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ABSTRACTWe present an eÆ
ient Bayesian online learning algorithmfor 
lustering ve
tors of binary values based on a well knownmodel, the mixture of Bernoulli pro�les. The model in-
ludes 
onjugate Beta priors over the su

ess probabilitiesand maintains dis
rete probability distributions for 
lusterassignments. Clustering is then formulated as inferen
e in afa
tor graph whi
h is solved eÆ
iently using online approx-imate message passing. The resulting algorithm has threekey features: a) it requires only a single pass a
ross the dataand 
an hen
e be used on data streams, b) it maintains theun
ertainty of parameters and 
luster assignments, and 
)it implements an automati
 step size adaptation based onthe 
urrent model un
ertainty. The model is tested on anarti�
ially generated toy dataset and applied to a large s
alereal-world data set from online advertising, the data beingonline ads 
hara
terized by the set of keywords to whi
h theyhave been subs
ribed. The proposed approa
h s
ales well forlarge datasets, and 
ompares favorably to other 
lusteringalgorithms on the ads dataset. As a 
on
rete appli
ationto online advertising we show how the learnt model 
an beused to re
ommend new keywords for given ads.
1. INTRODUCTIONClustering data based on some notion of similarity is aproblem that arises frequently in many data analysis tasks[3℄. Our interest in 
lustering stems from the need to 
lusteronline advertisements. Large online advertisers have reposi-tories of ads available that subs
ribe to millions of di�erentkeywords to be mat
hed to a given sear
h query. When it
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omes to analyzing this data, it is useful to be able to groupthe individual data points into 
ategories of related 
on
epts.For example, advertisements 
ould be grouped into 
ate-gories su
h as automobiles, travel, �nan
ial servi
es, and soon. Advertisers 
reating the ads are not required to spe
ifywhi
h 
ategory an ad belongs to, instead they provide a setof keywords whi
h des
ribe the ad. An algorithm whi
h 
andis
over these 
ategories and assign advertisements to themis therefore required in order to be able to explore the datain a stru
tured way. In prin
iple this 
ategorization 
ould besolved by a supervised 
lassi�
ation s
heme, but this wouldrequire manual labeling of a signi�
ant portion of the data,while an unsupervised 
lustering requires no labels at all.Furthermore, a supervised 
lassi�er would operate on a pre-de�ned and �xed set of possible labels, whereas unsupervisedte
hniques are free to 
reate whatever 
ategories best �t thedata. An unsupervised grouping thus seems bene�
ial forthis problem.In this paper we demonstrate a new way of 
lustering datathat 
omes in the form of binary ve
tors. The method isparti
ularly suitable for working on very large 
olle
tions ofads. The aim is to develop an online 
lustering method that\tou
hes" ea
h data point (in our 
ase, ea
h ad) only on
e.S
aling behavior that goes beyond this bare minimum istoo 
ostly for the large 
orpora typi
al in web appli
ations.Furthermore, the kind of data en
ountered in typi
al webappli
ations is inherently ambiguous. Consider, for exam-ple, an ad about 
ar insuran
es and the question of whetherto assign it to the 
luster of 
ar related ads, or to the 
lusterof �nan
ial servi
es ads. Hard assignments to 
lusters, be itduring model learning or when assigning new data to 
lus-ters, will ne
essarily fail to 
apture su
h ambiguities, andhen
e probabilisti
 methods are 
alled for.The approa
h proposed here is based on a mixture ofBernoulli pro�les (produ
ts of Bernoulli distributions) [10℄.Traditionally the optimal value of the model parameters formixture models is inferred by maximum likelihood [11℄, anda very popular te
hnique is the expe
tation-maximization(EM) algorithm. A detailed treatment of the EM algorithmapplied to mixtures of Bernoulli pro�les 
an be found in [4,



Se
t. 9.3℄. Unfortunately, maximum likelihood learning isimpra
ti
al for large s
ale datasets. Multiple passes throughthe entire dataset are required at a prohibitive 
omputa-tional 
ost. Additionally, inferen
e by maximum likelihoodrequires a very 
areful initialization to avoid being trappedin lo
al optima.This work proposes using Bayesian inferen
e [4℄. Insteadof estimating the point value of the model parameters thatmaximize the likelihood, the parameters of interest are treatedas belief variables with asso
iated distributions. Given thedata, inferen
e 
onsists of 
omputing the parameters' pos-terior distributions, whi
h 
apture the un
ertainty abouttheir true values. The probabilisti
 nature of the underlyingmodel has a number of advantages:1. The quanti�
ation of un
ertainty allows for a more
areful interpretation of learnt parameter values.2. Known model un
ertainty 
an drive experimental de-sign and a
tive learning.3. During online learning, the known un
ertainty helpsautomati
ally adapt the e�e
tive learning rate for ea
hparameter individually, and allows to 
ontrol the mem-ory 
onsumption of the model by pruning non-informativeparameters.4. At any point data 
an be generated from the model bysampling.The model is expressed using fa
tor graphs, a 
onvenientrepresentation for fa
torizing probabilisti
 models. Infer-en
e is a
hieved by means of message passing [4, Chap. 8℄.Message passing on fa
tor graphs allows one to easily use anapproximate \online" inferen
e s
heme. The datapoints arepro
essed one by one, starting from an empty model, andonly a single pass through the data is required. To be able to
ope with very large datasets, several further 
omputation-ally eÆ
ient approximations are proposed. For example, theposteriors for rare features (in the 
ase of ads, this would berarely used keywords) are represented by using shared pa-rameters. Finally, the fa
tor graph representation togetherwith the \lo
al"message passing lends itself to a straightfor-ward paralellisation of inferen
e a
ross di�erent subsets ofthe data.The paper is organized as follows: The mixture of Bernoullipro�les model is des
ribed in Se
t. 2. Bayesian inferen
ewith message passing on a fa
tor graph is detailed in Se
t. 3,as well as the online approximate inferen
e s
heme. Parallelinferen
e is dis
ussed in Se
t. 4. Performan
e is evaluated inSe
t. ??. Finally, Se
t. 6 explains how the model proposed
an be used to suggest additional relevant keywords for adsto subs
ribe to.
2. PROBLEM SETTING AND MODELWe 
onsider a set of N obje
ts, where the i-th obje
t ~xi isdes
ribed by a D-dimensional ve
tor of binary variables. Inour 
on
rete appli
ation, these obje
ts are online ads in paidsear
h, des
ribed by the set of keywords to whi
h they sub-s
ribe. There are a total of D unique keywords, and ve
tor~xi 
ontains a 1 for those keywords that the i-th advertise-ment has subs
ribed to: If the i-th advertisement subs
ribedto the d-th keyword, then xid = 1; else xid = 0.

The model we propose assumes that the keyword ve
tor ofan ad is generated by one of K 
lusters, or mixture 
ompo-nents. Ea
h ad ~xi has a variable 
i 2 f1; : : : ; Kg asso
iatedwith it that indi
ates the index of the 
luster to whi
h thead belongs. If the i-th ad belongs to 
luster j then 
i = j.Within a 
luster, ads subs
ribe to keywords following inde-pendent Bernoulli probability distributions. If the i-th adbelongs to 
luster j then the probability that it subs
ribesto the d-th keyword is given by tjd = p(xid = 1j
i = j). Asa result, the probability that the i-th ad belongs to 
lusterj is given by a 
luster-dependent Bernoulli pro�le:p(~xij
i = j) = DYd=1 tjdxid(1� tjd)1�xid :Whi
h 
luster an ad belongs to is unknown a priori, andthat un
ertainty is 
aptured by the prior probability thatthe i-th ad (or in fa
t any other ad) belongs to 
luster j:�j = p(
i = j). If the global 
luster assignment priors f�jgand the probabilities of subs
ribing to keywords ftjdg areknown, the sampling distribution of the model is given by amixture of Bernoulli pro�les:p(~xijftjdg; f�jg) = KXj=1 p(
i = j) DYd=1 p(xidj
i = j; tjd)= KXj=1 �j DYd=1 tjdxid(1� tjd)1�xid : (1)Sampling an ad from this model involves sele
ting �rst oneof the K 
lusters by drawing it from a dis
rete distributionwith parameter ve
tor ~� = [�1; : : : ; �K ℄. In a se
ond step,keywords that the ad subs
ribes to are drawn from the se-le
ted 
luster's Bernoulli pro�le.The mixture of Bernoulli pro�les is a well known model
overed extensively in ma
hine learning text books (for ex-ample, [4℄). Typi
ally the prior probabilities f�jg of belong-ing to a 
luster and the probabilities of subs
ribing to theindividual keywords ftjdg are treated as parameters of themodel, and are estimated by maximum likelihood. Maximiz-ing the likelihood is readily a
hieved by assuming the data isindependently sampled from (1), and maximizing the result-ing produ
t of individual probabilities with respe
t to theparameters. Two 
ommon approa
hes are dire
t gradient-based maximization, or use of the Expe
tation Maximiza-tion (EM) algorithm. However, the maximum likelihoodapproa
hes su�ers from a number of problems for the appli-
ation we 
onsider here:� Both EM and dire
t gradient as
ent are iterative al-gorithms and require several passes over the data inorder to 
onverge. Initialization is 
ru
ial due to themultiple modes of the likelihood, but very diÆ
ult forthe high dimensional binary data we 
onsider here.� The optimization results in point estimates of the pa-rameters f�jg and ftjdg. Thus, no notion of un
er-tainty about the learned model is available. In a max-imum likelihood framework, a value of 0.5 for a key-word probability 
an indi
ate that the keyword waspresent in 1 out of 2 ads, or in 5,000 out of 10,000.
2.1 Related Models
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Figure 1: A dire
ted graphi
al model representationof the Bayesian mixture of Bernoulli pro�les.Latent Diri
hlet Allo
ation (LDA, [5℄) is an unsupervisedmodel that has been developed to model text 
orpora. LDAshares with the model presented here the fa
t that they bothare unsupervised. Topi
s in an LDA model roughly 
orre-spond to the 
lusters in the model proposed above. The gen-erative pro
ess, however, is quite di�erent. In LDA, a newtopi
 (
luster) is 
hosen ea
h time before a word (here: key-word subs
ription) is 
hosen. A single word is subsequentlysampled from a multinomial distribution that depends onthe topi
. In the 
lustering model des
ribed above, a 
lusteris 
hosen, after whi
h all keyword subs
riptions are sampledfrom the 
luster's Bernoulli pro�le.
3. A BAYESIAN TREATMENTAn alternative approa
h to maximum likelihood is Bayesianinferen
e. Rather than treating the unknown variables asmodel parameters and learning their optimal value, in theBayesian framework these unknown variables are treated asbelief variables, and beliefs about their values are repre-sented by probability distributions to expli
itly a

ount forun
ertainty. Before seeing any data, prior distributions 
aneither be uninformative or en
ode prior knowledge aboutthe problem domain. Inferen
e redu
es to using Bayes' rulegiven the prior distributions and the likelihood (1) to obtainthe posterior distributions of the variables of interest.For the mixture of Bernoulli pro�les presented here, theBernoulli probabilities of keyword subs
ription are given 
on-jugate priors, whi
h are Beta distributions t � Beta(t;�; �).The parameters � and � 
an be interpreted as pseudo-
ounts:� as the number of times the keyword was subs
ribed to and� as the number of times the keyword was not subs
ribedto. The probability density fun
tion (PDF) of the keywordsubs
ription probability t isp(t) = Beta(t;�; �) = �(�+ �)�(�)�(�) t��1(1� t)��1:Figure 3(a) shows two examples of the Beta PDF for di�er-ent 
hoi
es of the parameters � and �. The higher the sumof the pseudo-
ounts, the smaller the un
ertainty about thevalue of t.The other unknown variables of interest are the prior 
lus-ter probabilities f�jg; these are given a Diri
hlet prior dis-tribution, ~� � Dir(~�j ~
) with parameter ve
tor ~
. Similar

g(~�) = Dir(~�j~
)~� h(
i; ~�) =QKj=1 �I(j=
i)j
i fid =QKj=1 �tjdxid(1� tjd)1�xid�I(j=
i)t1d g(t1d) = Beta(t1d;�1d; �1d)...tld g(tld) = Beta(tld;�ld; �ld)...tKd g(tKd) = Beta(tKd;�Kd; �Kd)
d = 1; : : : ; D

Figure 2: The Bayesian mixture of Bernoulli pro�lesmodel represented as a fa
tor graph, for the i-thtraining example ~xi.to the Beta distribution, 
j 
an be interpreted as a pseudo-
ount of the number of ads that belong to 
luster j.Fig. 1 shows the dire
ted graphi
al model 
orrespondingto the full Bayesian model, in
luding the parameters of theBeta and Diri
hlet distributions. The parts of the graph en-
losed in plates are repli
ated a

ording to the index in theplate. For example, for a �xed value of i in the outer plate,the inner plate is repli
ated D times, on
e for ea
h valueof the keyword index d. The arrows indi
ate the dependen-
ies between variables (see [4, Chapter 8℄ for a treatment ofdire
ted graphi
al models). The graph representation hasthe advantage of 
learly revealing 
onditional independen
ebetween variables, whi
h is important for 
omputing themarginal posterior distributions eÆ
iently. Fig. 2 shows thefa
tor graph representation of a sli
e of the dire
ted graphin Fig. 1 for a single datapoint indexed by i. Fa
tor graphs[9℄ are bipartite graphs that represent joint probability dis-tributions by means of variable nodes (
ir
les) 
onne
tedto fa
tor nodes (shaded squares). Fa
tor nodes express thefun
tional relation among the variables 
onne
ted to them,and the produ
t of all fa
tors 
orresponds to the joint prob-ability distribution [7, 9℄. Marginal distributions are ob-tained by 
omputing messages from fa
tor nodes to variablenodes: the marginal distribution of any given variable nodeis the produ
t of its in
oming messages. Inferen
e in fa
torgraphs is thus known as message passing, a detailed a

ountof whi
h is given in [4, Chapter 8℄. The representation in



Fig. 2 absorbs the observed variables xid; d = 1; : : : ; D intothe fa
tors fid. The marginals of the 
luster assignmentprobabilities ~� and of the keyword subs
ription probabili-ties tjd obtained by message passing are thus the posteriordistributions desired.
3.1 Online LearningThe fa
tor graph in Fig. 2 represents only a single ad, butalready 
ontains on the order of D �K variables, with thenumber of keywords D potentially in the millions,1 and thenumber of 
lustersK in the hundreds. The full graph furtherrepli
ates this sli
e N times (number of training data), withN in the tens of millions. It is 
learly impossible to storea graph that size in memory, or to 
ompute and store thene
essary messages.To make the inferen
e pra
ti
al, we opt for an online learn-ing s
heme based on approximate inferen
e with AssumedDensity Filtering (ADF) [13℄. Data points (ads) are pro-
essed one at a time, and the posterior distributions of ~�and tjd obtained after pro
essing one data point are passedas prior distributions for pro
essing the next data point.Be
ause the fa
tor graph is a tree in this online learnings
enario, messages only need to be 
omputed on
e from aroot node to the leaves and ba
k. A pra
ti
al s
hedule forpro
essing the i-th data point is the following:1. Set the prior distributions g(tld) and g(~�) to the pos-terior marginals on tjd and ~� obtained from pro
essingthe previous datapoint.2. Compute the messages fmfid!
i(
i)gDd=1 from the key-word fa
tors fid to the 
luster assignment variable 
i.3. Compute the message mh!~�(~�) from the 
luster as-signment fa
tor h(
i; ~�) to the 
luster assignment prob-ability variable ~�.4. Compute the message mh!
i(
i).5. For ea
h keyword fa
tor fid 
ompute the outgoing mes-sages fmfid!tld(tld)gDd=1.6. Compute the new marginals fp(tldj~xi)gDd=1 and p(~�).Note that no messages need to be stored between the ADFsteps, but only on the order of D�K marginal distributions.The message from fid to 
i is given bymfid!
i(
i) = KYj=1 ��jdxid(1� �jd)1�xid�I(
i=j) ; (2)where �jd = �jd�jd+�jd is the mean of g(tld), and I(�) is theindi
ator fun
tion, equal to 1 if its argument is true, and to0 if it is false. The message from 
i to fa
tor h is simplym
i!h(
i) = QDd=1mfid!
i(
i), and therefore the messagefrom fa
tor h to ~� ismh!~�(~�) = KXl=1 �l DYd=1�ldxid(1� �ld)1�xid :1Most keywords are a
tually key phrases, akin to typi
alsear
h engine queries, whi
h is why D 
an be
ome so large.

The message from h to 
i basi
ally sends the (s
aled) aver-age 
luster assignment probabilities under the Diri
hlet priorg( ~�) mh!
i(
i) = KYj=1 
I(
i=j)j :It is useful to 
ompute as an intermediate step the marginaldistribution of 
i, given by the normalized produ
t of itsin
oming messages. We adopt the shorthandril = p(
i = lj~xi) = 
l QDd=1 �ldxid(1� �ld)1�xidPKj=1 
j QDd=1 �jdxid(1� �jd)1�xid ;(3)and refer to it as the responsibility of 
luster l for advertise-ment i, with 0 � ril � 1 and PKj=1 rij = 1.The details of the 
omputation of the message from fid totld are relegated to the appendix. S
aled appropriately, themessage itself 
an be written as the linear 
ombination of aBernoulli distribution in tld and a uniform distribution:mfid!tld(tld) = ril tldxid(1� tld)1�xid�ldxid(1� �ld)1�xid + (1� ril) : (4)
3.2 Beta and Dirichlet ApproximationsMessage passing is only eÆ
ient if a 
ompa
t message rep-resentation 
an be assumed. Maintaining su
h a represen-tation may require proje
ting the true message to a familyof distributions thereby approximating it in the spirit of ex-pe
tation propagation [13℄. Given that the message (4) fromfid to the tld nodes is a mixture of a Beta distribution witha uniform distribution, the marginal distribution of tld istherefore not a Beta distribution either,p(tld) / mfid!tld(tld) �mgld!tld(tld)= ril Beta (tld;�ld + xid; �ld + (1� xid)) (5)+ (1� ril) Beta (tjd;�jd; �jd) :Instead, it is the 
onvex 
ombination of the prior and theposterior Beta distributions on tld under the assumptionthat the 
urrent advertisement belongs to 
luster l. Theposterior has larger weight the larger the responsibility of
luster l.In order to keep the message mtld!fid(tld) in the Betafamily, the marginal p(tld) itself is proje
ted onto a Betadistribution by moment mat
hing. For the �rst order mo-ment of the marginal, we obtainM1(xid) = ril �ld + xid�ld + �ld + 1 + (1� ril) �ld�ld + �ld ;and for the se
ond non-
entral moment,M2(xid) = ril (�ld + xid)(�ld + xid + 1)(�ld + �ld + 1)(�ld + �ld + 2)+(1� ril) �ld(�ld + 1)(�ld + �ld)(�ld + �ld + 1) :Note that the �rst order moment, i.e., the mean of themarginal, is a 
onvex 
ombination of the prior mean andthe posterior mean under a full update of the Beta distri-bution (without taking the responsibility term ril into a
-
ount). Using the expressions of the parameters of a Beta
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(a) (b) (
) (d)Figure 3: (a) Examples of Beta distributions with di�erent parameters � and �: (b) through (d): An exampleof the e�e
t of moment mat
hing when updating a Beta distribution with � = 1 and � = 9: Plot (b) showsthe updated � as a fun
tion of the responsibility r, (
) shows the updated � as a fun
tion of r. (d) plots theBeta PDF before and after an update with r � 0:4 (leading to maximum loss of pseudo-
ount). Note that thevarian
e of the updated distribution is larger than before the update.distribution in terms of its moments, the parameters of theapproximating Beta are 
omputed as~�ld =M1(xid) ~N and ~�ld = [1�M1(xid)℄ ~N ;where ~N = M1(xid)�M2(xid)M2(xid)�M1(xid)2 = ~�ld + ~�ldis the updated pseudo-
ount (in
luding pseudo-
ount 
om-ing from the prior), roughly the total number of observedads.It is important to mention here that, due to momentmat
hing, the updates may lead to a loss of pseudo-
ount.When learning a single Beta distribution, the total amountof pseudo-
ounts (�+ �) 
an never de
rease, thus the vari-an
e of the Beta distribution 
an only shrink when observ-ing more and more data. The e�e
t of \forgetting" pseudo-
ounts is illustrated in 3(b)-(d).The exa
t marginal distribution of ~� turns out to be amixture of Diri
hlet distributions,p(~�) = LXl=1 rilDir(~�j~
 + ~el) ;where ~el is the i-th unit ve
tor of length K. There is oneDiri
hlet mixture per 
luster, and its value is the result ofassuming that the 
orresponding 
luster is fully responsiblefor the ad visited. The mixing 
oeÆ
ients are the a
tualresponsibilities that the 
lusters had for the ad. Here againwe need to take an approximation to stay in the family ofDiri
hlet distributions. We 
hose to preserve the means, andensure that the sum of the 
j is in
reased by one. This 
anbe a
hieved by simply adding the 
luster responsibilities tothe 
orresponding parameters of the Diri
hlet distribution,
newj = 
j + rij .
4. SCALING DETAILSAs des
ribed in Se
. 3.1, using ADF to pro
ess a singledata point at a time leads to large savings in terms of 
om-putation time and memory use. Even within this onlinelearning framework, 
lustering large datasets is 
omputa-tionally demanding. A typi
al dataset 
an 
ontain millions

of advertisements with millions of unique keywords. If ev-ery 
luster 
ontained one Beta distribution for every possiblekeyword then the memory requirements would be on the or-der of hundreds of gigabytes. In addition, the 
omputationof (3) for ea
h advertisement would involve tens of millionsof terms, whi
h would make training extremely slow. Sev-eral steps need to be taken to ensure that the model 
an runin a reasonable amount of time and use a reasonable amountof memory.
4.1 Sparse RepresentationWhile there are potentially millions of unique keywordsin a dataset, individual advertisements are very sparse, typi-
ally subs
ribing to on the order of ten keywords ea
h. If oneassumes that a 
luster of similar ads should also be sparse,then that property 
an be exploited by using a sparse repre-sentation for the 
lusters. In this representation, only key-words that are \important" to a 
luster are represented byexpli
it Beta distributions, and all other keywords are repre-sented by the same single \default"Beta distribution for that
luster. \Important" here is a 
ombination of 1) being 
on-tained in a signi�
ant number of the ads in the 
luster, and2) being suÆ
iently dis
riminative for that 
luster. If every
luster 
ontains hundreds of unique distributions instead ofmillions then the model will use a small amount memory,and 
omputation of equation (3) 
an be done qui
kly.Several steps are taken to ensure that the model remainssparse. First, in regular intervals, keywords are 
ulled fromthe model using two di�erent 
riteria:� Keywords that have a similar probability (mean of theasso
iated Beta distribution) a
ross all 
lusters are ir-relevant for distinguishing between 
lusters and 
an beremoved (repla
ed in ea
h 
luster by the default value).� Within a 
luster, if repla
ing a keyword with the de-fault value does not signi�
antly 
hange the responsi-bility pro�le (as measured using Kullba
k-Leibler di-vergen
e) then it 
an be removed.Se
ond, also in regular intervals, any 
lusters that explainonly a tiny fra
tion of the data (i.e. have a small 
i) are re-moved from the model. The data 
ontained in any of these
lusters is not dis
arded; instead it is treated like an adver-tisement (albeit one with fra
tional keyword subs
riptions



whi
h are the mean of the keyword Beta distributions forthe 
luster to be removed) and applied to the model.
4.2 Parallelizing across DataOne strength of this 
lustering model is that it 
an beparallelized a
ross data relatively easily. This parallelizationis an extension of the fa
tor graph model shown in Fig. 2,and is performed in four steps:1. Given a prior model state, whi
h 
ould be a previouslytrained model or an empty model, an \equality" fa
toris used that 
reates multiple 
opies of the prior model.2. Ea
h of these 
hild 
opies is trained in parallel using adi�erent subset of the data.3. After a 
hild 
opy is �nished training, we 
an 
omputethe delta between the prior model and the 
hild 
opyby dividing the 
hild's posterior distribution by theprior distribution. This delta is a message that tellsthe prior how to update itself to be equal to the 
hild'sposterior.4. All of these messages from the separate 
hildren are ap-plied to the prior, giving a posterior distribution that
ontains all of the information learned by the parallel-trained 
opies.This s
heme is problemati
 be
ause the model is extremelymulti-modal. There is no guarantee that 
luster i in one
opy will des
ribe the same natural 
luster as 
luster i inanother 
opy, whi
h would mean that step 4 would attemptto 
ombine information from two disparate 
lusters into asingle 
luster. We take two steps to 
ombat this problem.First, before training in parallel, the model is trained seri-ally on a subset of the data form priming. This gives the
lusters some initial de�nition before the parallel step, andredu
es the freedom of the parallel 
opies to settle on dif-ferent modes. Se
ond, the full dataset is split into multiplebat
hes. Parallel training is done one bat
h at a time, andafter ea
h bat
h the posterior produ
ed in step 4 is used asthe prior in step 1. This ensures that multiple 
opies of asingle 
luster 
annot drift too far apart during the paralleltraining phase.
5. EVALUATIONThe algorithm is evaluated using two datasets. The �rst issyntheti
 with known 
luster assignments: 10,000 advertise-ments are sampled from a randomly generated model with 10
lusters whose prior probabilities are a random sample fromuniform multipoint distribution, and 100 keywords whoseBernoulli probabilities are independently sampled from auniform distribution.The se
ond dataset is derived from a 
orpus of almost6 million advertisements and 19 million distin
t keywords.The average advertisement subs
ribes to approximately 28keywords. One 
an think of the dataset as a bipartite graph
onne
ting ads to keywords, and groups of well-
onne
tednodes in the graph would 
orrespond to 
lusters of similarkeywords and advertisements. The 
hallenge is then to �ndthese groups of well-
onne
ted nodes in the graph.To get a feeling for the 
omplexity of the problem, it is use-ful to analyze the 
onne
ted 
omponents of the advertisement-keyword graph. For our dataset, this graph has one large


omponent whi
h 
ontains 88% of the advertisements, withthe remaining advertisements split into 388,000 tiny disjointsub-graphs. 273,000 of these disjoint sub-graphs 
ontain asingle advertisement with only one keyword. In addition,some individual advertisements subs
ribe to huge numbersof keywords, sometimes as many as one million keywordsfor a single advertisement. These advertisements 
an help
reate strong 
onne
tions between 
lusters that are unde-sirable. The large number of disjoint subsets and the over-subs
ribed advertisements 
ombine to add enough noise tothe input data that it would be diÆ
ult to �nd a good 
lus-tering solution.We 
hose to apply some �lters for on that dataset fortwo reasons: By its stru
ture, we do not expe
t to obtainmeaningful 
lustering solutions with any 
lustering method.Se
ondly, the dataset is of a size that we 
ould easily handleusing the online 
lustering method presented in this paper,but not with any other 
lustering method without substan-tial amounts of engineering. In order to obtain a more rea-sonable dataset, we �rst remove all keywords whose totalnumber of subs
ribed ads is below a 
ertain threshold ta.Se
ond, we remove all advertisements whose keyword sub-s
ription 
ount is above a 
ertain threshold tk. This 
ullingretains the most used keywords and 
an also signi�
antlyredu
e the size of the input dataset, whi
h has the addedbene�t of speeding up the training pro
ess.Using thresholds of ta = 100 and tk = 500 leaves about207,000 advertisements and 2,000 unique keywords. Thekeyword-advertisement graph for this dataset 
ontains onlya single 
onne
ted 
omponent, and is of a size that 
an behandled using k-means or EM 
lustering.We 
ompare the proposed Bayesian 
lustering model withseveral other 
lustering methods: k-means, agglomerative
lustering, and a maximum likelihood (ML) version of the in-feren
e for the mixture of Bernoulli pro�les based on expe
tation-maximization (EM). Details about these algorithms 
an befound in the ex
ellent review paper [3℄. Comparing unsu-pervised 
lustering models is intrinsi
ally diÆ
ult, be
ausethere is no ground truth from whi
h we 
an measure thepredi
tive ability of the model. The most straightforward
omparison is to visually inspe
t the 
lusters, whi
h is pos-sible here be
ause the items being 
lustered { Internet sear
hkeywords { have meanings that we 
an understand.
5.1 Qualitative Comparison and Training TimeUsing the advertisement derived dataset, we visually in-spe
t the resulting 
lusters for 
onsisten
y in the meaningsof the most prominent keywords. The results are shown inTable 1. Qualitatively, k-means and agglomerative 
luster-ing su�er from a 
ollapse of most of the ads into a single
luster. This 
an be 
aused by the spurious 
onne
tions be-tween 
lusters introdu
ed by ads that subs
ribe to in
oher-ent sets of keywords. Both the Bayesian and ML mixture ofBernoulli pro�le models attain qualitatively better results,managing to identify many more meaningful 
lusters andspreading the ads more evenly a
ross these.We 
ompare the training times of the four models on thisdataset. k-means and agglomerative 
lustering both takeapproximately three hours to train. Be
ause it requires vis-iting the whole dataset many times, ML inferen
e with theEM algorithm is 
omputationally very intense and takes 40hours to train. The Bayesian mixture model using ADF thatwe propose in this paper trains in only 1 hour.



Table 1: Training time and subje
tive quality assessment of 
lustering methods on a dataset of 207,000 ads,when requiring all methods to 
reate 100 
lusters.Method Training time Clusteringk-means 3h 90% of ads in one 
luster. Remaining 
lusters are 
onsistent.Agglomerative 3.5h 90% of ads in one 
luster. Remaining 
lusters are 
onsistent.ML inferen
ewith EM 40h Ads evenly spread. Most 
lusters are 
onsistent, some are mixtures of topi
s.Bayesianinferen
e 1h Ads are evenly spread. Almost all 
lusters are 
onsistent, few are mixtures of topi
s.A larger dataset was generated from the 
orpus of adver-tisements using ta = 100 and tk = 100, whi
h yields 1.3million advertisements and 73,000 unique keywords. A par-allel implementation (Se
t. 4.2) of the Bayesian mixturemodel we propose in this paper takes seven hours to trainon this larger dataset. However, none of the other ben
h-mark methods had �nished training after 3 days, hen
e we
an not provide any performan
e 
omparisons on that largedata set.
5.2 Quantitative EvaluationFor the syntheti
 dataset, we test the abibility of ea
h ofthe 
lustering algorithms to identify whether two advertise-ments belong to the same 
luster or not. We �nd that thisevaluation 
riterion is most easy to interpret, 
an be 
om-puted for all 
lustering methods, and is 
losest to an a
tualappli
ation where our goal is indeed to use the 
lusteringmodel to assign ads to 
ategories.Every pair of advertise-ments is 
lassi�ed by the 
ompeting algorithms as belongingto the same 
luster or to di�erent 
lusters. For the proba-bilisti
 models, we 
ompute for ea
h pair of advertisementsxi and xj the probability that they belong to the same 
lus-ter: p(
i = 
j jxi; xj) = KXl=1 p(
i = ljxi)p(
j = ljxj) ;given by the dot produ
t of the resposibility ve
tors (3).Naturally one would 
lassify the pair of advertisements asbelonging to the same 
luster if p(
i = 
j jxi; xj) > 0:5, butin the experiments we explore a variety of di�erent thresh-olds in the [0.1, 0.9℄ range. We 
ompute a true positiveratio (fra
tion of the pairs 
orre
tly 
lassi�ed as belongingto the same 
luster) and a false positive ratio (fra
tion ofthe pairs in
orre
tly 
lassi�ed as belonging to the same 
lus-ter), and plot them against ea
h other. For the probabilis-ti
 methods varying the threshold allows us to obtain anROC 
urve [12℄. For the non-probabilisti
 k-means and ag-glomerative 
lustering we obtain only a single point. Theresults are displayed in Figure 4. Agglomerative 
lusteringand k-means have a true positive rate of 93.0% and 94.3%respe
tively, and both have a false positive ration of 2.28%.With a threshold of 50%, the ML mixture model has a truepostive ratio of 97.4% and a false positive ratio of 1.67%,while the Bayesian mixture model has a true positive ratioof 99.5% and a false positive ratio of 1.66%. As 
an be seenin the �gure, the Bayesian mixture model 
an 
onsistentlymat
h the true positive ratio of the ML model with fewerfalse positives.

Figure 4: Evaluation on syntheti
 dataset. True pos-itive ratio (fra
tion of the pairs 
orre
tly 
lassi�edas belonging to the same 
luster) versus false posi-tive ratio (fra
tion of the pairs in
orre
tly 
lassi�edas belonging to the same 
luster)

Table 2: Quantitative 
omparison based on thetest negative log likelihood, and on the 
lusterand advertiser entropy s
ores when learning a 100
luster model with all methods. Smaller numbersare better for all metri
s.neg avg loglikelihood advertiserentropy s
oreBayesian inferen
e 17.97 1.18Bayesian inferen
e(dis
arding 
lutter) 0.96ML inferen
e with EM 12.98 2.61The advertisement-based dataset does not o�er a groundtruth. For this reason, the evaluation is performed a

ord-ing to the following two metri
s: the average negative loglikelihood of the test set (
losely related to the log perplex-ity, a quality 
riterion that has been used to evaluate, forexample, the LDA model in [5℄), and the advertiser entropys
ore. The se
ond metri
 is based on the assumption thatadvertisements from a single advertiser most likely relate tothe same 
on
ept, and thus should belong to as few 
lustersas possible. The advertiser entropy s
ore measures the en-



tropy of the distribution of advertisers a
ross 
lusters. It isde�ned as: SA = 1N Xa NaH(~pa) ;where a is an advertiser index, Na is the number of ad-vertisements that belong to advertiser a, ve
tor ~pa 
ontainsthe empiri
al probabilities of an advertisement from adver-tiser a of belonging to the di�erent K 
lusters, and H(�) isthe entropy fun
tion. By de�nition, a good 
lustering solu-tion should a
hieve a low advertiser entropy s
ore. Both ofthese metri
s require probabilisti
 
luster assignments andare therefore not suitable for evaluating k-means and ag-glomerative 
lustering.As shown in Table 2, a better average test log likelihoodis a
hieved by the EM algorithm, whi
h is probably at-tributable to the fa
t that it performs several passes throughthe training data, and does not enfor
e sparsity in its 
lus-ter representations. The advertiser entropy s
ore is best forthe Bayesian inferen
e approa
h than for EM. This meansthat on average advertisers are spread a
ross fewer 
lusters.A further improvement 
an be obtained from the Bayesianapproa
h by letting the model learn a \
lutter 
luster". This
luster tra
ks an identi
al Beta distribution for all keywordsubs
ription probabilities. As a result, this 
luster tends toattra
t advertisements that subs
ribe to unrelated keywordsand those that do not �t in any of the other 
lusters. Thisultimately has the e�e
t that these remaining 
lusters aremore 
oherent, whi
h explains the superior advertiser en-tropy s
ore that 
an be obtained when dis
arding the 
lutter
luster.
5.3 Choosing the Number of ClustersIn the previous se
tions, our main goal was to ben
hmarkmethods, and we thus required all methods to learn the samenumber of 
lusters. In a pra
ti
al appli
ation that uses thelearned 
luster model for, e.g., 
ategorization, 
hoosing theright number of 
lusters would be a ne
essary next step.This topi
 is extensively 
overed in the 
lustering literature,see [3℄ for pointers. However, we mainly use the 
lusteringmodel for keyword suggestion, where it turned out that thenumber of 
lusters is rather un
riti
al, see the dis
ussionbelow in se
. 6.
5.4 Benefits of Modeling UncertaintyThe topi
 of a 
luster is determined by examining the key-words that have the largest probability of being subs
ribedto. Be
ause of the noisy nature of the data, it is possiblefor 
ertain unrelated keywords to spuriously have a high av-erage subs
ription probability. These keywords might havebeen subs
ribed to by noisy ads that also simultaneouslysubs
ribe to some of the main themati
 keywords of the
luster. The Bayesian treatment proposed allows one to dealwith this problem by providing a measure of the un
ertaintyabout the subs
ription probabilities. Table 3 shows an ex-ample of a very homogeneous 
luster where the keyword withhighest mean subs
ription probability � { \pest 
ontrol" {does not �t. However, this keyword was seen a
tive in fewerads attributed to this 
luster. The total pseudo-
ount �of the Beta distribution represents the e�e
tive number ofads that were attributed to this 
luster and subs
ribed tothe keyword in question. Given two keywords with identi-
al mean � but with di�erent � values, the model is more

Table 3: Most prominent keywords in two di�erent
lusters for the Bayesian approa
h. Sorting byexpe
ted keyword subs
ription probability � 
anpla
e spurious keywords on top of the list. Sortingby the e�e
tive number of ads that subs
ribe tothat keyword (parameter � of the Beta distribution)fa
tors in the un
ertainty and allows to get rid ofthe noisy keyword.Sorting by mean:Keyword Mean (�) Alpha (�) Beta (�)pest 
ontrol 0.113 44 343nissan altima 0.074 84 1039nissan maxima 0.065 75 1080nissan quest 0.065 76 1090nissan dealer 0.051 61 1136Sorting by positive ad pseudo-
ount (�):Keyword Mean (�) Alpha (�) Beta (�)nissan altima 0.074 84 1039nissan quest 0.065 76 1090nissan maxima 0.065 75 1080nissan dealer 0.051 61 1136pest 
ontrol 0.113 44 343Table 4: Illustration of additional suggested key-words for an advertisement.Subs
ribed Keywords Suggested Keywordswindow 
leaner 
arpet 
leaning servi
eswindow 
leaning home 
leaning servi
es
leaning 
ompany 
oor 
leaning servi
es
leaning 
ompanies residential 
leaning servi
es
ommer
ial 
leaning
ommer
ial 
leaning servi
esapartment 
leaning servi
esoÆ
e 
leaning servi
esoÆ
e 
leaning
leaning tips
ertain about the keyword with highest �: Sorting by � in-stead of by � thus takes into a

ount the un
ertainty, andin Table 3 the bene�ts are evident: the spurious keyword isrelegated to a lower position.
6. KEYWORD SUGGESTIONIn our spe
i�
 appli
ation, we are interested in keywordsuggestion. The goal is to suggest to an advertiser a rangeof keywords that are semanti
ally similar to ones that werealready sele
ted, in order to in
rease the rea
h of the ad.This is a 
hallenging and 
ommer
ially important task aspointed out by [8℄, and methods using semanti
 similarity [1℄and 
on
ept hierar
hies [6℄ as well as logisti
 regression and
ollaborative �ltering [2℄ have been proposed. Our approa
his similar to the latter in that makes keyword suggestionsto one advertiser based on keyword subs
riptions of otheradvertisersThe model des
ribed in Se
t. 2 
an be used in a generativeform, following the dire
ted graphi
al model shown in Fig. 1.For keyword suggestion, we assume that a spe
i�
 ad repre-



sents partially observed data: An advertiser may have putsome thoughts into whi
h keywords to subs
ribe to, but stillmay have missed out on some important ones. Subs
ribedkeywords thus a
t as an indi
ator of the advertiser's intent,but the (huge) set of non-subs
ribed keywords is treated as\not observed".With this partially observed data, we 
an again performmessage passing, in order to 
ompute the probability of theunobserved keywords, given the subs
ribed keywords. Inshort, this works as follows: Let S � f1; : : : ; Dg be theset of all subs
ribed keywords in the i-th ad. All fa
torsffidg; d 2 S; send messages of the form (2) to node 
i, whereit is 
ombined with the in
oming message from fa
tor h.Similar to the update s
enario in (3), a responsibility of
lusters for the ad is 
omputed, but this information is onlybased on the keywords that are a
tually subs
ribed:~ril = p(
i = lj~xi) = 
l Qd2S �ldxid(1� �ld)1�xidPKj=1 
j Qd2S �jdxid(1� �jd)1�xid :(6)As the last step, we 
an 
ompute the expe
tation of thedata (keyword) nodes that are impli
itly atta
hed to thefa
tors fid in Fig. 2, and obtain for the unobserved keywordsd 62 S p(xid = 1jfxibgb2S) = KXj=1 ~rij�jd ;a linear 
ombination of the Bernoulli pro�les for the unob-served keywords, with weights based on the responsibilities
omputed from the observed keywords.Using this method, keywords 
an be suggested to userswith a 
lear ranking 
riterion (the above probability). Ta-ble 3 shows the additional keywords that are suggested for aspe
i�
 advertisement related to 
leaning servi
es. The top10 keywords with highest 
onditional subs
ription probabil-ity (given the existing subs
ribed keywords) are shown inthe table.Furthermore, the keyword suggestion 
an be re�ned byan iterative intera
tive pro
ess: from the list of suggestions,users 
an sele
t keywords (or mark keywords as \I don'twant to subs
ribe to that"). This updated information 
anbe used to re�ne the 
omputation of responsibilities in 6,and present the user a re�ned list of keywords.
7. DISCUSSIONWe have proposed a Bayesian online 
lustering model forlarge datasets of binary ve
tors based on a mixture of Bernoullipro�les. The experiments 
ondu
ted show that 
ompared tothe maximum likelihood treatment, the Bayesian approa
hproposed is both more a

urate and dramati
ally faster totrain. Whereas the maximum likelihood model is trained byEM in bat
h mode and requires several passes over the data,our approa
h uses an online training s
heme requiring a sin-gle pass, and is suitable for streams of data. In 
ontrast tothe EM algorithm, training is in
remental: adding one moredata point does not require retraining the entire model.Our approa
h is not only faster to train than k-means andagglomerative 
lustering; it also o�ers probabilisti
 
lusterassignments and expli
itly models the un
ertainty about thelearned model parameters, one advantage of whi
h is resis-tan
e to noise. A straightforward appli
ation of our gen-erative probabilisti
 model is the suggestion of additional

keywords for advertisements.Future work on this topi
 will ben
hmark the keywordsuggestion algorithm des
ribed above to re
ommender sys-tems. In parti
ular, we plan to evaluate the performan
e ofthe Bayesian re
ommender system Mat
hBox [14℄ for key-word suggestion.
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APPENDIX

A. ALGEBRAIC DETAILSThe most involved messages to derive are those from fa
-tor fid to the 
lass membership variable 
i and to the leafBernoulli probability variables tld. Computing mfid!
i(
i)requires marginalizing over the Bernoulli probability vari-ables, and the realization that the integral fa
torizes:mfid!
i(
i)=ZftjdgKj=1fid(
i; xid; ftjdg) KYj=1mtjd!fid(tjd)dtjd= KYj=1 ZftjdgKj=1�tjdxid(1� tjd)1�xid�I(
i=j)mtjd!fid(tjd)dtjd= KYj=1 ��jdxid(1� �jd)1�xid�I(
i=j) :The 
omputation of message mfid!tld(tld) requires the
omputation of message m
i!fid(
i). This last message iseasy to obtain by dividing the marginal p(
ij~xi) by the in-
oming message mfid!
i(
i):m
i!fid(
i) = p(
ij~xi)mfid!
i(
i)= KYj=1 � rij�jdxid(1� �jd)1�xid �I(j=
i) :Message mfid!tld(tld) 
an now be 
omputed as:mfid!tld(tld) = KX
i=1Zftjdgj 6=lfid(
i; xid; ftjdg)m
i!fid(
i)� KYj 6=lmtjd!fid(tjd)dtjd= KX
i=1 �ril tldxid(1� tld)1�xid�ldxid(1� �ld)1�xid �I(l=
i)� Zftjdgj 6=l KYj 6=l �rij tjdxid(1� tjd)1�xid�jdxid(1� �jd)1�xid �I(j=
i)� KYj 6=lBeta(tjd;�jd; �jd)dtjd= ril tldxid(1� tld)1�xid�ldxid(1� �ld)1�xid + KXj 6=l rij :


