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Abstract

Visual categorization problems, such as object classification or action recognition,

are increasingly often approached using a detection strategy: a classifier function

is first applied to candidate subwindows of the image or the video, and then the

maximum classifier score is used for class decision. Traditionally, the subwindow

classifiers are trained on a large collection of examples manually annotated with

masks or bounding boxes. The reliance on time-consuming human labeling ef-

fectively limits the application of these methods to problems involving very few

categories. Furthermore, the human selection of the masks introduces arbitrary

biases (e.g. in terms of window size and location) which may be suboptimal for

classification.

In this report we propose a novel method for learning a discriminative subwin-

dow classifier from examples annotated with binary labels indicating the presence

of an object or action of interest, but not its location. During training, our ap-

proach simultaneously localizes the instances of the positive class and learns a

subwindow SVM to recognize them. We extend our method to classification of

time series by presenting an algorithm that localizes the most discriminative set

of temporal segments in the signal. We evaluate our approach on several datasets

for object and action recognition and show that it achieves results similar and in

many cases superior to those obtained with full supervision.



Figure 1: A unified framework for image categorization and time series classifica-

tion from weakly labeled data. Our method simultaneously localizes the regions

of interest in the examples and learns a region-based classifier, thus building ro-

bustness to background and uninformative signal.

1 Introduction

Object categorization systems aim at recognizing the classes of the objects present

in an image, independently of the background. Early computer vision methods for

object categorization attempted to build robustness to background clutter by using

image segmentation as preprocessing. It was hoped that segmentation methods

could partition images into their high-level constituent parts, and categorization

could then be simply carried out as recognition of the object classes correspond-

ing to the segments. This naive strategy to categorization floundered on the chal-

lenges presented by bottom-up image segmentation. The difficulty of partitioning
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an image into objects purely based on low-level cues is now well understood and

it has led in recent years to a flourishing of methods where bottom-up segmen-

tation is assisted by concurrent top-down recognition [31, 17, 4, 27]. However,

the application of these methods has been limited in practice by a) the challenges

posed by the acquisition of detailed ground truth segmentations needed to train

these systems, and b) the high computational complexity of semantic segmen-

tation, which requires solving the classification problem at the pixel-level. An

efficient alternative is provided by object detection methods, which can perform

object localization without requiring pixel-level segmentation. Object detection

algorithms operate by evaluating a classifier function at many different subwin-

dows of the image and then predicting the object presence in subwindows with

high-score. This methodology has been applied with great success to a wide vari-

ety of object classes [29, 8, 7]. Recent work [15] has shown that efficient compu-

tation of classification maxima over all possible subwindows of an image is even

possible for highly sophisticated classifiers, such as SVMs with spatial pyramid

kernels. Although great advances have been made in terms of reducing the com-

putational complexity of object detection algorithms, their accuracy has remained

dependent on the amount of human-annotated data available to train them. Sub-

windows (or bounding boxes) are obviously less-time consuming to collect than

detailed segmentations. However, the dependence on human work for training in-

evitably limits the scalability of these methods. Furthermore, not only the amount

of ground truth data but also the characteristics of the human selections may af-

fect the detection. For example, it has been shown [8] that the specific size and

location of the selections may have a significant impact on performance. In some

cases, including a margin around the bounding box of the training selections will

lead to better detection because of statistical correlation between the appearance

of the region surrounding the object (often referred to as the “spatial context”) and

the category of the object (e.g. cars tend to appear on roads). However, it is rather

difficult to tune the amount of context to include for optimal classification. The

problem is even more acute for the case of categorization of time series data. Con-

sider the task of automatically monitoring the behavior of an animal based on its

body movement. It is safe to believe that the intrinsic differences between the dis-

tinct animal activities (e.g. drinking, exploring, etc.) do not appear continuously

in the examples but are rather associated to specific movement patterns (e.g. the

turning of the head, a short fast-pace walk, etc.) possibly occurring multiple times

in the sequences. Thus, as for the case of object categorization, classification

based on comparisons of the whole signals is unlikely to yield good performance.

However, if we asked a person to localize the most discriminative patterns in such
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sequences, we would obtain highly subjective annotations, unlikely to be optimal

for the training of a classifier.

In this report we propose a novel learning framework that simultaneously lo-

calizes the most discriminative subwindows in the data and learns a classifier to

distinguish them. Our algorithm requires only the class labels as annotation for

the training examples, and thus eliminates the high cost and arbitrariness of human

ground truth selections. In the case of object categorization, our method optimizes

an SVM classification objective with respect to both the classifier parameters and

the subwindows containing the object of interest in the positive image examples.

In the case of classification of time series, we relax the subwindow contiguity

constraint in order to discover discriminative patterns which may occur discontin-

uously over the observation period. Specifically, we allow the discriminative pat-

terns to occur in at most k disjoint time-intervals, where k is a problem-dependent

tunable parameter of our system. The algorithm solves for the locations and du-

rations of these intervals while learning the SVM classifier. We demonstrate our

approach on several object and activity recognition datasets and show that our

weakly-supervised classifiers consistently match and often surpass the accuracy

of SVMs trained under full supervision.

2 Related Work

Most prior work on weakly supervised object localization and classification is

based on the use of region or part-based generative models. Fergus et al. [12]

represent objects as flexible constellation of parts by learning probabilistic mod-

els of both the appearance as well as the mutual position of the parts. Parts are

selected from points found by a feature detector. Classification of a test image

is performed in a Bayesian fashion by evaluating the detected features using the

learned model. The performance of this system rests completely on the ability of

the feature detector to fire consistently at points corresponding to the learned parts

of the model. Russell et al. [23] instead propose a fully-unsupervised algorithm

to discover objects and associated segments from a large collection of images.

Multiple segmentations are computed from each image by varying the parame-

ters of a segmentation method. The key-assumption is that each object instance is

correctly segmented at least once and that the features of correct segments form

object-specific coherent clusters discoverable using latent topic models from text

analysis. Although the algorithm is shown to be able to discover many different

types of objects, its effectiveness as a categorization technique is unclear. Cao
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and Fei-Fei [5] further extend the latent topic model by assuming that a single

topic model is responsible for generating the image patches within each region

of the image, thus enforcing spatial coherence within each segment. Todorovic

and Ahuja [26] describe a system that learns tree-based representations of mul-

tiscale image segmentations via a subtree matching algorithm. A multitude of

algorithms based on Multiple Instance Learning (MIL) have been recently pro-

posed for training object classifiers with weakly supervised data (see [19, 30, 2, 6]

for a sampling of these techniques). Most of these methods view images as bags

of segments, traditionally computed using bottom-up segmentation or fixed parti-

tioning of the image into blocks. Then MIL trains a discriminative binary classifier

predicting the class of segments, under the assumption that each positive training

image contains at least one true-positive segment (corresponding to the object of

interest), while negative training images contain none. However, these approaches

incur in the same problem faced by the early segmentation-based recognition sys-

tems: segmentation from low-level cues is often unable to provide semantically

correct segments. Galleguillos et al. [13] attempt to circumvent this problem by

providing multiple segmentations to the MIL learning algorithm in the hope one

of them is correct. The approach we propose does not rely on unreliable segmen-

tation methods as preprocessing. Instead, it performs localization while training

the classifier. Our work can also be viewed as an extension of feature selection

methods, in which different features are selected for each example. The idea of

joint feature selection and classifier optimization has been proposed before, but

always in combination with strongly labeled data. Schweitzer [24] proposes a

linear time algorithm to select jointly a subset of pixels and a set of eigenvectors

that minimize the Rayleigh quotient in Linear Discriminant Analysis. Nguyen et

al. [20] propose a convex formulation to simultaneously select the most discrim-

inative pixels and optimize the SVM parameters. However, both aforementioned

methods require the training data to be well aligned and the same set of pixels is

selected for every image. Felzenszwalb et al. [11] describe Latent SVM, a pow-

erful classification framework based on a deformable part model. However, also

this method requires knowing the bounding boxes of foreground objects during

training. Finally, Blaschko and Lampert [3] use supervised structured learning to

improve the localization accuracy of SVMs.

The literature on weakly supervised or unsupervised localization and catego-

rization applied to time series is fairly limited compared to the object recognition

case. Zhong et al. [32] detect unusual activities in videos by clustering equal-

length segments extracted from the video. The segments falling in isolated clus-

ters are classified as abnormal activities. Fanti et al. [10] describe a system for
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unsupervised human motion recognition from videos. Appearance and motion

cues derived from feature tracking are used to learn graphical models of actions

based on triangulated graphs. Niebles et al. [21] tackle the same problem but rep-

resent each video as a bag of video words, i.e. quantized descriptors computed

at spatial-temporal interest points. An EM algorithm for topic models is then

applied to discover the latent topics corresponding to the distinct actions in the

dataset. Localization is obtained by computing the MAP topic of each word.

3 Localization–classification SVM

In this section we first propose an algorithm to simultaneously localize objects

of interest and train an SVM. We then extend it to classification of time series

data by presenting an efficient algorithm to identify in the signal an optimal set of

discriminative segments, which are not constrained to be contiguous.

3.1 The learning objective

Assume we are given a set of positive training images {d+
i } and a set of negative

training images {d−
i } corresponding to weakly labeled data with labels indicating

for each example the presence or absence of an object of interest. Let LS(d)
denote the set of all possible subwindows of image d. Given a subwindow x ∈
LS(d), let ϕ(x) be the feature vector computed from the image subwindow. We

learn an SVM for joint localization and classification by solving the following

constrained optimization:

minimize
w,b

1

2
||w||2, (1)

s.t. max
x∈LS(d+

i
)
{wTϕ(x) + b} ≥ 1 ∀i, (2)

max
x∈LS(d−

i
)
{wTϕ(x) + b} ≤ −1 ∀i. (3)

The constraints appearing in this objective state that each positive image must

contain at least one subwindow classified as positive, and that all subwindows in

each negative image must be classified as negative. The goal is then to maximize

the margin subject to these constraints. By optimizing this problem we obtain an

SVM, i.e. parameters (w, b), that can be used for localization and classification.
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Given a new testing image d, localization and classification are done as follows.

First, we find the subwindow x̂ yielding the maximum SVM score:

x̂ = arg max
x∈LS(d)

w
T ϕ(x). (4)

If the value of w
T ϕ(x̂) + b is positive, we report x̂ as the detected object for the

test image. Otherwise, we report no detection.

As in the traditional formulation of SVM, the constraints are allowed to be

violated by introducing slack variables:

minimize
w,b

1

2
||w||2 + C

∑

i

αi + C
∑

i

βi, (5)

s.t. max
x∈LS(d+

i
)
{wTϕ(x) + b} ≥ 1 − αi ∀i, (6)

max
x∈LS(d−

i
)
{wT ϕ(x) + b} ≤ −1 + βi ∀i, (7)

αi ≥ 0, βi ≥ 0 ∀i.

Here, C is the parameter controlling the trade-off between having a large margin

and less constraint violation.

3.2 Optimization

Our objective is in general non-convex. We propose optimization via a coordinate

descent approach that alternates between optimizing the objective w.r.t. parame-

ters (w, b, {αi}, {βi}) and finding the subwindows of images {d+
i } ∪ {d−

i } that

maximize the SVM scores. However, since the cardinality of the sets of all pos-

sible subwindows may be very large, special treatment is required for constraints

of type (7). We use constraint generation to handle these constraints: LS(d−
i )

is iteratively updated by adding the most violated constraint at every step. Al-

though constraint generation has exponential running time in the worst case, it

often works well in practice.

The above optimization requires at each iteration to localize the subwindow

maximizing the SVM score in each image. Thus, we need a very fast localization

procedure. For this purpose, we adopt the representation and algorithm described

in [15]. Images are represented as bags of visual words obtained by quantizing

SIFT descriptors [18] computed at random locations and scales. For quantization,

we use a visual dictionary built by applying K-means clustering to a set of de-

scriptors extracted from the training images [25]. The set of possible subwindows
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for an image is taken to be the set of axis-aligned rectangles. The feature vector

ϕ(x) is the histogram of visual words associated with descriptors inside rectan-

gle x. Lampert et al. [15] showed that, when using this image representation, the

search for the rectangle maximizing the SVM score can be executed efficiently by

means of a branch-and-bound algorithm.

3.3 Extension to time series

As in the case of image categorization, even for time series the global statistics

computed from the entire signal may yield suboptimal classification. For example,

the differences between two classes of temporal signals may not be visible over

the entire observation period. However, unlike in the case of images where objects

often appear as fully-connected regions, the patterns of interest in temporal signals

may not be contiguous. This raises a technical challenge when extending the

learning formulation of Eq. (5) to time series classification: how to efficiently

search for sets of non-contiguous discriminative segments? In this section we

describe a representation of temporal signals and a novel efficient algorithm to

address this challenge.

3.3.1 Representation of time series

Time series can be represented by descriptors computed at spatial-temporal inter-

est points [16, 9, 21]. As in the case of images, sample descriptors from training

data can be clustered to create a visual-temporal vocabulary [9]. Subsequently,

each descriptor is represented by the ID of the corresponding vocabulary entry

and the frame number at which the point is detected. In this work, we define a

k-segmentation of a time series as a set of k disjoint time-intervals, where k is

a tunable parameter of the algorithm. Note that it is possible for some intervals

of a k-segmentation to be empty. Given a k-segmentation x, let ϕ(x) denote the

histogram of visual-temporal words associated with interest points in x. Let Ci

denote the set of words occurring at frame i. Let ai =
∑

c∈Ci
wc if Ci is non-

empty, and ai = 0 otherwise. ai is the weighted sum of words occurring in frame

i where word c is weighted by SVM weight wc. From these definitions it follows

that w
Tϕ(x) =

∑
i∈x

ai. For fast localization of discriminative patterns in time

series we need an algorithm to efficiently find the k-segmentation maximizing the

SVM score w
Tϕ(x). Indeed, this optimization can be solved globally in a very

efficient way. The following section describes the algorithm. In the appendix, we

prove the optimality of the solution produced by this algorithm.
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3.3.2 An efficient localization algorithm

Let n be the length of the time signal and I = {[l, u] : 1 ≤ l ≤ u ≤ n} be the

set of all subintervals of [1, n]. For a subset S ⊆ {1, · · · , n}, let f(S) =
∑

i∈S ai.

Maximization of w
Tϕ(x) is equivalent to:

maximize
I1,...,Ik

k∑

j=1

f(Ij) s.t. Ii ∈ I & Ii ∩ Ij = φ ∀i 6= j. (8)

This problem can be optimized very efficiently using Algo. 1 presented below.

Algorithm 1 Find best k disjoint intervals that optimize (8)

Input: a1, · · · , an, k ≥ 1.

Output: a set X k of best k disjoint intervals.

1: X 0 := φ.

2: for m = 0 to k − 1 do

3: J1 := arg maxJ∈I f(J) s.t. J ∩ S = φ ∀S ∈ Xm.

4: J2 := arg maxJ∈I −f(J) s.t. J ⊂ S ∈ Xm.

5: if f(J1) ≥ −f(J2) then

6: Xm+1 := Xm ∪ {J1}
7: else

8: Let S ∈ Xm : J2 ⊂ S. S is divided into three disjoint intervals:

S = S− ∪ J2 ∪ S+.

9: Xm+1 := (Xm − {S}) ∪ {S−, S+}

This algorithm progressively finds the set of m intervals (possibly empty) that

maximize (8) for m = 1, · · · , k. Given the optimal set of m intervals, the optimal

set of m + 1 intervals is obtained as follows. First, find the interval J1 that has

maximum score f(J1) among the intervals that do not overlap with any currently

selected interval (line 3). Second, locate J2, the worst subinterval of all currently

selected intervals, i.e. the subinterval with lowest score f(J2) (line 4). Finally, the

optimal set of m + 1 intervals is constructed by executing either of the following

two operations, depending on which one leads to the higher objective:

1. Add J1 to the optimal set of m intervals (line 6);

2. Break the interval of which J2 is a subinterval into three intervals and re-

move J2 (line 9).
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Algo. 1 assumes J1 and J2 can be found efficiently. This is indeed the case.

We now describe the procedure for finding J1. The procedure for finding J2 is

similar.

Let Xm denote the relative complement of Xm in [1, n], i.e. Xm is the set of

intervals such that the “union” of the intervals in Xm and Xm is the interval [1, n].
Since Xm has at most m elements, Xm has at most m + 1 elements. Since J1

does not intersect with any interval in Xm, it must be a subinterval of an interval

of Xm. Thus, we can find J1 as J1 = arg maxS∈Xm f(JS) where:

JS = arg max
J⊆S

f(J). (9)

Eq. (9) is a basic operation that is needed to be performed repeatedly: finding

a subinterval of an interval that maximizes the sum of elements in that subinterval.

This operation can be performed by Algo. 2 below with running time complexity

O(n). Note that the result of executing (9) can be cached; we do not need to

Algorithm 2 Find the best subinterval

Input: a1, · · · , an, an interval [l, u] ⊂ [1, n].
Output: [sl, su] ⊂ [l, u] with maximum sum of elements.

1: b0 := 0.
2: for m = 1 to n do

3: bm := bm−1 + am. //compute integral image

4: [sl, su] := [0, 0]; val := 0. //empty subinterval

5: m̂ := l − 1. //index for minimum element so far

6: for m = l to u do

7: if bm − bbm > val then

8: [sl, su] := [m̂ + 1; m]; val := bm − bbm

9: else if bm < bbm then

10: m̂ := m. //keep track of the minimum element

recompute JS for many S at each iteration of Algo. 1. Thus the total running

complexity of Algo. 1 is O(nk). Algo. 1 guarantees to produce a globally optimal

solution for (8) (see the appendix).

4 Experiments

This section describes experiments on several datasets for object categorization

and time series classification.
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(a)

(b)

Figure 2: Examples taken from (a) the CMU Face Images and (b) the street scene

dataset.

4.1 Object localization and categorization

4.1.1 Experiments on car and face datasets

This subsection presents evaluations on two image collections. The first exper-

iment was performed on CMU Face Images, a publicly available dataset from

the UCI machine learning repository1. This database contains 624 face images

of 20 people with different expressions and poses. The subjects wear sunglasses

in roughly half of the images. Our classification task is to distinguish between

the faces with sunglasses and the faces without sunglasses. Some image exam-

ples from the database are given in Fig. 2(a). We divided this image collection

into disjoint training and testing subsets. Images of the first 8 people are used for

training while images of the last 12 people are reserved for testing. Altogether,

we had 254 training images (126 with glasses and 128 without glasses) and 370

testing images (185 examples for both the positive and the negative class).

The second experiment was performed on a dataset collected by us. Our col-

lection contains 400 images of street scenes. Half of the images contain cars and

half of them do not. This is a challenging dataset because the appearance of the

cars in the images varies in shape, size, grayscale intensity, and location. Further-

more, the cars occupy only a small portion of the images and may be partially

occluded by other objects. Some examples of images from this dataset are shown

in Fig. 2(b). Given the limited amount of examples available, we applied 4-fold

1 http://archive.ics.uci.edu/ml/datasets/CMU+Face+Images
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cross validation to obtain an estimate of the performance.

Each image is represented by a set of 10,000 local SIFT descriptors [18] se-

lected at random locations and scales. The descriptors are quantized using a dic-

tionary of 1,000 visual words obtained by applying hierarchical K -means [22] to

100,000 training descriptors.

In order to speed up the learning, an upper constraint on the rectangle size is

imposed. In the first experiment, as the image size is 120 × 128 and the sizes

of sunglasses are relative small, we restrict the height and width of permissible

rectangles to not exceed 30 and 50 pixels, respectively. Similarly, for the second

experiment, we constrain permissible rectangles to have height and width no larger

than 300 and 500 pixels, respectively (c.f. image size of 600 × 800).

We compared our approach to several competing methods. SVM denotes a

traditional SVM approach in which each image is represented by the histogram of

the words in the whole image. BoW is the bag-of-words method [22] in the imple-

mentation of [28]. It uses a 10-nearest neighbor classifier. We also benchmark our

method against SVM-FS [15], a fully supervised method requiring ground truth

subwindows during training (FS stands for fully supervised). SVM-FS trains an

SVM using ground truth bounding boxes as positive examples and ten random

rectangles from each negative image for negative data.

Tab. 1 shows the classification performance measured using both the accu-

racy rates and the areas under the ROCs. Note that our approach outperforms not

only SVM and BoW (which are based on global statistics), but also SVM-FS,

which is a fully supervised method requiring the bounding boxes of the objects

during training. This suggests that the boxes tightly enclosing the objects of in-

terest are not always the most discriminative regions. Our method automatically

localizes the subwindows that are most discriminative for classification. Fig. 3(a)

shows discriminative detection on a few face testing examples. Sunglasses are

the distinguishing elements between positive and negative classes. Our algorithm

successfully discovers such regions and exploits them to improve the classifica-

tion performance. Fig. 3(b) shows some examples of car localization. Parts of

the road below the cars tend to be included in the detection output. This suggests

that the appearance of roads is a contextual indication for the presence of cars.

Fig. 4 displays several difficult cases where our method does not provide good

localization of the objects.

SVM, SVM-FS, and our proposed method require tuning of a single param-

eter, C, controlling the trade-off between a large margin and less constraint vi-

olation. This parameter is tuned using 4-fold cross validation on training data.

The parameter sweeping is done exactly in the same fashion for all algorithms.
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Dataset Measure BoW SVM SVM-FS Ours

Faces
Acc. (%) 80.11 82.97 86.79 90.0

ROC Area n/a 0.90 0.94 0.96

Cars
Acc. (%) 77.5 80.75 81.44 84.0

ROC Area n/a 0.86 0.88 0.90

Table 1: Comparison results on the CMU Face and car datasets. BoW: bag of

words approach [22]. SVM: SVM using global statistics. SVM-FS [15] requires

bounding boxes of foreground objects during training. Our method is significantly

better than the others, and it outperforms even the algorithm using strongly labeled

data.

Optimizing (5) is an iterative procedure, where each iteration involves solving a

convex quadratic programming problem. Our implementation uses CVX, a pack-

age for specifying and solving convex programs [14]. We found that our algorithm

generally converges within 100 iterations of coordinate descent.

(a)

(b)

Figure 3: Localization of (a) sunglasses and (b) cars on test images. Note how

the road below the cars is partially included in the detection output. This indicates

that the appearance of road serves as a contextual indication for the presence of

cars.
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Figure 4: Difficult cases for localization. a, b: sunglasses are not clearly visible

in the images. c: the foreground object is very small. d: misdetection due to the

presence of the trailer wheel.

4.1.2 Experiments on Caltech-4

This subsection describes an experiment on the publicly available2 Caltech-4 dataset.

This collection contains images of different categories: airplanes side, background,

cars bard, faces, and motorbikes side. We consider binary classification tasks

where the goal is to distinguish one of the four object classes (airplanes side,

cars bard, faces, and motorbikes side) from the background clutter class. In this

experiment, we randomly sample a set of 100 images from each class for training.

The set of the remaining images is split into equal-size testing and validation sets.

The validation data is used for parameter tuning.

Tab. 2 shows the results of this experiment. As shown, SVM-FS, a method

that requires bounding boxes of the foreground objects for training, does not per-

form as well as SVM which is based on global statistics from the whole image.

This result suggests that contextual information is very important for classifica-

tion tasks on this dataset. Indeed, it is easy to verify by visual inspection that the

image backgrounds here often provide very strong categorization cues (see e.g.

the almost constant background of the face images). As a result our method can-

not provide any significant advantage on this dataset. However note that, unlike

SVM-FS, our joint localization and classification does not harm the classification

performance as our algorithm automatically learns the importance of contextual

information and uses large subwindows for recognition.

4.2 Classification of time series data

This section describes our classification experiments on time series datasets.

2http://www.robots.ox.ac.uk/∼vgg/data3.html
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Class Measure BoW SVM SVM-FS Ours

Airplanes
Acc. (%) 89.74 96.05 89.40 96.05

ROC Area n/a 0.99 0.95 0.99

Cars
Acc. (%) 94.93 98.17 n/a 98.28

ROC Area n/a 1.00 n/a 1.00

Faces
Acc. (%) 59.83 88.70 86.78 89.57

ROC Area n/a 0.95 0.91 0.95

Motorbikes
Acc. (%) 76.80 88.99 84.67 87.81

ROC Area n/a 0.95 0.92 0.94

Table 2: Results of binary classification between each of the four classes of

Caltech-4 and the background clutter class. BoW: bag of word approach [22].

SVM: traditional SVM using global statistics. SVM-FS [15] is the SVM method

that require strongly labeled data during training. Results of SVM-FS for the Cars

class is displayed as n/a because of the unavailability of ground truth annotation.

4.2.1 A synthetic example

The data in this evaluation consists of 800 artificially generated examples of bi-

nary time series (400 positive and 400 negative). Some examples are shown in

Fig. 5. Each positive example contains three long segments of fixed length with

value 1. We refer to these as the foreground segments. Note that the end of a fore-

ground segment may meet the beginning of another one, thus creating a longer

foreground segment (see e.g. the bottom left signal of Fig. 5). The locations of

the foreground segments are randomly distributed. Each negative example con-

tains fewer than three foreground segments. Both positive and negative data are

artificially degraded to simulate measurement noise: with a certain probability,

zero energy values are flipped to have value 1. The temporal length of each signal

is 100 and the length of each foreground segment is 10. We split the data into sep-

arate training and testing sets, each containing 400 examples (200 positive, 200

negative).

We evaluated the ability of our algorithm to discover automatically the dis-

criminative segments in these weakly-labeled examples. We trained our localization-

classification SVM by learning k-segmentations for values of k ranging from 1 to

20. Note that the algorithm has no knowledge of the length or the type of the

pattern distinguishing the two classes. Tab. 3 summarizes the performance of our

approach. Traditional SVM, based on the statistics of the whole signals, yields

14



Figure 5: What distinguishes the time series on the left from the ones on the

right? Left: positive examples, each containing three long segments with value 1

at random locations. Right: negative examples, each containing fewer than three

long segments with value 1. All signals are perturbed with measurement noise

corresponding to spikes with value 1 at random locations.

k 1 2 3 to 7 8 12 16 20

Acc.(%) 77.0 93.0 100 98.5 91.5 77.5 67.25

ROC Area .843 .980 1.00 .998 .933 .793 .613

Table 3: Classification performance on temporal data using our approach. We

show the accuracy rates and the ROC areas obtained using different values of k,

the number of discriminative time intervals used by the algorithm. Here traditional

SVM, based on the global statistics of the signals, yields an accuracy rate of 66.5%

and an area under the ROC of 0.577.
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Figure 6: Example frames from the mouse videos.

an accuracy rate of 66.5% and an area under the ROC of 0.577. Thus, our ap-

proach provides much better accuracy than SVM. Note that the performance of

our method is relatively insensitive to the choice of k, the number of discrim-

inative time-intervals used for classification. It achieves 100% accuracy when

the number of intervals are in the range 3 to 7; it works relatively well even for

other settings. In practice, one can use cross validation to choose the appropriate

number of segments. Furthermore, Tab. 3 reaffirms the need of using multiple

intervals: our classifier built with only one interval achieves only an accuracy rate

of 77%.

4.2.2 Mouse behavior

We now describe an experiment of mouse behavior recognition performed on a

publicly available dataset3. This collection contains videos corresponding to five

distinct mouse behaviors: drinking, eating, exploring, grooming, and sleeping.

There are seven groups of videos, corresponding to seven distinct recording ses-

sions. Because of the limited amount of data, performance is estimated using

leave-one-group-out cross validation. This is the same evaluation methodology

used by Dollár et al. [9]. Fig. 6 shows some representative frames of the clips.

Please refer to [9] for further details about this dataset.

We represent each video clip as a set of cuboids [9] which are spatial-temporal

local descriptors. From each video we extract cuboids at interest points computed

using the cuboid detector [9]. To these descriptors we add cuboids computed at

random locations in order to yield a total of 2500 points for each video (this aug-

mentation of points is done to cancel out effects due to differing sequence lengths).

A library of 50 cuboid prototypes is created by clustering cuboids sampled from

3http://vision.ucsd.edu/∼pdollar/research/research.html
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Action Dollár et al. [9] 1-NN SVM Ours

Drink 0.63 0.58 0.63 0.67

Eat 0.92 0.87 0.91 0.91

Explore 0.80 0.79 0.85 0.85

Groom 0.37 0.23 0.44 0.54

Sleep 0.88 0.95 0.99 0.99

Table 4: F1 scores: detection performance of several algorithms. Higher F1 scores

indicate better performance.

training data using k -means. Subsequently, each cuboid is represented by the ID

of the closest prototype and the frame number at which the cuboid was extracted.

We trained our algorithm with values of k varying from 1 to 3. Here we report the

performance obtained with the best setting for each class.

A performance comparison is shown in Tab. 4. The second column shows

the result reported by Dollár et al. [9] using a 1-nearest neighbor classifier on

histograms containing only words computed at spatial-temporal interest points.

1-NN is the result obtained with the same method applied to histograms including

also random points. SVM is the traditional SVM approach in which each video

is represented by the histogram of words over the entire clip. The performance is

measured using the F1 score which is defined as:

F1 =
2 · Recall · Precision

Recall + Precision
. (10)

Here we use this measure of performance instead of the ROC metric because the

latter is designed for binary classification rather than detection tasks [1]. Our

method achieves the best F1 score on all but one action.

5 Conclusions and Future Work

This report proposes a novel framework for discriminative localization and classi-

fication from weakly labeled images or time series. We show that the joint learning

of the discriminative regions and of the region-based classifiers leads to catego-

rization accuracy superior to the performance obtained with supervised methods

relying on costly human ground truth data. In future work we plan to investigate

an unsupervised version of our approach for automatic discovery of object classes
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and actions from unlabeled collections of images and videos. Furthermore, we

would like to extend our k-segmentation model to images in order to improve the

recognition of objects having complex shapes.

Appendix – Proof of global optimality of Algorithm 1

Algo. 1 guarantees to produce a globally optimal solution for (8). Even stronger,

the set Xm = {Im
1 , · · · , Im

m} produced by the algorithm is the set of best m inter-

vals that maximize (8). This section sketches a proof by induction.

+) m = 1, this can be easily verified.

+) Suppose Xm is the set of best m intervals that maximize (8). We now prove that

Xm+1 is optimal for m + 1 intervals. Assume the contrary, Xm+1 is not optimal

for m + 1 intervals. There exist disjoint intervals T1, · · · , Tm+1 such that:

m+1∑

i=1

f(Ti) >

m+1∑

i=1

f(Im+1
i ). (11)

Because the way we construct Xm+1 from Xm, we have:

m+1∑

i=1

f(Im+1
i ) =

m∑

i=1

f(Im
i ) + max{f(J1),−f(J2)},

where J1 = arg max
J∈I

f(J) s.t. J ∩ Im
i = φ ∀i, (12)

J2 = arg max
J∈I

−f(J) s.t. J ⊂ Im
i for an i. (13)

This, together with (11), leads to:

max{f(J1),−f(J2)} <

m+1∑

i=1

f(Ti) −

m∑

i=1

f(Im
i ). (14)

Consider the overlapping between T1, · · · , Tm+1 and Im
1 , · · · , Im

m , there are two

cases.
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• Case 1: ∃j : Tj ∩ Im
i = φ ∀i. In this case, we have:

f(Tj) ≤ f(J1) <

m+1∑

i=1

f(Ti) −

m∑

i=1

f(Im
i ), (15)

⇒

m∑

i=1

f(Im
i ) <

∑

i=1,m+1,i6=j

f(Ti). (16)

This contradicts with the assumption that {Im
1 , · · · , Im

m} is the set of best m inter-

vals that maximize (8).

• Case 2: ∀j, ∃i : Tj ∩ Im
i 6= φ. Since there are m + 1 Tj’s, and there are

only m Im
i ’s, there must exist one i s.t. Im

i intersects with at least two of Tj’s.

Suppose l, l1, l2 are indexes s.t. Tl1 ∩ Im
l 6= φ and Tl2 ∩ Im

l 6= φ. Furthermore,

suppose Tl1 , Tl2 are consecutive intervals of Tj’s (Tl1 precedes Tl2 and there is

no Tj in between). Let Tl1 = [t−l1 , t
+
l1
], Tl2 = [t−l2 , t

+
l2
]. Consider the interval

T = [t+l1 + 1, t−l2 − 1]. Because Tl1 ∩ Im
l 6= φ and Tl2 ∩ Im

l 6= φ, T must be a

subinterval of Im
l , i.e. T ⊂ Im

l . Hence

− f(T ) ≤ −f(J2) <

m+1∑

i=1

f(Ti) −
m∑

i=1

f(Im
i ), (17)

⇒
m∑

i=1

f(Im
i ) < f(T ) +

m+1∑

i=1

f(Ti), (18)

⇒

m∑

i=1

f(Im
i ) < f(Tl1 ∪ T ∪ Tl2︸ ︷︷ ︸

an interval

) +
∑

i6=l1,l2

f(Ti). (19)

This contradicts with the assumption that {Im
1 , · · · , Im

m} is the best set of m inter-

vals that maximize (8).

Since both cases lead to a contradiction, Xm+1 must be the best set of m + 1
intervals that maximize (8). This completes the proof �.
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[30] C. Yang and T. Lozano-Pérez. Image database retrieval with multiple-

instance learning techniques. In International Conference on Data Engi-

neering, 2000.

[31] S. X. Yu and J. Shi. Object-specific figure-ground segregation. In Computer

Vision and Pattern Recognition, 2003.

[32] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In

IEEE Conference on Computer Vision and Pattern Recognition, 2004.

22


