Scalable Clustering and Keyword Suggestion for Online
Advertisements

Anton Schwaighofer
Microsoft Research
7 JJ Thomson Ave
Cambridge CB3 OFB, UK

antonsc@microsoft.com

Joaquin Quifionero
Candela
Microsoft Research
7 JJ Thomson Ave
Cambridge CB3 OFB, UK

Thomas Borchert
Microsoft Research
7 JJ Thomson Ave
Cambridge CB3 OFB, UK

tborcher@microsoft.com

joaguinc@microsoft.com

Thore Graepel

Microsoft Research

7 JJ Thomson Ave
Cambridge CB3 OFB, UK

thoreg@microsoft.com

ABSTRACT

We present an efficient Bayesian online learning algorithm
for clustering vectors of binary values based on a well known
model, the mixture of Bernoulli profiles. The model in-
cludes conjugate Beta priors over the success probabilities
and maintains discrete probability distributions for cluster
assignments. Clustering is then formulated as inference in a
factor graph which is solved efficiently using online approx-
imate message passing. The resulting algorithm has three
key features: a) it requires only a single pass across the data
and can hence be used on data streams, b) it maintains the
uncertainty of parameters and cluster assignments, and c)
it implements an automatic step size adaptation based on
the current model uncertainty. The model is tested on an
artificially generated toy dataset and applied to a large scale
real-world data set from online advertising, the data being
online ads characterized by the set of keywords to which they
have been subscribed. The proposed approach scales well for
large datasets, and compares favorably to other clustering
algorithms on the ads dataset. As a concrete application
to online advertising we show how the learnt model can be
used to recommend new keywords for given ads.

1. INTRODUCTION

Clustering data based on some notion of similarity is a
problem that arises frequently in many data analysis tasks
[3]. Our interest in clustering stems from the need to cluster
online advertisements. Large online advertisers have reposi-
tories of ads available that subscribe to millions of different
keywords to be matched to a given search query. When it

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ADKDD’ 09, June 28, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-671-7 ...$5.00.

Ralf Herbrich
Microsoft Research
7 JJ Thomson Ave
Cambridge CB3 OFB, UK

rherb@microsoft.com

comes to analyzing this data, it is useful to be able to group
the individual data points into categories of related concepts.
For example, advertisements could be grouped into cate-
gories such as automobiles, travel, financial services, and so
on. Advertisers creating the ads are not required to specify
which category an ad belongs to, instead they provide a set
of keywords which describe the ad. An algorithm which can
discover these categories and assign advertisements to them
is therefore required in order to be able to explore the data
in a structured way. In principle this categorization could be
solved by a supervised classification scheme, but this would
require manual labeling of a significant portion of the data,
while an unsupervised clustering requires no labels at all.
Furthermore, a supervised classifier would operate on a pre-
defined and fixed set of possible labels, whereas unsupervised
techniques are free to create whatever categories best fit the
data. An unsupervised grouping thus seems beneficial for
this problem.

In this paper we demonstrate a new way of clustering data
that comes in the form of binary vectors. The method is
particularly suitable for working on very large collections of
ads. The aim is to develop an online clustering method that
“touches” each data point (in our case, each ad) only once.
Scaling behavior that goes beyond this bare minimum is
too costly for the large corpora typical in web applications.
Furthermore, the kind of data encountered in typical web
applications is inherently ambiguous. Consider, for exam-
ple, an ad about car insurances and the question of whether
to assign it to the cluster of car related ads, or to the cluster
of financial services ads. Hard assignments to clusters, be it
during model learning or when assigning new data to clus-
ters, will necessarily fail to capture such ambiguities, and
hence probabilistic methods are called for.

The approach proposed here is based on a mixture of
Bernoulli profiles (products of Bernoulli distributions) [10].
Traditionally the optimal value of the model parameters for
mixture models is inferred by maximum likelihood [11], and
a very popular technique is the expectation-maximization
(EM) algorithm. A detailed treatment of the EM algorithm
applied to mixtures of Bernoulli profiles can be found in [4,

Sect. 9.3]. Unfortunately, maximum likelihood learning is
impractical for large scale datasets. Multiple passes through
the entire dataset are required at a prohibitive computa-
tional cost. Additionally, inference by maximum likelihood
requires a very careful initialization to avoid being trapped
in local optima.

This work proposes using Bayesian inference [4]. Instead
of estimating the point value of the model parameters that
maximize the likelihood, the parameters of interest are treated
as belief variables with associated distributions. Given the
data, inference consists of computing the parameters’ pos-
terior distributions, which capture the uncertainty about
their true values. The probabilistic nature of the underlying
model has a number of advantages:

1. The quantification of uncertainty allows for a more
careful interpretation of learnt parameter values.

2. Known model uncertainty can drive experimental de-
sign and active learning.

3. During online learning, the known uncertainty helps
automatically adapt the effective learning rate for each
parameter individually, and allows to control the mem-

ory consumption of the model by pruning non-informative

parameters.

4. At any point data can be generated from the model by
sampling.

The model is expressed using factor graphs, a convenient
representation for factorizing probabilistic models. Infer-
ence is achieved by means of message passing [4, Chap. 8].
Message passing on factor graphs allows one to easily use an
approximate “online” inference scheme. The datapoints are
processed one by one, starting from an empty model, and
only a single pass through the data is required. To be able to
cope with very large datasets, several further computation-
ally efficient approximations are proposed. For example, the
posteriors for rare features (in the case of ads, this would be
rarely used keywords) are represented by using shared pa-
rameters. Finally, the factor graph representation together
with the “local” message passing lends itself to a straightfor-
ward paralellisation of inference across different subsets of
the data.

The paper is organized as follows: The mixture of Bernoulli
profiles model is described in Sect. 2. Bayesian inference
with message passing on a factor graph is detailed in Sect. 3,
as well as the online approximate inference scheme. Parallel
inference is discussed in Sect. 4. Performance is evaluated in
Sect. ??7. Finally, Sect. 6 explains how the model proposed
can be used to suggest additional relevant keywords for ads
to subscribe to.

2. PROBLEM SETTING AND MODEL

We consider a set of N objects, where the i-th object &; is
described by a D-dimensional vector of binary variables. In
our concrete application, these objects are online ads in paid
search, described by the set of keywords to which they sub-
scribe. There are a total of D unique keywords, and vector
Z; contains a 1 for those keywords that the i-th advertise-
ment has subscribed to: If the ¢-th advertisement subscribed
to the d-th keyword, then x;q =1, else x;q = 0.

The model we propose assumes that the keyword vector of
an ad is generated by one of K clusters, or mixture compo-
nents. Each ad Z; has a variable ¢; € {1,..., K} associated
with it that indicates the index of the cluster to which the
ad belongs. If the i-th ad belongs to cluster j then ¢; = j.
Within a cluster, ads subscribe to keywords following inde-
pendent Bernoulli probability distributions. If the ¢-th ad
belongs to cluster j then the probability that it subscribes
to the d-th keyword is given by tjq = p(zia = l|c; = j). As
a result, the probability that the i-th ad belongs to cluster
j is given by a cluster-dependent Bernoulli profile:

D
p(@iles = 4) = [ta® (1 — t;a)' 5%
d=1

Which cluster an ad belongs to is unknown a priori, and
that uncertainty is captured by the prior probability that
the i-th ad (or in fact any other ad) belongs to cluster j:
m; = p(ci = j). If the global cluster assignment priors {;}
and the probabilities of subscribing to keywords {t;q} are
known, the sampling distribution of the model is given by a
mixture of Bernoulli profiles:

p@il{tsa} {mi}) = > plei =5) [[plwiales = g, tja)
j=1 d=1
= ZT&']' Ht]‘dzid(l —t]‘d)lixid. (1)

Sampling an ad from this model involves selecting first one
of the K clusters by drawing it from a discrete distribution
with parameter vector @ = [m1,...,7k]. In a second step,
keywords that the ad subscribes to are drawn from the se-
lected cluster’s Bernoulli profile.

The mixture of Bernoulli profiles is a well known model
covered extensively in machine learning text books (for ex-
ample, [4]). Typically the prior probabilities {m;} of belong-
ing to a cluster and the probabilities of subscribing to the
individual keywords {t;4} are treated as parameters of the
model, and are estimated by maximum likelihood. Maximiz-
ing the likelihood is readily achieved by assuming the data is
independently sampled from (1), and maximizing the result-
ing product of individual probabilities with respect to the
parameters. Two common approaches are direct gradient-
based maximization, or use of the Expectation Maximiza-
tion (EM) algorithm. However, the maximum likelihood
approaches suffers from a number of problems for the appli-
cation we consider here:

e Both EM and direct gradient ascent are iterative al-
gorithms and require several passes over the data in
order to converge. Initialization is crucial due to the
multiple modes of the likelihood, but very difficult for
the high dimensional binary data we consider here.

e The optimization results in point estimates of the pa-
rameters {m;} and {¢;¢}. Thus, no notion of uncer-
tainty about the learned model is available. In a max-
imum likelihood framework, a value of 0.5 for a key-
word probability can indicate that the keyword was
present in 1 out of 2 ads, or in 5,000 out of 10,000.

2.1 Related Models

@
PG
OO - O E
&

Figure 1: A directed graphical model representation
of the Bayesian mixture of Bernoulli profiles.

Latent Dirichlet Allocation (LDA, [5]) is an unsupervised
model that has been developed to model text corpora. LDA
shares with the model presented here the fact that they both
are unsupervised. Topics in an LDA model roughly corre-
spond to the clusters in the model proposed above. The gen-
erative process, however, is quite different. In LDA, a new
topic (cluster) is chosen each time before a word (here: key-
word subscription) is chosen. A single word is subsequently
sampled from a multinomial distribution that depends on
the topic. In the clustering model described above, a cluster
is chosen, after which all keyword subscriptions are sampled
from the cluster’s Bernoulli profile.

3. A BAYESIAN TREATMENT

An alternative approach to maximum likelihood is Bayesian
inference. Rather than treating the unknown variables as
model parameters and learning their optimal value, in the
Bayesian framework these unknown variables are treated as
belief variables, and beliefs about their values are repre-
sented by probability distributions to explicitly account for
uncertainty. Before seeing any data, prior distributions can
either be uninformative or encode prior knowledge about
the problem domain. Inference reduces to using Bayes’ rule
given the prior distributions and the likelihood (1) to obtain
the posterior distributions of the variables of interest.

For the mixture of Bernoulli profiles presented here, the
Bernoulli probabilities of keyword subscription are given con-
jugate priors, which are Beta distributions ¢t ~ Beta(t; , 3).
The parameters a and 3 can be interpreted as pseudo-counts:
« as the number of times the keyword was subscribed to and
[as the number of times the keyword was not subscribed
to. The probability density function (PDF) of the keyword
subscription probability ¢ is

_ . _Da+pB) o p-1

p(t) = Beta(t; o, B) F(a)F(ﬁ)t (1—-¢)7"".
Figure 3(a) shows two examples of the Beta PDF for differ-
ent choices of the parameters a and 8. The higher the sum
of the pseudo-counts, the smaller the uncertainty about the

value of ¢.

The other unknown variables of interest are the prior clus-
ter probabilities {7;}; these are given a Dirichlet prior dis-

tribution, @ ~ Dir(7|y) with parameter vector §. Similar

9(7) = Dix(7|7)

h(ei, 7) = [, @,0=)

&

d=1,...,D

T; —z;q71L0=c;i
fia = HJK=1 [t]‘d id(1 —tjd)l ’d] (=e)

g(t1a) = Beta(tiq; ara, P1a)

g(tia) = Beta(tia; aug, Bia)

9(txa) = Beta(txa; axda, Bra)

Figure 2: The Bayesian mixture of Bernoulli profiles
model represented as a factor graph, for the i-th
training example Z;.

to the Beta distribution, ; can be interpreted as a pseudo-
count of the number of ads that belong to cluster j.

Fig. 1 shows the directed graphical model corresponding
to the full Bayesian model, including the parameters of the
Beta and Dirichlet distributions. The parts of the graph en-
closed in plates are replicated according to the index in the
plate. For example, for a fixed value of ¢ in the outer plate,
the inner plate is replicated D times, once for each value
of the keyword index d. The arrows indicate the dependen-
cies between variables (see [4, Chapter 8] for a treatment of
directed graphical models). The graph representation has
the advantage of clearly revealing conditional independence
between variables, which is important for computing the
marginal posterior distributions efficiently. Fig. 2 shows the
factor graph representation of a slice of the directed graph
in Fig. 1 for a single datapoint indexed by i. Factor graphs
[9] are bipartite graphs that represent joint probability dis-
tributions by means of variable nodes (circles) connected
to factor nodes (shaded squares). Factor nodes express the
functional relation among the variables connected to them,
and the product of all factors corresponds to the joint prob-
ability distribution [7, 9]. Marginal distributions are ob-
tained by computing messages from factor nodes to variable
nodes: the marginal distribution of any given variable node
is the product of its incoming messages. Inference in factor
graphs is thus known as message passing, a detailed account
of which is given in [4, Chapter 8]. The representation in

Fig. 2 absorbs the observed variables x;4, d =1,...,D into
the factors f;q. The marginals of the cluster assignment
probabilities 7@ and of the keyword subscription probabili-
ties tj4 obtained by message passing are thus the posterior
distributions desired.

3.1 Online Learning

The factor graph in Fig. 2 represents only a single ad, but
already contains on the order of D x K variables, with the
number of keywords D potentially in the millions," and the
number of clusters K in the hundreds. The full graph further
replicates this slice NV times (number of training data), with
N in the tens of millions. It is clearly impossible to store
a graph that size in memory, or to compute and store the
necessary messages.

To make the inference practical, we opt for an online learn-
ing scheme based on approximate inference with Assumed
Density Filtering (ADF) [13]. Data points (ads) are pro-
cessed one at a time, and the posterior distributions of 7
and t;4 obtained after processing one data point are passed
as prior distributions for processing the next data point.

Because the factor graph is a tree in this online learning
scenario, messages only need to be computed once from a
root node to the leaves and back. A practical schedule for
processing the i-th data point is the following:

1. Set the prior distributions g(t;4) and g(7) to the pos-
terior marginals on ¢;4 and 7 obtained from processing
the previous datapoint.

2. Compute the messages {my,, ., (ci) }i=, from the key-
word factors f;q to the cluster assignment variable c;.

3. Compute the message my—z(7) from the cluster as-
signment factor h(c;,) to the cluster assignment prob-
ability variable 7.

4. Compute the message mp_, (¢i).

5. For each keyword factor fiq compute the outgoing mes-
sages {mf,,—t,, (tld)}(?:l-

6. Compute the new marginals {p(t4|%:)}2_; and p(7).

Note that no messages need to be stored between the ADF
steps, but only on the order of D x K marginal distributions.
The message from fiq to ¢; is given by

K
T; —x;4711(ci=7)
mfid—N:i(ci) = H[de Zd(l_lljd)l Zd] = , (2)

j=1

aj:‘i%jd is the mean of g(t;4), and I(-) is the
indicator function, equal to 1 if its argument is true, and to
0 if it is false. The message from ¢; to factor h is simply
Me;—n(ci) = [1h) Myig—e; (ci), and therefore the message
from factor h to 7 is

where p;q =

D

K
myz(7) = Zﬂ'z H a4 (1 — pg) ' 5

=1 d=1

!Most keywords are actually key phrases, akin to typical
search engine queries, which is why D can become so large.

The message from h to ¢; basically sends the (scaled) aver-
age cluster assignment probabilities under the Dirichlet prior

g(m)
K .
Mh—sc; (ci) = H 'YE(CI:J) .
j=1

It is useful to compute as an intermediate step the marginal
distribution of ¢;, given by the normalized product of its
incoming messages. We adopt the shorthand

v Ty pa®™i (1 = pua) ="
S TIE mjatia (L= pja)t-2sa
®3)
and refer to it as the responsibility of cluster [for advertise-
ment ¢, with 0 < r;; <1 and Ele rij = 1.

The details of the computation of the message from f;q to
t;q are relegated to the appendix. Scaled appropriately, the
message itself can be written as the linear combination of a
Bernoulli distribution in ¢;4 and a uniform distribution:

ra = pe; =1|&;) =

b1 (1 _ tld)lﬂcid

pia®id (1 — pua)t==id

-+ (1 — 1"”) . (4)

Mgty (tia) = Tal

3.2 Beta and Dirichlet Approximations

Message passing is only efficient if a compact message rep-
resentation can be assumed. Maintaining such a represen-
tation may require projecting the true message to a family
of distributions thereby approximating it in the spirit of ex-
pectation propagation [13]. Given that the message (4) from
fid to the t;4 nodes is a mixture of a Beta distribution with
a uniform distribution, the marginal distribution of ¢;4 is
therefore not a Beta distribution either,

p(tia) o Mfig—tiq (tia) - mgld—nld(tld)
= 7y Beta (tia; aig + wia, fra + (1 — ziq)) (5)
=+ (1 — 1"”) Beta (t]‘d; a]‘d,ﬂjd) .

Instead, it is the convexr combination of the prior and the
posterior Beta distributions on #;; under the assumption
that the current advertisement belongs to cluster I. The
posterior has larger weight the larger the responsibility of
cluster [.

In order to keep the message my¢,,—f,,(tq) in the Beta
family, the marginal p(t;4) itself is projected onto a Beta
distribution by moment matching. For the first order mo-
ment of the marginal, we obtain

Qid + Tid
| ——ld T id
ogg + Pla + 1

Qid

Mi(ziq) =i —
(@) g+ Bia’

+ 1 =ra)

and for the second non-central moment,

(0ua + ®ia) (0 + g + 1)
ag + Bia + 1) (oua + Bia + 2)
ag(aig + 1)
(g + Bra)(awa + Ba +1)

Note that the first order moment, i.e., the mean of the
marginal, is a convex combination of the prior mean and
the posterior mean under a full update of the Beta distri-
bution (without taking the responsibility term r;; into ac-
count). Using the expressions of the parameters of a Beta

Ms(ziq) = Til(

+(1 =)

6 a=4p=2 |/ ' 2 ,
- - —a=408=20 | L7
5 1.8 s
7
4 4 ’
% % 1.6 , 4
= 3 o 4
@ 5 14 L7
2 s
7
1.2 s
1 ’
7
1
% 0 0.5 1
Cluster responsibility
(b)

B count

8 Before update
— — — After update

Beta PDF

0 0.5 1
Cluster responsibility t

()

Figure 3: (a) Examples of Beta distributions with different parameters a and 3. (b) through (d): An example
of the effect of moment matching when updating a Beta distribution with o =1 and 8 = 9: Plot (b) shows
the updated « as a function of the responsibility r, (c) shows the updated 3 as a function of r. (d) plots the
Beta PDF before and after an update with r = 0.4 (leading to maximum loss of pseudo-count). Note that the
variance of the updated distribution is larger than before the update.

distribution in terms of its moments, the parameters of the
approximating Beta are computed as

&g = Mi(zig)N and fig = [1 — Mi(zia)]N ,
where
N = My (ziq) — M2 (wia)
Ms(ziq) — Mi(xia)?

is the updated pseudo-count (including pseudo-count com-
ing from the prior), roughly the total number of observed
ads.

It is important to mention here that, due to moment
matching, the updates may lead to a loss of pseudo-count.
When learning a single Beta distribution, the total amount
of pseudo-counts (a +) can never decrease, thus the vari-
ance of the Beta distribution can only shrink when observ-
ing more and more data. The effect of “forgetting” pseudo-
counts is illustrated in 3(b)-(d).

The exact marginal distribution of 7@ turns out to be a
mixture of Dirichlet distributions,

= &q + Bua

L
p(#) =Y ruDir(F7 + &),
=1

where € is the i-th unit vector of length K. There is one
Dirichlet mixture per cluster, and its value is the result of
assuming that the corresponding cluster is fully responsible
for the ad visited. The mixing coefficients are the actual
responsibilities that the clusters had for the ad. Here again
we need to take an approximation to stay in the family of
Dirichlet distributions. We chose to preserve the means, and
ensure that the sum of the v; is increased by one. This can
be achieved by simply adding the cluster responsibilities to

the corresponding parameters of the Dirichlet distribution,
new

Vi =Y T

4. SCALING DETAILS

As described in Sec. 3.1, using ADF to process a single
data point at a time leads to large savings in terms of com-
putation time and memory use. Even within this online
learning framework, clustering large datasets is computa-
tionally demanding. A typical dataset can contain millions

of advertisements with millions of unique keywords. If ev-
ery cluster contained one Beta distribution for every possible
keyword then the memory requirements would be on the or-
der of hundreds of gigabytes. In addition, the computation
of (3) for each advertisement would involve tens of millions
of terms, which would make training extremely slow. Sev-
eral steps need to be taken to ensure that the model can run
in a reasonable amount of time and use a reasonable amount
of memory.

4.1 Sparse Representation

While there are potentially millions of unique keywords
in a dataset, individual advertisements are very sparse, typi-
cally subscribing to on the order of ten keywords each. If one
assumes that a cluster of similar ads should also be sparse,
then that property can be exploited by using a sparse repre-
sentation for the clusters. In this representation, only key-
words that are “important” to a cluster are represented by
explicit Beta distributions, and all other keywords are repre-
sented by the same single “default” Beta distribution for that
cluster. “Important” here is a combination of 1) being con-
tained in a significant number of the ads in the cluster, and
2) being sufficiently discriminative for that cluster. If every
cluster contains hundreds of unique distributions instead of
millions then the model will use a small amount memory,
and computation of equation (3) can be done quickly.

Several steps are taken to ensure that the model remains
sparse. First, in regular intervals, keywords are culled from
the model using two different criteria:

e Keywords that have a similar probability (mean of the
associated Beta distribution) across all clusters are ir-
relevant for distinguishing between clusters and can be
removed (replaced in each cluster by the default value).

e Within a cluster, if replacing a keyword with the de-
fault value does not significantly change the responsi-
bility profile (as measured using Kullback-Leibler di-
vergence) then it can be removed.

Second, also in regular intervals, any clusters that explain
only a tiny fraction of the data (i.e. have a small ;) are re-
moved from the model. The data contained in any of these
clusters is not discarded; instead it is treated like an adver-
tisement (albeit one with fractional keyword subscriptions

which are the mean of the keyword Beta distributions for
the cluster to be removed) and applied to the model.

4.2 Parallelizing across Data

One strength of this clustering model is that it can be
parallelized across data relatively easily. This parallelization
is an extension of the factor graph model shown in Fig. 2,
and is performed in four steps:

1. Given a prior model state, which could be a previously
trained model or an empty model, an “equality” factor
is used that creates multiple copies of the prior model.

2. Each of these child copies is trained in parallel using a
different subset of the data.

3. After a child copy is finished training, we can compute
the delta between the prior model and the child copy
by dividing the child’s posterior distribution by the
prior distribution. This delta is a message that tells
the prior how to update itself to be equal to the child’s
posterior.

4. All of these messages from the separate children are ap-
plied to the prior, giving a posterior distribution that
contains all of the information learned by the parallel-
trained copies.

This scheme is problematic because the model is extremely
multi-modal. There is no guarantee that cluster ¢ in one
copy will describe the same natural cluster as cluster 7 in
another copy, which would mean that step 4 would attempt
to combine information from two disparate clusters into a
single cluster. We take two steps to combat this problem.
First, before training in parallel, the model is trained seri-
ally on a subset of the data form priming. This gives the
clusters some initial definition before the parallel step, and
reduces the freedom of the parallel copies to settle on dif-
ferent modes. Second, the full dataset is split into multiple
batches. Parallel training is done one batch at a time, and
after each batch the posterior produced in step 4 is used as
the prior in step 1. This ensures that multiple copies of a
single cluster cannot drift too far apart during the parallel
training phase.

5. EVALUATION

The algorithm is evaluated using two datasets. The first is
synthetic with known cluster assignments: 10,000 advertise-
ments are sampled from a randomly generated model with 10
clusters whose prior probabilities are a random sample from
uniform multipoint distribution, and 100 keywords whose
Bernoulli probabilities are independently sampled from a
uniform distribution.

The second dataset is derived from a corpus of almost
6 million advertisements and 19 million distinct keywords.
The average advertisement subscribes to approximately 28
keywords. One can think of the dataset as a bipartite graph
connecting ads to keywords, and groups of well-connected
nodes in the graph would correspond to clusters of similar
keywords and advertisements. The challenge is then to find
these groups of well-connected nodes in the graph.

To get a feeling for the complexity of the problem, it is use-
ful to analyze the connected components of the advertisement-
keyword graph. For our dataset, this graph has one large

component which contains 88% of the advertisements, with
the remaining advertisements split into 388,000 tiny disjoint
sub-graphs. 273,000 of these disjoint sub-graphs contain a
single advertisement with only one keyword. In addition,
some individual advertisements subscribe to huge numbers
of keywords, sometimes as many as one million keywords
for a single advertisement. These advertisements can help
create strong connections between clusters that are unde-
sirable. The large number of disjoint subsets and the over-
subscribed advertisements combine to add enough noise to
the input data that it would be difficult to find a good clus-
tering solution.

We chose to apply some filters for on that dataset for
two reasons: By its structure, we do not expect to obtain
meaningful clustering solutions with any clustering method.
Secondly, the dataset is of a size that we could easily handle
using the online clustering method presented in this paper,
but not with any other clustering method without substan-
tial amounts of engineering. In order to obtain a more rea-
sonable dataset, we first remove all keywords whose total
number of subscribed ads is below a certain threshold #,.
Second, we remove all advertisements whose keyword sub-
scription count is above a certain threshold ¢;. This culling
retains the most used keywords and can also significantly
reduce the size of the input dataset, which has the added
benefit of speeding up the training process.

Using thresholds of ¢, = 100 and ¢ = 500 leaves about
207,000 advertisements and 2,000 unique keywords. The
keyword-advertisement graph for this dataset contains only
a single connected component, and is of a size that can be
handled using k-means or EM clustering.

We compare the proposed Bayesian clustering model with
several other clustering methods: k-means, agglomerative
clustering, and a maximum likelihood (ML) version of the in-

ference for the mixture of Bernoulli profiles based on expectation-

maximization (EM). Details about these algorithms can be
found in the excellent review paper [3]. Comparing unsu-
pervised clustering models is intrinsically difficult, because
there is no ground truth from which we can measure the
predictive ability of the model. The most straightforward
comparison is to visually inspect the clusters, which is pos-
sible here because the items being clustered — Internet search
keywords — have meanings that we can understand.

5.1 Qualitative Comparison and Training Time

Using the advertisement derived dataset, we visually in-
spect the resulting clusters for consistency in the meanings
of the most prominent keywords. The results are shown in
Table 1. Qualitatively, k-means and agglomerative cluster-
ing suffer from a collapse of most of the ads into a single
cluster. This can be caused by the spurious connections be-
tween clusters introduced by ads that subscribe to incoher-
ent sets of keywords. Both the Bayesian and ML mixture of
Bernoulli profile models attain qualitatively better results,
managing to identify many more meaningful clusters and
spreading the ads more evenly across these.

We compare the training times of the four models on this
dataset. k-means and agglomerative clustering both take
approximately three hours to train. Because it requires vis-
iting the whole dataset many times, ML inference with the
EM algorithm is computationally very intense and takes 40
hours to train. The Bayesian mixture model using ADF that
we propose in this paper trains in only 1 hour.

Table 1: Training time and subjective quality assessment of clustering methods on a dataset of 207,000 ads,

when requiring all methods to create 100 clusters.

| Method | Training time | Clustering |
k-means 3h 90% of ads in one cluster. Remaining clusters are consistent.
Agglomerative 3.5h 90% of ads in one cluster. Remaining clusters are consistent.
ML inference 40h Ads evenly spread. Most clusters are consistent, some are mixtures of topics.
with EM
Bayesian 1h Ads are evenly spread. Almost all clusters are consistent, few are mixtures of topics.
inference

A larger dataset was generated from the corpus of adver-
tisements using t, = 100 and ¢, = 100, which yields 1.3
million advertisements and 73,000 unique keywords. A par-
allel implementation (Sect. 4.2) of the Bayesian mixture
model we propose in this paper takes seven hours to train
on this larger dataset. However, none of the other bench-
mark methods had finished training after 3 days, hence we
can not provide any performance comparisons on that large
data set.

5.2 Quantitative Evaluation

For the synthetic dataset, we test the abibility of each of
the clustering algorithms to identify whether two advertise-
ments belong to the same cluster or not. We find that this
evaluation criterion is most easy to interpret, can be com-
puted for all clustering methods, and is closest to an actual
application where our goal is indeed to use the clustering
model to assign ads to categories.Every pair of advertise-
ments is classified by the competing algorithms as belonging
to the same cluster or to different clusters. For the proba-
bilistic models, we compute for each pair of advertisements
x; and z; the probability that they belong to the same clus-
ter:

K

ples = cjlzi, ;) = ples = lw)p(e; =),
=1

given by the dot product of the resposibility vectors (3).
Naturally one would classify the pair of advertisements as
belonging to the same cluster if p(c; = ¢j|z;,z;) > 0.5, but
in the experiments we explore a variety of different thresh-
olds in the [0.1, 0.9] range. We compute a true positive
ratio (fraction of the pairs correctly classified as belonging
to the same cluster) and a false positive ratio (fraction of
the pairs incorrectly classified as belonging to the same clus-
ter), and plot them against each other. For the probabilis-
tic methods varying the threshold allows us to obtain an
ROC curve [12]. For the non-probabilistic k-means and ag-
glomerative clustering we obtain only a single point. The
results are displayed in Figure 4. Agglomerative clustering
and k-means have a true positive rate of 93.0% and 94.3%
respectively, and both have a false positive ration of 2.28%.
With a threshold of 50%, the ML mixture model has a true
postive ratio of 97.4% and a false positive ratio of 1.67%,
while the Bayesian mixture model has a true positive ratio
of 99.5% and a false positive ratio of 1.66%. As can be seen
in the figure, the Bayesian mixture model can consistently
match the true positive ratio of the ML model with fewer
false positives.

Figure 4: Evaluation on synthetic dataset. True pos-
itive ratio (fraction of the pairs correctly classified
as belonging to the same cluster) versus false posi-
tive ratio (fraction of the pairs incorrectly classified
as belonging to the same cluster)

‘ ¢ KMeans m Agglom EM -e-Bayesian
100.00% S
95.00% .
[
v
£ 90.00%
=
v
8
o
S 85.00%
=
80.00%
75.00%
1.50% 1.70% 1.90% 2.10% 2.30%
False Positives
Table 2: Quantitative comparison based on the

test negative log likelihood, and on the cluster
and advertiser entropy scores when learning a 100
cluster model with all methods. Smaller numbers
are better for all metrics.

neg avg log advertiser
likelihood entropy score
Bayesian inference 17.97 1.18
Bayesian inference 0.96
(discarding clutter)
ML inference with EM 12.98 2.61

The advertisement-based dataset does not offer a ground
truth. For this reason, the evaluation is performed accord-
ing to the following two metrics: the average negative log
likelihood of the test set (closely related to the log perplex-
ity, a quality criterion that has been used to evaluate, for
example, the LDA model in [5]), and the advertiser entropy
score. The second metric is based on the assumption that
advertisements from a single advertiser most likely relate to
the same concept, and thus should belong to as few clusters
as possible. The advertiser entropy score measures the en-

tropy of the distribution of advertisers across clusters. It is
defined as:

1 -
SA = NZNGH(pa)7

where a is an advertiser index, N, is the number of ad-
vertisements that belong to advertiser a, vector p, contains
the empirical probabilities of an advertisement from adver-
tiser a of belonging to the different K clusters, and H (") is
the entropy function. By definition, a good clustering solu-
tion should achieve a low advertiser entropy score. Both of
these metrics require probabilistic cluster assignments and
are therefore not suitable for evaluating k-means and ag-
glomerative clustering.

As shown in Table 2, a better average test log likelihood
is achieved by the EM algorithm, which is probably at-
tributable to the fact that it performs several passes through
the training data, and does not enforce sparsity in its clus-
ter representations. The advertiser entropy score is best for
the Bayesian inference approach than for EM. This means
that on average advertisers are spread across fewer clusters.
A further improvement can be obtained from the Bayesian
approach by letting the model learn a “clutter cluster”. This
cluster tracks an identical Beta distribution for all keyword
subscription probabilities. As a result, this cluster tends to
attract advertisements that subscribe to unrelated keywords
and those that do not fit in any of the other clusters. This
ultimately has the effect that these remaining clusters are
more coherent, which explains the superior advertiser en-
tropy score that can be obtained when discarding the clutter
cluster.

5.3 Choosing the Number of Clusters

In the previous sections, our main goal was to benchmark
methods, and we thus required all methods to learn the same
number of clusters. In a practical application that uses the
learned cluster model for, e.g., categorization, choosing the
right number of clusters would be a necessary next step.
This topic is extensively covered in the clustering literature,
see [3] for pointers. However, we mainly use the clustering
model for keyword suggestion, where it turned out that the
number of clusters is rather uncritical, see the discussion
below in sec. 6.

5.4 Benefits of Modeling Uncertainty

The topic of a cluster is determined by examining the key-
words that have the largest probability of being subscribed
to. Because of the noisy nature of the data, it is possible
for certain unrelated keywords to spuriously have a high av-
erage subscription probability. These keywords might have
been subscribed to by noisy ads that also simultaneously
subscribe to some of the main thematic keywords of the
cluster. The Bayesian treatment proposed allows one to deal
with this problem by providing a measure of the uncertainty
about the subscription probabilities. Table 3 shows an ex-
ample of a very homogeneous cluster where the keyword with
highest mean subscription probability p — “pest control” —
does not fit. However, this keyword was seen active in fewer
ads attributed to this cluster. The total pseudo-count «
of the Beta distribution represents the effective number of
ads that were attributed to this cluster and subscribed to
the keyword in question. Given two keywords with identi-
cal mean p but with different « values, the model is more

Table 3: Most prominent keywords in two different
clusters for the Bayesian approach. Sorting by
expected keyword subscription probability p can
place spurious keywords on top of the list. Sorting
by the effective number of ads that subscribe to
that keyword (parameter a of the Beta distribution)
factors in the uncertainty and allows to get rid of
the noisy keyword.

Sorting by mean:

| Keyword | Mean (i) | Alpha (@) | Beta (3) |
pest control 0.113 44 343
nissan altima 0.074 84 1039
nissan maxima, 0.065 75 1080
nissan quest 0.065 76 1090
nissan dealer 0.051 61 1136

Sorting by positive ad pseudo-count (a):

[Keyword [Mean (u) | Alpha (o) | Beta (8) |
nissan altima 0.074 84 1039
nissan quest 0.065 76 1090

nissan maxima 0.065 75 1080
nissan dealer 0.051 61 1136
pest control 0.113 44 343

Table 4: Illustration of additional suggested key-
words for an advertisement.

| Subscribed Keywords ||

window cleaner

window cleaning
cleaning company
cleaning companies

Suggested Keywords |

carpet cleaning services
home cleaning services
floor cleaning services
residential cleaning services
commercial cleaning
commercial cleaning services
apartment cleaning services
office cleaning services
office cleaning
cleaning tips

certain about the keyword with highest «. Sorting by « in-
stead of by p thus takes into account the uncertainty, and
in Table 3 the benefits are evident: the spurious keyword is
relegated to a lower position.

6. KEYWORD SUGGESTION

In our specific application, we are interested in keyword
suggestion. The goal is to suggest to an advertiser a range
of keywords that are semantically similar to ones that were
already selected, in order to increase the reach of the ad.
This is a challenging and commercially important task as
pointed out by [8], and methods using semantic similarity [1]
and concept hierarchies [6] as well as logistic regression and
collaborative filtering [2] have been proposed. Our approach
is similar to the latter in that makes keyword suggestions
to one advertiser based on keyword subscriptions of other
advertisers

The model described in Sect. 2 can be used in a generative
form, following the directed graphical model shown in Fig. 1.
For keyword suggestion, we assume that a specific ad repre-

sents partially observed data: An advertiser may have put
some thoughts into which keywords to subscribe to, but still
may have missed out on some important ones. Subscribed
keywords thus act as an indicator of the advertiser’s intent,
but the (huge) set of non-subscribed keywords is treated as
“not observed”.

With this partially observed data, we can again perform
message passing, in order to compute the probability of the
unobserved keywords, given the subscribed keywords. In
short, this works as follows: Let S C {1,...,D} be the
set of all subscribed keywords in the i-th ad. All factors
{fia}, d € S, send messages of the form (2) to node ¢;, where
it is combined with the incoming message from factor h.
Similar to the update scenario in (3), a responsibility of
clusters for the ad is computed, but this information is only
based on the keywords that are actually subscribed:

1—z;q

Yo [Tges ta™ (1 — pua)
S [aes pya®ia (1 — pya)t—=ia

(6)

As the last step, we can compute the expectation of the

data (keyword) nodes that are implicitly attached to the

factors fiq in Fig. 2, and obtain for the unobserved keywords

¢S

Ta = ple; =1|&;) =

K
P(wia = W{zivhoes) = D _ Fijija,
j=1

a linear combination of the Bernoulli profiles for the unob-
served keywords, with weights based on the responsibilities
computed from the observed keywords.

Using this method, keywords can be suggested to users
with a clear ranking criterion (the above probability). Ta-
ble 3 shows the additional keywords that are suggested for a
specific advertisement related to cleaning services. The top
10 keywords with highest conditional subscription probabil-
ity (given the existing subscribed keywords) are shown in
the table.

Furthermore, the keyword suggestion can be refined by
an iterative interactive process: from the list of suggestions,
users can select keywords (or mark keywords as “I don’t
want to subscribe to that”). This updated information can
be used to refine the computation of responsibilities in 6,
and present the user a refined list of keywords.

7. DISCUSSION

We have proposed a Bayesian online clustering model for

large datasets of binary vectors based on a mixture of Bernoulli

profiles. The experiments conducted show that compared to
the maximum likelihood treatment, the Bayesian approach
proposed is both more accurate and dramatically faster to
train. Whereas the maximum likelihood model is trained by
EM in batch mode and requires several passes over the data,
our approach uses an online training scheme requiring a sin-
gle pass, and is suitable for streams of data. In contrast to
the EM algorithm, training is incremental: adding one more
data point does not require retraining the entire model.
Our approach is not only faster to train than k-means and
agglomerative clustering; it also offers probabilistic cluster
assignments and explicitly models the uncertainty about the
learned model parameters, one advantage of which is resis-
tance to noise. A straightforward application of our gen-
erative probabilistic model is the suggestion of additional

keywords for advertisements.

Future work on this topic will benchmark the keyword
suggestion algorithm described above to recommender sys-
tems. In particular, we plan to evaluate the performance of
the Bayesian recommender system MatchBox [14] for key-
word suggestion.

8. ACKNOWLEDGMENTS

All of the code used for this work was written in F#: we
thank its creators at Microsoft Research Cambridge, UK,
for their support. We thank Microsoft adCenter Labs for
their continuing sponsorship and support, and the anony-
mous reviewers for their comments that helped to improve
this paper.

9. REFERENCES

[1] V. Abhishek and K. Hosanagar. Keyword generation
for search engine advertising using semantic similarity
between terms. In ICEC ’07: Proceedings of the ninth
international conference on Electronic commerce,
pages 89-94, New York, NY, USA, 2007. ACM.

[2] K. Bartz, V. Murthi, and S. Sebastian. Logistic
regression and collaborative filtering for sponsored
search term recommendation. In Proceedings of the
Second Workshop on Sponsored Search Auctions, 2006.

[3] P. Berkhin. Survey of clustering data mining
techniques. Technical report, Accrue Software, San
Jose, CA, 2002.

[4] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993-1022, 2003.

[6] Y. Chen, G.-R. Xue, and Y. Yu. Advertising keyword
suggestion based on concept hierarchy. In WSDM ’08:
Proceedings of the international conference on Web
search and web data mining, pages 251-260, New
York, NY, USA, 2008. ACM.

[7] B.J. Frey, F.R. Kschischang, H.A. Loeliger, and
N. Wiberg. Factor Graphs and Algorithms. In
Proceedings of the annual Allerton Conference on
Communication, Control and Computing, volume 35,
pages 666-680, 1997.

[8] A. Joshi and R. Motwani. Keyword generation for
search engine advertising. In ICDMW ’06: Proceedings
of the Sizth IEEE International Conference on Data
Mining - Workshops, pages 490-496, Washington, DC,
USA, 2006. IEEE Computer Society.

[9] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498-519,
2001.

[10] P. F. Lazarsfeld and N. W. Henry. Latent Structure
Analysis. Houghton Mifflin, 1968.

[11] G. McLachlan and D. Peel. Finite Mizture Models.
Wiley, 2000.

[12] C. E. Metz. Basic principles of ROC analysis.
Seminars in Nuclear Medecine, 4(8), 1978.

[13] T. Minka. A family of algorithms for approzimate
Bayesian inference. PhD thesis, MIT, 2001.

[14] David Stern, Ralf Herbrich, and Thore Graepel.
Matchbox: Large scale bayesian recommendations. In
WWW’09: Proceedings of the 18th International
Conference on World Wide Web, pages 111-120, New
York, NY, USA, 209. ACM Press.

APPENDIX
A. ALGEBRAIC DETAILS

The most involved messages to derive are those from fac-
tor fiq to the class membership variable ¢; and to the leaf
Bernoulli probability variables ¢;q. Computing my,,—; (c:)
requires marginalizing over the Bernoulli probability vari-
ables, and the realization that the integral factorizes:

K

Mf;g—e; (€)= / fia(ci,mia, {tja}) [[me;am ia (tia)dtja
{

t]d}J 1 j=1

K
) oz 11(c;=j
H/ [tja® 4 (1 — tjq)" 7%4] "])mtjdaf,-d(tjd)dtjd
{t]d}J 1

j=1
K i
H pia”i (1 — pja)t]

The computation of message my,, ¢, (tia) requires the
computation of message mc;f,,(c;). This last message is
easy to obtain by dividing the marginal p(c;|Z;) by the in-
coming message my, ,—c; (¢i):

p(cili)
Mfig—c; (Cl)
K

ey
Hja®id (1 — pja)'=*id

j=1

M, f4(C) =

I(j=c;)

Message my, ,—¢,,(tia) can now be computed as:

Mg —strq(tia) Z/ fia(ci, mia, {tja})me;, - ;4 (ci)
t

c;=17{tjakj=
K

: H Mt;q—fia (tjd)dtjd
J#l

Z |: Tid 1 —tld)l vid :|I(l20i)

— | g (1= ua)t- e
c;=1

A i . 1IG=c;
/ [1 |:7‘ij tja®id (1 —tjq)' %] (G=ei)
{iadizt j#i pja®id (1 — pja)t="id

K
. H Beta(t;a; oja, Bja)dt;ja
il

tia zd(l_tld 1 Tiq
=Til E Tij -
1— 1 Tid
pia®id (1 — puq) P

