sort sequences allow better
compression of the remaining columns. In such cases, we
need to use more complex band predicates to join columns
together. While this is possible, the optimizer and query en-
gine do not recognize certain high level properties of the data,
which prevents efficient query processing strategies. An al-
ternative approach is to create user-defined operators using
C# table-valued functions in our database system. These ex-
tensions would take two streams and “concatenate” them into

one, similarly to what C-stores do. We implemented such
approaches but they are not particularly efficient (they are
outside the server, the logic is quasi-interpreted and perfor-
mance is not high enough). Changes in the optimizer and
execution engine would mitigate this issue.

Query hints: We had to sometimes hint the query optimizer to
pick a different plan than the default one. For instance, some-
times merge joins are picked over index nested loop joins
because the optimizer assumes that each index seek from a
tuple for the outer relation would incur random I/Os. How-
ever, the properties of our data is such that all requests are
strictly sorted, which results in much lower execution times.
Additionally, sometimes cardinality estimates are not as ac-
curate as they could be by exploiting the semantics of our
data representation. In general, the optimizer lacks domain-
specific information to make better choices. Adding such
logic would remove the need to specify query hints.

Software development: Our techniques require a careful rewrit-
ing of the original queries into alternatives that are much
more difficult to understand and maintain. However, all the
translation mechanisms are mechanical, and can be easily in-
corporated into a middleware framework such as LINQ [2],
which enables such mappings as first class citizens. Applica-
tion developers would then issue queries without considering
whether the underlying representation (and execution plans)
follow the traditional row-store architecture, the strategies
discussed in the previous section, or even a hybrid of both.

In conclusion, although for all the queries in Figure 1 we get
most of the benefits of C-stores, there are still obstacles that pre-
vent a full simulation within a row-store. At first sight it seems that
several components in a traditional DBMS have to be adapted in
some form or another for this to be possible. Is this task monumen-
tal, as some C-store proponents argue, or requires just evolutionary
changes similar to those that already happened in similar contexts?

3.1 Lessons From The (Near) Past
One way to concisely summarize the limitations of our approach

is that traditional engines cannot leverage the very specific seman-
tics of c-tables. Rather than identifying and exploiting their special
characteristics at both the storage and query processing layers, the
system considers them as regular tables. We next review two series
of events from the recent past that share several characteristics with
our methodology and are therefore very relevant to our discussion.

3.1.1 XML Query Processing
In the last decade, XML emerged as a de facto standard for infor-

mation representation and exchange over the internet. XML data
and query models are rather different from those in the relational
model, and it was argued that native engines were the only ap-
proach to effectively query XML data. Over the years, relational
engines went through two phases to incorporate XML support.

Mid-Tier Approach: Several pieces of work adopted a mid-tier
approach that consisted of mapping an XML schema into
the relational schema (e.g., see [11]). XML data is shred-
ded into relational form using a schema-driven approach and
queried using XPath, which is internally translated into SQL
queries. While this approach was successful, the question
of extending query rewrites for more complex XML frag-
ments remained open, and some complex scenarios stretched
the capabilities of relational systems, which had no domain-
specific knowledge about the shredded schema.



Native Support: Driven by both performance and expressiveness
requirements, DBMS vendors started pushing XML func-
tionality inside the query engine (e.g., see [13]). As an ex-
ample, rather than building a new XML-only system, SQL
Server 2005 deeply integrated the XML capabilities into the
existing framework, which provides general services such as
backup, restore, replication, and concurrency control. While
this was not an easy task, the implementation was surpris-
ingly componentized, and the resulting system is able to both
leverage the relational storage and query infrastructure,and
support XML query processing in a seamlessly integrated
way (i.e., XML, purely relational, and hybrid queries coexist
in the same system and build upon the same technology).

3.1.2 Spatial Query Processing
Location-aware devices and services are increasingly becoming

commodity items. Many scientific applications rely on spatial op-
erations over real-world objects. While each spatial application
seems to have some unique characteristic, over the years there has
been consensus on a series of primitives to perform spatial query
processing [12]. Similarly to the XML scenario, relationalengines
went through phases to incorporate spatial support.

Spatial Library: Reference [9] describes a library that is built on
top of a traditional database system and can perform spatial
query processing. The idea is to store spatial data in spe-
cialized but plain SQL tables, and rely on SQL functions
and stored procedures to provide primitive spatial operators.
Pushing the logic entirely into SQL allows the query opti-
mizer to do a very efficient job at filtering relevant objects.

Native Support: Recently, database systems started incorporating
native spatial support to the query engines (e.g., see [8]).
For instance, SQL Server 2008 added spatial data support
to manage location-aware data. In particular it introduces
two new built-in types to represent planar and geodetic vec-
tor data. An adaptive, multi-level grid based spatial index
provides efficient processing, and it is built on existing B+-
Tree infrastructure and integrated into the query optimizer.
As with XML, spatial data coexists with traditional relational
tuples, leverages the same basic infrastructure and all thepe-
ripheral utilities and features of the DBMS.

3.1.3 What About C-stores?
A pattern that emerges from the previous examples is as follows.

First, new classes of applications introduce novel requirements.
This is followed by specialized query engines that are domain spe-
cific, very efficient, but at the same time, understandably narrow in
scope. A little later, some of the specialized functionality is simu-
lated as a thin layer on top of traditional relational systems. Finally,
the functionality is packaged into a new data type, index, query pro-
cessing technique or a combination of these, and supported natively
inside a relational system. Native support inside a genericDBMS
(at least in initial releases) is usually less efficient and possibly
more restrictive than a specialized engine. However, when the new
functionality becomes stable, performance is usually comparable,
and the approach additionally results in significant side benefits: (i)
all the development, deployment, and testing tools, among others,
are transparently supported for the new functionality, (ii) maintain-
ing one complex system is easier than maintaining multiple (also
complex!) systems, and (iii) supporting applications withhybrid
requirements is easier without additional data migration support.

In this paper we claim that C-stores are going through the “thin-
layer simulation” phase, in which many of its benefits are captured

with no changes to the kernel of a traditional row-store. Of course,
we are aware of the limitations of our approach (which we believe
are analogous to those in the XML or spatial scenarios described
above). Can row-stores go the extra mile and natively incorporate
C-store functionality? In principle, we do not see any conceptual
obstacle. We predict that this will not be a straightforwardtask, but
at the same time nothing out of the ordinary and similar to what
happened multiple times in the recent past.

4. CONCLUSIONS
We claim that row-stores have been considered and discarded

too quickly for read-mostly, data warehousing scenarios. We think
several decades of active research and development have resulted
in relational database systems that are robust and extensible, and
that can cope with new, unexpected scenarios in a reasonablyagile
manner. Specifically, we show that relatively simple mappings at
the logical database level can result in execution strategies in row-
stores that rival those of C-stores. We also predicted that natively
understanding C-stores can further close the gap, as it happened
before for XML or spatial data. Whether row-stores would be able
to incorporate all the benefits of C-stores is something yet to be
seen, but we remain cautiously optimistic about this outcome.

Acknowledgments
We thank Ravi Ramamurthy, Vivek Narasayya and Paul Larson for
valuable feedback to an earlier version of this document.

5. REFERENCES
[1] http://www.sybase.com/products/databaseservers/sybaseiq.
[2] The LINQ project. Accessible at

http://msdn.microsoft.com/data/ref/linq.
[3] D. Abadi. Debunking a myth: Column-stores vs. indexes. In

http://www.databasecolumn.com/2008/07/debunking-a-
myth-columnstores.html.

[4] D. Abadi. Debunking another myth: Column-stores vs. vertical
partitioning. Inhttp://www.databasecolumn.com/2008/07/
debunking-another-myth-columns.html.

[5] D. Abadi. Query execution in column-oriented database systems.
Ph.D. thesis, MIT, 2008.

[6] D. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores:
How different are they really? InProceedings of the ACM
International Conference on Management of Data (SIGMOD), 2008.

[7] P. Boncz et al. MonetDB/X100: Hyper-pipelining Query Execution.
In Proceedings of CIDR, 2005.

[8] Y. Fang. Spatial indexing in Microsoft SQL Server 2008. In
Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 2008.

[9] J. Gray et al. There goes the neighborhood: Relational algebra for
spatial data search. Technical Report MSR-TR-2004-32, Microsoft.

[10] A. Holloway and D. DeWitt. Read-optimized databases, in depth. In
Proceedings of the International Conference on Very Large
Databases (VLDB), 2008.

[11] R. Krishnamurthy et al. Recursive XML Schemas, Recursive XML
Queries, and Relational Storage: XML-to-SQL Query Translation. In
Proceedings of the International Conference on Data Engineering
(ICDE), 2004.

[12] O. G. C. (OGC). OpenGIS Simple Features Specification for SQL.
http://www.opengeospatial.org/standards/sfs.

[13] M. Rys. XML and relational database management systems: inside
Microsoft SQL Server 2005. InProceedings of the ACM
International Conference on Management of Data (SIGMOD), 2005.

[14] M. Stonebraker. Supporting column store performance claims. In
http://www.databasecolumn.com/2008/03/supporting-
column-store-perfor.html.

[15] M. Stonebraker et al. C-Store: A Column-oriented DBMS.In
Proceedings of the International Conference on Very Large
Databases (VLDB), 2005.


