

The Design of a System for Testing Database-Centric Software

Applications using Database Surrogates

Adrian W. Bonar

The Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Abstract
This paper presents the design of a system for testing

database-centric software applications using surrogate

databases. Traditional testing approaches, such as using

test bed databases and using stub code or mock objects,

are often either difficult to implement and manage, or do

not provide entirely effective verification of the

functionality of the application under test. Testing

database-centric applications using database surrogates

addresses these issues. A database surrogate is a data

source, such as an XML file, which has the same structure

as the backend database of the application under test.

Database surrogates can be easier to implement and

manage than actual test bed databases, but provide a

mechanism for thoroughly testing the functionality of the

application under test. The essence of the surrogate

database testing system is to create a very lightweight

library which provides an interface which is independent

of the actual physical implementation of the underlying

data source.

Keywords: Automatic testing, programming

environments, software libraries, software quality,

software testing.

1. Introduction

Consider the general problem of testing a software

application which is based on a backend SQL database

data store. Such applications are common. Examples

include Web based shopping systems and corporate

inventory systems. This paper presents an overview of an

efficient system to test such applications. There are

several approaches to testing database-centric

applications. One common approach is for software test

engineers to create a test bed database which exactly

replicates the structure of the production database [1].

This test bed database can then be populated with rich test

data (in the sense that the data is specifically designed to

work with a test harness and particular set of test case

inputs and expected values), and then a test harness can be

written which exercises the application under test and the

associated test bed database. This replica test bed

database approach is effective but has several drawbacks.

The approach requires significant time and effort, and

requires that the test engineers using the approach have

significant database development skills. Additionally, if

on the one hand, a single replica test bed database is used

for multiple test case scenarios, the approach is slow

because each test case must reinitialize the test bed to a

known state. On the other hand, if separate test bed

databases are maintained for each test case, the approach

can be difficult to manage because of the large number of

databases.

An alternative to the replica test bed database

approach for testing database-centric software

applications is to use stub code [2]. Stub code is relatively

simple code which partially simulates the behavior of a

production database. Although many modern

programming languages allow application code to query

the application's database backend by directly embedding

SQL language statements in the application code, in most

situations application developers use some form of

wrapper code, written in the application development

language, to encapsulate SQL language queries. Stub code

has the same interface to an application's database

backend as the application wrapper code; however,

instead of connecting to a backend database, stub code

examines the calling code input arguments, and uses some

form of code logic to return one or more values in the

same format as an actual return from the backend

database. When used in conjunction with unit testing, stub

testing is sometimes called testing with mock objects [8].

Testing a database-centric application with stubs is

generally quicker and easier than using the replica test bed

database approach, but testing with stubs does not

thoroughly verify the functionality of the application

under test.

This paper presents a brief overview of a system which

provides superior functional verification of a database-

centric application than a stub-based testing approach, but

is easier to implement and manage than a replica test bed

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.83

779

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.83

779

database testing approach. The essential idea of the

system is to use XML data files to replicate the structure

of the application production database. Separate XML

files can be maintained to store rich test case data. The

approach described in this paper is called testing with

surrogate databases to distinguish the approach from

alternative techniques. Although the surrogate database

testing system described here targets database-centric

software applications which are written in the Microsoft

.NET programming environment, and which use the LINQ

(Language Integrated Query) code wrapping framework,

the system principles are general and apply to alternative

programming environments and wrapping frameworks.

2. Database-Centric Software Applications

In general terms, database-centric applications provide

a user interface to perform CRUD (create, read, update,

delete) operations on a backend data store [4]. Although

application code can use embedded SQL statements,

usually in the form of a simple string data type, to perform

operations on the backend database, wrapping SQL code

inside native application language code often provides

superior security and maintainability. However, simple

wrapping approaches enclose the application data tier in

some form of interface not directly tied to the data source

[3]. The LINQ framework enhances .NET languages such

as C# and VB.NET by adding query syntax as a first-class

language constructs. Compared to embedded SQL

statements, advantages of using an integrated wrapping

framework such as LINQ include enhanced debugging

capabilities and design-time data type checking.

Developing application software using an integrated

wrapper framework such as LINQ can make the

development process easier because the framework code

bridges the gap between the application and the

application's data source -- without the framework, a

developer would need to write code with similar

functionality.

Although the use of integrated wrapper frameworks

such as LINQ provides many advantages, the underlying

architecture of these frameworks still fails to reach part of

the concept's potential usefulness. Consider that a single

query is compatible with multiple data sources as long as

the object type structures of the data sources are

equivalent. However, LINQ provides similar, but slightly

different, interfaces to different types of data sources. For

example, even if a SQL database and an XML file had

equivalent structures, the LINQ syntax for querying these

two sources would be somewhat different. The essence of

the system described in this paper is to create a higher

level of abstraction which provides a single, uniform

interface to equivalent SQL databases and XML files.

Creating a thin abstraction layer encapsulated as a drop-in

library allows testers to replace a SQL test bed database

with a collection of XML files that can be dynamically

swapped out or altered to accommodate individual test

case scenarios. The architecture for this solution is

outlined in Figure 1. The system described in this paper

concentrates only on querying data sources; however, the

technique can be extended to support other operations

such as editing and deleting data.

3. The Development Environment

When creating a database-centric application using an

integrated wrapper framework such as LINQ, a developer

must create an entry point for LINQ-to-SQL in order to

access the application’s database. Such an entry point can

be created by using a tool with a GUI interface hosted by

an integrated development environment program, or the

entry point can be created by using a separate shell-based

utility tool [7]. Using either technique, a file is generated

which contains a collection of classes which represent the

architecture of the target backend database. In the case of

the LINQ framework, the entry point into the database

architecture is a child class of a parent DataContext class.

This class represents the backend database and provides a

programmatic interface to the database in a specified

language. For example, when entered on a shell command

line, the command:

> sqlmetal.exe /server:(local)

 /database:dbTarget /code:proxy.cs

uses a utility program named sqlmetal.exe to examine a

SQL database named dbTarget located on the local host

machine, and generates a file named proxy.cs which

contains C# code, including classes derived from the

DataContext class which can be used to perform

operations on the database. In a development

environment, developers use the mapping code inside the

application logic code to perform operations on the

backend database. The surrogate database testing system

uses the mapping code as a basis for creating a thin

bridge-like layer encapsulated in a code library. This

approach enables the actual implementation of the

underlying data source to be abstracted while exposing a

common data source interface.

The bridge layer’s primary task is to transform the

DataContext subclass’s interface from one which is SQL-

specific to one which is data source agnostic, while still

maintaining the idea that there may be a LINQ provider

which is actually executing a query using the interface.

There are two primary interface definitions that a LINQ

query can leverage. The most abstract, and the only

interface really needed for LINQ to query against, is

IEnumerable. This interface is used when querying against

780780

Test DLL

(DataSource.DLL)

Production DLL

(DataSource.DLL)

LINQ-to-SQL Classes

(DataContext)

Database

Bridge Interface

(IDataSource)

Production Bridge

(DataSource)

Emulation Bridge

(DataSource)

Xml

Xml Schema Definitions

`

Figure 1. Emulating a LINQ data source using a drop-in DLL architecture

most .NET Framework collection types and assumes the

framework, rather than an external provider, is going to

execute the query. The other interface is IQueryable. The

IQueryable interface is intended to expose LINQ provider

data sources. The API sets of the two interface definitions

are almost identical, but an IQueryable interface assumes

the burden of the query is placed upon the specific

provider (LINQ-to-SQL, LINQ-to-Entities, LINQ-to-

XML, and so on.) Since the intent of the surrogate

database system is to emulate the LINQ-to-SQL data

source and not necessarily hide this fact, the system

exposes the IQueryable interface in the data source

abstraction. For example, an interface to a data source

named WidgetDataSource, which is realized as either a

SQL database or an XML file, can be defined:

public interface IWidgetDataSource

{

 IQueryable<GetAllCategory>

 GetAllCategories {

 get;

 }

}

This interface defines a property named

GetAllCategories which returns a query-able collection of

objects of type GetAllCategory. The production

implementation of this interface to a particular SQL

database is a simple pass-through to the associated LINQ-

to-SQL DataContext subclass. For example, if an object,

derived from the DataContext class created by a mapping

tool, is instantiated as wDataContext, then a possible

implementation of the IWidgetDataSource interface to the

associated database is:

public IQueryable<GetAllCategory>

 GetAllCategories

{

 get {

 return wDataContext.GetAllCategories;

 }

}

In short, the GetAllCategories property of the bridge

layer component calls the GetAllCategories property

defined in the DataContext definition. It is important that

this implementation is placed into its own library to

facilitate replacement with the emulating implementation.

With the bridge to the LINQ-to-SQL data source in place,

the emulation bridge pictured in Figure 1 can now be

created. There are two primary components that the

emulation bridge needs to share with the production

implementation - the bridge interface and the LINQ-to-

SQL classes. Access to the interface definition is

781781

private IQueryable<T> Get<T>()

{

 // Retrieve source paths from settings file

 string XMLFullPath = Path.Combine(Settings.Default.XMLPath, typeof(T).ToString() + ".xml");

 string XSDFullPath = Path.Combine(Settings.Default.XSDPath, typeof(T).ToString() + ".xsd");

 // Enforce schema validation

 XMLReaderSettings xrs = new XMLReaderSettings();

 xrs.ValidationType = ValidationType.Schema;

 xrs.Schemas.Add(String.Empty, XSDFullPath);

 // Deserialize the XML file into an IQueryable collection

 using (FileStream fs = new FileStream(XMLFullPath, FileMode.Open, FileAccess.Read))

 {

 using (XMLReader xr = XMLReader.Create(fs, xrs))

 {

 IList<T> rowList = new List<T>();

 XMLSerializer xs = new XMLSerializer(rowList.GetType());

 rowList = xs.Deserialize(xr) as IList<T>;

 return rowList.AsQueryable<T>();

 }

 }

}

public IQueryable<GetAllCategory> GetAllCategories

{

 get { return Get<GetAllCategory>();

}

Figure 2. De-serializing an XML file into a typed Queryable interface

necessary to expose an API identical to the production

database implementation. Access to the class definitions

are necessary to support the typed queries required by

LINQ-to-SQL code. There are several different methods

for accomplishing this sharing of source files. One

approach is to insert pre-build events into the emulation

project and copy the current implementations of the

required files from the production project to the emulation

project. Another approach is to rely on the file system or

source management to maintain mirrors of the required

shared files in both projects. A third approach is to place

both the production project and the emulation project in

the same file directory. Regardless of which sharing

mechanism is employed, in order to enable transparent

drop-in functionality, both projects should output

identically named libraries (e.g. WidgetDataSource.dll).

4. The Get Meta-Method and Creating

Surrogate Data Sources

With the production and emulation projects set up, the

surrogate database entities can be created. In the case of

emulating a production database, using XML files is a

convenient design choice to store both the structure and

data of the application's backend database. The emulation

implementation uses a combination of XML serialization

and generics to simplify this common interface. The

surrogate database system defines a meta-method named

Get() as shown in Figure 2. The definition of the Get()

method allows test engineers to write code which uses an

XML file as a surrogate for a SQL database, using

identical code as in the case when the data source is the

production database.

There are two approaches to creating an XML file

which has an equivalent structure and equivalent data to a

SQL database. In addition to a fundamental XML file, the

surrogate testing system also requires XML schema

definitions for use in data source validation. One approach

is to first create an XML file by serializing the target SQL

database, and then to use the resulting XML file to infer

an XML schema definition. A second approach is to

analyze the target backend database to produce a SQL

schema definition of the database, then use the database

schema to produce an equivalent XML schema definition,

and then use the XML schema to create an XML data file

which conforms to the XML schema. The first approach is

generally easier but somewhat less reliable than the

second approach for complex databases. Implementation

of the first approach might resemble:

var categories = from c

 in wDataContext.GetAllCategories

 select c;

IList<GetAllCategory> categoryList =

782782

 categories.ToList();

XMLSerializer xs = new

 XMLSerializer(categoryList.GetType());

XMLWriter xw =

 XMLWriter.Create(XMLFilename)

xs.Serialize(xw, categoryList);

The second approach to generating surrogate XML

data files and schema definitions is non-trivial. In practice,

a reasonable approach is to use any one of several

commercially available tools to convert SQL database

schema to XML schema in the form of XSD (XML

Schema Definition) files.

5. References

[1] Carsten Binnig, Donald Kossmann, and Eric Lo, "Towards

Automatic Test Database Generation", IEEE Data Engineering

Bulletin, 2008, vol. 31, no. 1, pp. 28-35.

[2] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J.

Weyuker. "A Framework for Testing Database Applications",

Proceedings of the 7th International Symposium on Software

Testing and Analysis, August 2000, pp. 147-157.

[3] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and

E. J. Weyuker. "An AGENDA for Testing Relational Database

Applications", Software Testing, Verification, and Reliability,

2004, vol. 14, no. 1, pp. 17-44.

[4] B. Daou, R. A. Haraty, and N. Mansour, "Regression Testing

of Database Applications", Proceedings of the ACM Symposium

on Applied Computing, 2001, pp. 285-289.

[5] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.

Weinberger. "Quickly Generating Billion-Record Synthetic

Databases", Proceedings of the ACM SIGMOD International

Conference on Management of Data, 1994, pp. 243-252.

[6] F. Haftmann, D. Kossmann, and A. Kreutz, "Efficient

Regression Tests for Database Applications", Proceedings of the

Conference on Innovative Data Systems Research, 2005, pp. 95-

106.

[7] James D. McCaffrey, "Testing SQL Stored Procedures using

LINQ", MSDN Magazine, April 2008, vol. 23, no. 5, pp. 99-

104.

[8] David Saff and Michael D. Ernst, "Mock Object Creation for

Test Factoring", Proceedings of the 5th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, 2004, pp. 49-51.

[9] D. Willmor and S. M. Embury, "An Intensional Approach to

the Specification of Test Cases for Database Applications",

Proceeding of the 28th International Conference on Software

Engineering, 2006, pp. 102-111.

[10] J. Zhang, C. Xu, and S. Cheung, Automatic Generation of

Database Instances for Whitebox Testing", Proceedings of the

25th Annual International Computer Software and Applications

Conference, October 2001, pp. 161-165.

783783

