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Abstract

Visual categorization problems, such as object classi-

fication or action recognition, are increasingly often ap-

proached using a detection strategy: a classifier function

is first applied to candidate subwindows of the image or the

video, and then the maximum classifier score is used for

class decision. Traditionally, the subwindow classifiers are

trained on a large collection of examples manually anno-

tated with masks or bounding boxes. The reliance on time-

consuming human labeling effectively limits the application

of these methods to problems involving very few categories.

Furthermore, the human selection of the masks introduces

arbitrary biases (e.g. in terms of window size and location)

which may be suboptimal for classification.

In this paper we propose a novel method for learning

a discriminative subwindow classifier from examples anno-

tated with binary labels indicating the presence of an object

or action of interest, but not its location. During training,

our approach simultaneously localizes the instances of the

positive class and learns a subwindow SVM to recognize

them. We extend our method to classification of time series

by presenting an algorithm that localizes the most discrim-

inative set of temporal segments in the signal. We evalu-

ate our approach on several datasets for object and action

recognition and show that it achieves results similar and in

many cases superior to those obtained with full supervision.

1. Introduction

Object categorization systems aim at recognizing the

classes of the objects present in an image, independently of

the background. Early computer vision methods for object

categorization attempted to build robustness to background

clutter by using image segmentation as preprocessing. It

was hoped that segmentation methods could partition im-

ages into their high-level constituent parts, and categoriza-

tion could then be simply carried out as recognition of the

object classes corresponding to the segments. This naive

strategy to categorization floundered on the challenges pre-

Figure 1. A unified framework for image categorization and time

series classification from weakly labeled data. Our method si-

multaneously localizes the regions of interest in the examples and

learns a region-based classifier, thus building robustness to back-

ground and uninformative signal.

sented by bottom-up image segmentation. The difficulty of

partitioning an image into objects purely based on low-level

cues is now well understood and it has led in recent years to

a flourishing of methods where bottom-up segmentation is

assisted by concurrent top-down recognition [32, 17, 4, 28].

However, the application of these methods has been limited

in practice by a) the challenges posed by the acquisition of

detailed ground truth segmentations needed to train these

systems, and b) the high computational complexity of se-

mantic segmentation, which requires solving the classifica-

tion problem at the pixel-level. An efficient alternative is

provided by object detection methods, which can perform

object localization without requiring pixel-level segmenta-

tion. Object detection algorithms operate by evaluating a



classifier function at many different subwindows of the im-

age and then predicting the object presence in subwindows

with high-score. This methodology has been applied with

great success to a wide variety of object classes [30, 8, 7].

Recent work [15] has shown that efficient computation of

classification maxima over all possible subwindows of an

image is even possible for highly sophisticated classifiers,

such as SVMs with spatial pyramid kernels. Although great

advances have been made in terms of reducing the com-

putational complexity of object detection algorithms, their

accuracy has remained dependent on the amount of human-

annotated data available to train them. Subwindows (or

bounding boxes) are obviously less-time consuming to col-

lect than detailed segmentations. However, the dependence

on human work for training inevitably limits the scalabil-

ity of these methods. Furthermore, not only the amount

of ground truth data but also the characteristics of the hu-

man selections may affect the detection. For example, it

has been shown [8] that the specific size and location of the

selections may have a significant impact on performance.

In some cases, including a margin around the bounding box

of the training selections will lead to better detection be-

cause of statistical correlation between the appearance of

the region surrounding the object (often referred to as the

“spatial context”) and the category of the object (e.g. cars

tend to appear on roads). However, it is rather difficult to

tune the amount of context to include for optimal classifi-

cation. The problem is even more acute for the case of cat-

egorization of time series data. Consider the task of auto-

matically monitoring the behavior of an animal based on its

body movement. It is safe to believe that the intrinsic differ-

ences between the distinct animal activities (e.g. drinking,

exploring, etc.) do not appear continuously in the examples

but are rather associated to specific movement patterns (e.g.

the turning of the head, a short fast-pace walk, etc.) pos-

sibly occurring multiple times in the sequences. Thus, as

for the case of object categorization, classification based on

comparisons of the whole signals is unlikely to yield good

performance. However, if we asked a person to localize the

most discriminative patterns in such sequences, we would

obtain highly subjective annotations, unlikely to be optimal

for the training of a classifier.

In this paper we propose a novel learning framework

that simultaneously localizes the most discriminative sub-

windows in the data and learns a classifier to distinguish

them. Our algorithm requires only the class labels as an-

notation for the training examples, and thus eliminates the

high cost and arbitrariness of human ground truth selec-

tions. In the case of object categorization, our method

optimizes an SVM classification objective with respect to

both the classifier parameters and the subwindows contain-

ing the object of interest in the positive image examples. In

the case of classification of time series, we relax the sub-

window contiguity constraint in order to discover discrim-

inative patterns which may occur discontinuously over the

observation period. Specifically, we allow the discrimina-

tive patterns to occur in at most k disjoint time-intervals,

where k is a problem-dependent tunable parameter of our

system. The algorithm solves for the locations and dura-

tions of these intervals while learning the SVM classifier.

We demonstrate our approach on several object and activity

recognition datasets and show that our weakly-supervised

classifiers consistently match and often surpass the accu-

racy of SVMs trained under full supervision.

2. Related Work

Most prior work on weakly supervised object localiza-

tion and classification is based on the use of region or part-

based generative models. Fergus et al. [12] represent ob-

jects as flexible constellation of parts by learning proba-

bilistic models of both the appearance as well as the mu-

tual position of the parts. Parts are selected from points

found by a feature detector. Classification of a test image

is performed in a Bayesian fashion by evaluating the de-

tected features using the learned model. The performance

of this system rests completely on the ability of the fea-

ture detector to fire consistently at points corresponding to

the learned parts of the model. Russell et al. [24] instead

propose a fully-unsupervised algorithm to discover objects

and associated segments from a large collection of images.

Multiple segmentations are computed from each image by

varying the parameters of a segmentation method. The key-

assumption is that each object instance is correctly seg-

mented at least once and that the features of correct seg-

ments form object-specific coherent clusters discoverable

using latent topic models from text analysis. Although the

algorithm is shown to be able to discover many different

types of objects, its effectiveness as a categorization tech-

nique is unclear. Cao and Fei-Fei [5] further extend the

latent topic model by assuming that a single topic model

is responsible for generating the image patches within each

region of the image, thus enforcing spatial coherence within

each segment. Todorovic and Ahuja [27] describe a sys-

tem that learns tree-based representations of multiscale im-

age segmentations via a subtree matching algorithm. A

multitude of algorithms based on Multiple Instance Learn-

ing (MIL) have been recently proposed for training object

classifiers with weakly supervised data (see [19, 31, 2, 6]

for a sampling of these techniques). Most of these meth-

ods view images as bags of segments, traditionally com-

puted using bottom-up segmentation or fixed partitioning

of the image into blocks. Then MIL trains a discrimina-

tive binary classifier predicting the class of segments, un-

der the assumption that each positive training image con-

tains at least one true-positive segment (corresponding to

the object of interest), while negative training images con-



tain none. However, these approaches incur in the same

problem faced by the early segmentation-based recognition

systems: segmentation from low-level cues is often unable

to provide semantically correct segments. Galleguillos et

al. [13] attempt to circumvent this problem by providing

multiple segmentations to the MIL learning algorithm in

the hope one of them is correct. The approach we propose

does not rely on unreliable segmentation methods as pre-

processing. Instead, it performs localization while training

the classifier. Our work can also be viewed as an exten-

sion of feature selection methods, in which different fea-

tures are selected for each example. The idea of joint feature

selection and classifier optimization has been proposed be-

fore, but always in combination with strongly labeled data.

Schweitzer [25] proposes a linear time algorithm to select

jointly a subset of pixels and a set of eigenvectors that min-

imize the Rayleigh quotient in Linear Discriminant Anal-

ysis. Nguyen et al. [20] propose a convex formulation to

simultaneously select the most discriminative pixels and op-

timize the SVM parameters. However, both aforementioned

methods require the training data to be well aligned and the

same set of pixels is selected for every image. Felzenszwalb

et al. [11] describe Latent SVM, a powerful classification

framework based on a deformable part model. However,

also this method requires knowing the bounding boxes of

foreground objects during training. Finally, Blaschko and

Lampert [3] use supervised structured learning to improve

the localization accuracy of SVMs.

The literature on weakly supervised or unsupervised lo-

calization and categorization applied to time series is fairly

limited compared to the object recognition case. Zhong

et al. [33] detect unusual activities in videos by cluster-

ing equal-length segments extracted from the video. The

segments falling in isolated clusters are classified as ab-

normal activities. Fanti et al. [10] describe a system for

unsupervised human motion recognition from videos. Ap-

pearance and motion cues derived from feature tracking are

used to learn graphical models of actions based on triangu-

lated graphs. Niebles et al. [22] tackle the same problem but

represent each video as a bag of video words, i.e. quantized

descriptors computed at spatial-temporal interest points. An

EM algorithm for topic models is then applied to discover

the latent topics corresponding to the distinct actions in the

dataset. Localization is obtained by computing the MAP

topic of each word.

3. Localization–classification SVM

In this section we first propose an algorithm to simul-

taneously localize objects of interest and train an SVM. We

then extend it to classification of time series data by present-

ing an efficient algorithm to identify in the signal an optimal

set of discriminative segments, which are not constrained to

be contiguous.

3.1. The learning objective

Assume we are given a set of positive training images

{d+
i } and a set of negative training images {d−

i } corre-

sponding to weakly labeled data with labels indicating for

each example the presence or absence of an object of in-

terest. Let LS(d) denote the set of all possible subwin-

dows of image d. Given a subwindow x ∈ LS(d), let ϕ(x)
be the feature vector computed from the image subwindow.

We learn an SVM for joint localization and classification by

solving the following constrained optimization:

minimize
w,b

1

2
||w||2, (1)

s.t. max
x∈LS(d+

i
)
{wT ϕ(x) + b} ≥ 1 ∀i, (2)

max
x∈LS(d−

i
)
{wT ϕ(x) + b} ≤ −1 ∀i. (3)

The constraints appearing in this objective state that each

positive image must contain at least one subwindow classi-

fied as positive, and that all subwindows in each negative

image must be classified as negative. The goal is then to

maximize the margin subject to these constraints. By op-

timizing this problem we obtain an SVM, i.e. parameters

(w, b), that can be used for localization and classification.

Given a new testing image d, localization and classification

are done as follows. First, we find the subwindow x̂ yield-

ing the maximum SVM score:

x̂ = arg max
x∈LS(d)

w
T ϕ(x). (4)

If the value of w
T ϕ(x̂) + b is positive, we report x̂ as the

detected object for the test image. Otherwise, we report no

detection.

As in the traditional formulation of SVM, the constraints

are allowed to be violated by introducing slack variables:

minimize
w,b

1

2
||w||2 + C

∑

i

αi + C
∑

i

βi, (5)

s.t. max
x∈LS(d+

i
)
{wT ϕ(x) + b} ≥ 1 − αi ∀i, (6)

max
x∈LS(d−

i
)
{wT ϕ(x) + b} ≤ −1 + βi ∀i, (7)

αi ≥ 0, βi ≥ 0 ∀i.

Here, C is the parameter controlling the trade-off between

having a large margin and less constraint violation.

3.2. Optimization

Our objective is in general non-convex. We propose

optimization via a coordinate descent approach that alter-

nates between optimizing the objective w.r.t. parameters

(w, b, {αi}, {βi}) and finding the subwindows of images



{d+
i } ∪ {d−

i } that maximize the SVM scores. However,

since the cardinality of the sets of all possible subwindows

may be very large, special treatment is required for con-

straints of type (7). We use constraint generation to handle

these constraints: LS(d−
i ) is iteratively updated by adding

the most violated constraint at every step. Although con-

straint generation has exponential running time in the worst

case, it often works well in practice.

The above optimization requires at each iteration to lo-

calize the subwindow maximizing the SVM score in each

image. Thus, we need a very fast localization procedure.

For this purpose, we adopt the representation and algorithm

described in [15]. Images are represented as bags of visual

words obtained by quantizing SIFT descriptors [18] com-

puted at random locations and scales. For quantization, we

use a visual dictionary built by applying K-means cluster-

ing to a set of descriptors extracted from the training im-

ages [26]. The set of possible subwindows for an image

is taken to be the set of axis-aligned rectangles. The feature

vector ϕ(x) is the histogram of visual words associated with

descriptors inside rectangle x. Lampert et al. [15] showed

that, when using this image representation, the search for

the rectangle maximizing the SVM score can be executed

efficiently by means of a branch-and-bound algorithm.

3.3. Extension to time series

As in the case of image categorization, even for time

series the global statistics computed from the entire signal

may yield suboptimal classification. For example, the dif-

ferences between two classes of temporal signals may not

be visible over the entire observation period. However, un-

like in the case of images where objects often appear as

fully-connected regions, the patterns of interest in temporal

signals may not be contiguous. This raises a technical chal-

lenge when extending the learning formulation of Eq. (5) to

time series classification: how to efficiently search for sets

of non-contiguous discriminative segments? In this section

we describe a representation of temporal signals and a novel

efficient algorithm to address this challenge.

3.3.1 Representation of time series

Time series can be represented by descriptors computed

at spatial-temporal interest points [16, 9, 22]. As in the

case of images, sample descriptors from training data can

be clustered to create a visual-temporal vocabulary [9].

Subsequently, each descriptor is represented by the ID of

the corresponding vocabulary entry and the frame num-

ber at which the point is detected. In this work, we de-

fine a k-segmentation of a time series as a set of k disjoint

time-intervals, where k is a tunable parameter of the algo-

rithm. Note that it is possible for some intervals of a k-

segmentation to be empty. Given a k-segmentation x, let

ϕ(x) denote the histogram of visual-temporal words asso-

ciated with interest points in x. Let Ci denote the set of

words occurring at frame i. Let ai =
∑

c∈Ci
wc if Ci is

non-empty, and ai = 0 otherwise. ai is the weighted sum

of words occurring in frame i where word c is weighted

by SVM weight wc. From these definitions it follows that

w
T ϕ(x) =

∑
i∈x

ai. For fast localization of discrimina-

tive patterns in time series we need an algorithm to effi-

ciently find the k-segmentation maximizing the SVM score

w
T ϕ(x). Indeed, this optimization can be solved globally

in a very efficient way. The following section describes the

algorithm. In [21], we prove the optimality of the solution

produced by this algorithm.

3.3.2 An efficient localization algorithm

Let n be the length of the time signal and I = {[l, u] : 1 ≤
l ≤ u ≤ n} be the set of all subintervals of [1, n]. For a sub-

set S ⊆ {1, · · · , n}, let f(S) =
∑

i∈S ai. Maximization of

w
T ϕ(x) is equivalent to:

maximize
I1,...,Ik

k∑

j=1

f(Ij) s.t. Ii ∈ I & Ii ∩ Ij = φ ∀i 6= j. (8)

This problem can be optimized very efficiently using

Algo. 1 presented below. This algorithm progressively finds

the set of m intervals (possibly empty) that maximize (8) for

m = 1, · · · , k. Given the optimal set of m intervals, the op-

timal set of m + 1 intervals is obtained as follows. First,

find the interval J1 that has maximum score f(J1) among

the intervals that do not overlap with any currently selected

interval (line 3). Second, locate J2, the worst subinterval

of all currently selected intervals, i.e. the subinterval with

lowest score f(J2) (line 4). Finally, the optimal set of m+1
intervals is constructed by executing either of the following

two operations, depending on which one leads to the higher

objective:

1. Add J1 to the optimal set of m intervals (line 6);

2. Break the interval of which J2 is a subinterval into

three intervals and remove J2 (line 9).

Algo. 1 assumes J1 and J2 can be found efficiently. This

is indeed the case. We now describe the procedure for find-

ing J1. The procedure for finding J2 is similar.

Let Xm denote the relative complement of Xm in [1, n],
i.e. Xm is the set of intervals such that the “union” of the

intervals in Xm and Xm is the interval [1, n]. Since Xm

has at most m elements, Xm has at most m + 1 elements.

Since J1 does not intersect with any interval in Xm, it must

be a subinterval of an interval of Xm. Thus, we can find J1

as J1 = arg maxS∈Xm f(JS) where:

JS = arg max
J⊆S

f(J). (9)



Algorithm 1 Find best k disjoint intervals that optimize (8)

Input: a1, · · · , an, k ≥ 1.

Output: a set X k of best k disjoint intervals.

1: X 0 := φ.

2: for m = 0 to k − 1 do

3: J1 := arg maxJ∈I f(J) s.t. J ∩ S = φ ∀S ∈ Xm.

4: J2 := arg maxJ∈I −f(J) s.t. J ⊂ S ∈ Xm.

5: if f(J1) ≥ −f(J2) then

6: Xm+1 := Xm ∪ {J1}
7: else

8: Let S ∈ Xm : J2 ⊂ S. S is divided into three

disjoint intervals: S = S− ∪ J2 ∪ S+.

9: Xm+1 := (Xm − {S}) ∪ {S−, S+}

Eq. (9) is a basic operation that is needed to be performed

repeatedly: finding a subinterval of an interval that maxi-

mizes the sum of elements in that subinterval. This opera-

tion can be performed by Algo. 2 below with running time

complexity O(n). Note that the result of executing (9) can

Algorithm 2 Find the best subinterval

Input: a1, · · · , an, an interval [l, u] ⊂ [1, n].
Output: [sl, su] ⊂ [l, u] with maximum sum of elements.

1: b0 := 0.
2: for m = 1 to n do

3: bm := bm−1 + am. //compute integral image

4: [sl, su] := [0, 0]; val := 0. //empty subinterval

5: m̂ := l − 1. //index for minimum element so far

6: for m = l to u do

7: if bm − b bm > val then

8: [sl, su] := [m̂ + 1;m]; val := bm − b bm

9: else if bm < b bm then

10: m̂ := m. //keep track of the minimum element

be cached; we do not need to recompute JS for many S at

each iteration of Algo. 1. Thus the total running complex-

ity of Algo. 1 is O(nk). Algo. 1 guarantees to produce a

globally optimal solution for (8) (see [21]).

4. Experiments

This section describes experiments on several datasets

for object categorization and time series classification.

4.1. Object localization and categorization

This subsection presents evaluations on two image col-

lections. The first experiment was performed on CMU Face

Images, a publicly available dataset from the UCI machine

learning repository1. This database contains 624 face im-

ages of 20 people with different expressions and poses. The

subjects wear sunglasses in roughly half of the images. Our

classification task is to distinguish between the faces with

1 http://archive.ics.uci.edu/ml/datasets/CMU+Face+Images

(a)

(b)
Figure 2. Examples taken from (a) the CMU Face Images and (b)

the street scene dataset.

sunglasses and the faces without sunglasses. Some image

examples from the database are given in Fig. 2(a). We di-

vided this image collection into disjoint training and testing

subsets. Images of the first 8 people are used for training

while images of the last 12 people are reserved for testing.

Altogether, we had 254 training images (126 with glasses

and 128 without glasses) and 370 testing images (185 ex-

amples for both the positive and the negative class).

The second experiment was performed on a dataset col-

lected by us. Our collection contains 400 images of street

scenes. Half of the images contain cars and half of them do

not. This is a challenging dataset because the appearance

of the cars in the images varies in shape, size, grayscale in-

tensity, and location. Furthermore, the cars occupy only

a small portion of the images and may be partially oc-

cluded by other objects. Some examples of images from this

dataset are shown in Fig. 2(b). Given the limited amount of

examples available, we applied 4-fold cross validation to

obtain an estimate of the performance.

Each image is represented by a set of 10,000 local SIFT

descriptors [18] selected at random locations and scales.

The descriptors are quantized using a dictionary of 1,000 vi-

sual words obtained by applying hierarchical K -means [23]

to 100,000 training descriptors.

In order to speed up the learning, an upper constraint on

the rectangle size is imposed. In the first experiment, as

the image size is 120 × 128 and the sizes of sunglasses are

relative small, we restrict the height and width of permissi-

ble rectangles to not exceed 30 and 50 pixels, respectively.

Similarly, for the second experiment, we constrain permis-

sible rectangles to have height and width no larger than 300
and 500 pixels, respectively (c.f. image size of 600 × 800).

We compared our approach to several competing meth-

ods. SVM denotes a traditional SVM approach in which

each image is represented by the histogram of the words in

the whole image. BoW is the bag-of-words method [23]

in the implementation of [29]. It uses a 10-nearest neigh-

bor classifier. We also benchmark our method against

SVM-FS [15], a fully supervised method requiring ground

truth subwindows during training (FS stands for fully super-

vised). SVM-FS trains an SVM using ground truth bound-

ing boxes as positive examples and ten random rectangles



Dataset Measure BoW SVM SVM-FS Ours

Faces
Acc. (%) 80.11 82.97 86.79 90.0

ROC Area n/a 0.90 0.94 0.96

Cars
Acc. (%) 77.5 80.75 81.44 84.0

ROC Area n/a 0.86 0.88 0.90

Table 1. Comparison results on the CMU Face and car datasets.

BoW: bag of words approach [23]. SVM: SVM using global statis-

tics. SVM-FS [15] requires bounding boxes of foreground objects

during training. Our method is significantly better than the others,

and it outperforms even the algorithm using strongly labeled data.

from each negative image for negative data.

Tab. 1 shows the classification performance measured

using both the accuracy rates and the areas under the ROCs.

Note that our approach outperforms not only SVM and

BoW (which are based on global statistics), but also SVM-

FS, which is a fully supervised method requiring the bound-

ing boxes of the objects during training. This suggests

that the boxes tightly enclosing the objects of interest are

not always the most discriminative regions. Our method

automatically localizes the subwindows that are most dis-

criminative for classification. Fig. 3(a) shows discrimina-

tive detection on a few face testing examples. Sunglasses

are the distinguishing elements between positive and nega-

tive classes. Our algorithm successfully discovers such re-

gions and exploits them to improve the classification perfor-

mance. Fig. 3(b) shows some examples of car localization.

Parts of the road below the cars tend to be included in the

detection output. This suggests that the appearance of roads

is a contextual indication for the presence of cars. Fig. 4

displays several difficult cases where our method does not

provide good localization of the objects.

SVM, SVM-FS, and our proposed method require tuning

of a single parameter, C, controlling the trade-off between a

large margin and less constraint violation. This parameter is

tuned using 4-fold cross validation on training data. The pa-

rameter sweeping is done exactly in the same fashion for all

algorithms. Optimizing (5) is an iterative procedure, where

each iteration involves solving a convex quadratic program-

ming problem. Our implementation uses , a package for

specifying and solving convex programs [14]. We found

that our algorithm generally converges within 100 iterations

of coordinate descent.

We also evaluated all methods on the Caltech-4 dataset2.

We found that in this case SVM-FS, a classifier trained on

bounding boxes of the foreground objects, performs much

worse than traditional SVM. This is due to the idiosyn-

crasies of this dataset which contains almost identical back-

grounds for objects of the same class. As a result, reducing

contextual information generally hurts performance. Our

approach here learns the relevancy of the context and de-

2http://www.robots.ox.ac.uk/∼vgg/data3.html

(a)

(b)
Figure 3. Localization of (a) sunglasses and (b) cars on test im-

ages. Note how the road below the cars is partially included in the

detection output. This indicates that the appearance of road serves

as a contextual indication for the presence of cars.

Figure 4. Difficult cases for localization. a, b: sunglasses are not

clearly visible in the images. c: the foreground object is very

small. d: misdetection due to the presence of the trailer wheel.

tects large subwindows, thus achieving performance similar

to that of SVM. Complete results are given in [21].

4.2. Classification of time series data

This section describes our classification experiments on

time series datasets.

A synthetic example The data in this evaluation consists

of 800 artificially generated examples of binary time series

(400 positive and 400 negative). Some examples are shown

in Fig. 5. Each positive example contains three long seg-

ments of fixed length with value 1. We refer to these as

the foreground segments. Note that the end of a foreground

segment may meet the beginning of another one, thus cre-

ating a longer foreground segment (see e.g. the bottom left

signal of Fig. 5). The locations of the foreground segments

are randomly distributed. Each negative example contains

fewer than three foreground segments. Both positive and

negative data are artificially degraded to simulate measure-

ment noise: with a certain probability, zero energy values

are flipped to have value 1. The temporal length of each sig-

nal is 100 and the length of each foreground segment is 10.

We split the data into separate training and testing sets, each

containing 400 examples (200 positive, 200 negative).

We evaluated the ability of our algorithm to discover

automatically the discriminative segments in these weakly-

labeled examples. We trained our localization-classification

SVM by learning k-segmentations for values of k ranging

from 1 to 20. Note that the algorithm has no knowledge

of the length or the type of the pattern distinguishing the

two classes. Tab. 2 summarizes the performance of our

approach. Traditional SVM, based on the statistics of

the whole signals, yields an accuracy rate of 66.5% and



Figure 5. What distinguishes the time series on the left from the

ones on the right? Left: positive examples, each containing three

long segments with value 1 at random locations. Right: negative

examples, each containing fewer than three long segments with

value 1. All signals are perturbed with measurement noise corre-

sponding to spikes with value 1 at random locations.

k 1 2 3 to 7 8 12 16 20

Acc.(%) 77.0 93.0 100 98.5 91.5 77.5 67.25

ROC Area .843 .980 1.00 .998 .933 .793 .613

Table 2. Classification performance on temporal data using our ap-

proach. We show the accuracy rates and the ROC areas obtained

using different values of k, the number of discriminative time in-

tervals used by the algorithm. Here traditional SVM, based on the

global statistics of the signals, yields an accuracy rate of 66.5%

and an area under the ROC of 0.577.

an area under the ROC of 0.577. Thus, our approach

provides much better accuracy than SVM. Note that the

performance of our method is relatively insensitive to the

choice of k, the number of discriminative time-intervals

used for classification. It achieves 100% accuracy when

the number of intervals are in the range 3 to 7; it works

relatively well even for other settings. In practice, one can

use cross validation to choose the appropriate number of

segments. Furthermore, Tab. 2 reaffirms the need of using

multiple intervals: our classifier built with only one interval

achieves only an accuracy rate of 77%.

Mouse behavior We now describe an experiment of

mouse behavior recognition performed on a publicly avail-

able dataset3. This collection contains videos correspond-

ing to five distinct mouse behaviors: drinking, eating, ex-

ploring, grooming, and sleeping. There are seven groups of

videos, corresponding to seven distinct recording sessions.

Because of the limited amount of data, performance is es-

timated using leave-one-group-out cross validation. This is

the same evaluation methodology used by Dollár et al. [9].

Fig. 6 shows some representative frames of the clips. Please

refer to [9] for further details about this dataset.

We represent each video clip as a set of cuboids [9]

which are spatial-temporal local descriptors. From each

video we extract cuboids at interest points computed us-

ing the cuboid detector [9]. To these descriptors we add

cuboids computed at random locations in order to yield a

3http://vision.ucsd.edu/∼pdollar/research/research.html

Figure 6. Example frames from the mouse videos.

Action Dollár et al. [9] 1-NN SVM Ours

Drink 0.63 0.58 0.63 0.67

Eat 0.92 0.87 0.91 0.91

Explore 0.80 0.79 0.85 0.85

Groom 0.37 0.23 0.44 0.54

Sleep 0.88 0.95 0.99 0.99

Table 3. F1 scores: detection performance of several algorithms.

Higher F1 scores indicate better performance.

total of 2500 points for each video (this augmentation of

points is done to cancel out effects due to differing se-

quence lengths). A library of 50 cuboid prototypes is cre-

ated by clustering cuboids sampled from training data using

k -means. Subsequently, each cuboid is represented by the

ID of the closest prototype and the frame number at which

the cuboid was extracted. We trained our algorithm with

values of k varying from 1 to 3. Here we report the perfor-

mance obtained with the best setting for each class.

A performance comparison is shown in Tab. 3. The sec-

ond column shows the result reported by Dollár et al. [9]

using a 1-nearest neighbor classifier on histograms contain-

ing only words computed at spatial-temporal interest points.

1-NN is the result obtained with the same method applied to

histograms including also random points. SVM is the tra-

ditional SVM approach in which each video is represented

by the histogram of words over the entire clip. The per-

formance is measured using the F1 score which is defined

as: F1 = 2·Recall·Precision
Recall+Precision

. Here we use this measure of

performance instead of the ROC metric because the latter

is designed for binary classification rather than detection

tasks [1]. Our method achieves the best F1 score on all

but one action.

5. Conclusions and Future Work

This paper proposes a novel framework for discrimina-

tive localization and classification from weakly labeled im-

ages or time series. We show that the joint learning of the

discriminative regions and of the region-based classifiers

leads to categorization accuracy superior to the performance

obtained with supervised methods relying on costly human

ground truth data. In future work we plan to investigate an

unsupervised version of our approach for automatic discov-

ery of object classes and actions from unlabeled collections

of images and videos. Furthermore, we would like to extend

our k-segmentation model to images in order to improve the

recognition of objects having complex shapes.
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