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ABSTRACT 

Recently, we proposed an ensemble speaker and speaking 

environment modeling (ESSEM) approach to enhance the 

robustness of automatic speech recognition (ASR) under adverse 

conditions. The ESSEM framework comprises two phases, offline 

and online phases. In the offline phase, we prepare an 

environment structure that is formed by multiple sets of hidden 

Markov models (HMMs). Each HMM set represents a particular 

speaker and speaking environment. In the online phase, ESSEM 

estimates a mapping function to transform the prepared 

environment structure to a set of HMMs for the unknown testing 

condition. In this study, we incorporate the soft margin estimation 

(SME) to increase the discriminative power of the environment 

structure in the offline stage and therefore enhance the overall 

ESSEM performance. We evaluated the performance on the 

Aurora-2 connected digit database. With the SME refined 

environment structure, ESSEM provides better performance than 

the original framework. By using our best online mapping 

function, ESSEM achieves a word error rate (WER) of 4.62%, 

corresponding to 14.60% relative WER reduction (from 5.41% to 

4.62%) over the best baseline performance of 5.41% WER.  

Categories and Subject Descriptors 

I.2.7 Natural Language Processing 

General Terms 

Algorithms, Experimentation, Languages, Theory. 
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1. INTRODUCTION 
For an automatic speech recognition (ASR) system, robustness 

under adverse environments is a key issue to its success. The 

difficulty of handling this issue is that a testing condition usually 

contains multiple mismatch sources, which may come from 

speaker variations and speaking environment noises. Although 

some parametric functions can specify particular distortions well, 

an unknown combination of multiple distortions can be very 

complex and hard to characterize. Until now, many approaches 

have been proposed to increase the ASR robustness under adverse 

conditions. Among them, a class of approaches attempts to handle 

the mismatches in the model space [1, 2]. These approaches can 

be classified into two groups. The first group intends to prepare a 

set of acoustic models that is robust to environmental changes in 

the offline. One good direction is to collect speech data from a 

wide range of different speaker and speaking environments for 

training the acoustic models. Multi-style training scheme is a 

successful example [3]. Another direction is to adopt a good 

model-training method, such as discriminative training. Effective 

methods include minimum classification error (MCE) [4] and soft 

margin estimation (SME) [5, 6]. It is well known that the 

discriminative training can refine the maximum likelihood (ML) 

trained acoustic models to achieve better ASR performance. The 

second group is to adapt the acoustic models to match the testing 

condition in the online. Successful examples include maximum a 

posteriori (MAP) [7 8], maximum likelihood linear regression 

(MLLR) [9], and stochastic matching [1, 2]. These two groups of 

approaches can be combined to achieve better overall performance, 

i.e., developing a decent initial acoustic model in the offline and 

performing a model adaptation process in the online.  

More recently, we extended the stochastic matching algorithm to 

an ensemble speaker and speaking environment modeling 

(ESSEM) algorithm to improve the ASR robustness under adverse 

 

 



conditions [10-12]. Different to the multi-style training method 

that estimates a set of acoustic models collectively, ESSEM uses 

training data to prepare multiple sets of environment-specific 

acoustic models, with each set characterizing its corresponding 

environment more precisely. In the offline, ESSEM uses these 

multiple sets of acoustic models to establish an environment 

structure; this environment structure provides prior knowledge for 

the testing conditions. In the online, ESSEM estimates a mapping 

function to transform the environment structure into one HMM set. 

With the environment structure providing good prior information, 

ESSEM can achieve good performance even with some simple 

mapping functions [11]. In this study, we incorporate the SME 

algorithm [5, 6] in the ESSEM framework to increase the 

discriminative ability of the environment structure. The ESSEM 

environment structure is first prepared using the maximum 

likelihood (ML) training, followed by an SME refining procedure. 

In the online, ESSEM estimates a mapping function to transform 

the SME-refined environment structure for the target HMM set.  

2. ESSEM FRAMEWORK 
First, we review the two phases of ESSEM—offline environment 

space construction and online mapping function estimation.  

2.1  Offline Environment Space Construction 
In the offline, we prepare P sets of speech data, with each set 

representing a particular speaker and speaking environment. In 

real-world implementations, it can be prohibitive to collect speech 

data for a wide range of different combinations of adverse 

conditions and noise levels. Therefore, we propose to artificially 

simulate the data at specific distortions and signal-to-noise (SNR) 

levels. With the P sets of speech data, we accordingly train P sets 

of HMMs, Λp, p=1… P. Next, the entire set of mean parameters 

in a set of HMMs is concatenated into a super-vector, Vp, 

p=1,…,P. These P super-vectors form an ensemble speaker and 

speaking environment (ESS) space, ΩV, where ΩV={V1 V2… VP}. 

Our previous study has introduced several approaches to enhance 

the ESS structure in the offline stage [10]. To improve the 

structure of the ESS space, we proposed environment clustering 

(EC) and environment partitioning (EP) approaches; to increase 

the discriminative ability of the ESS space, we derived the MCE-

based intra-environment (intraEnv) training and inter-environment 

(interEnv) training. Figure 1 illustrates the intraEnv and interEnv 

training for enhancing discrimination of an ESS space [10]. Each 

of the above offline approaches can provide further improvement 

individually, and the combination of them can give the best 

overall performance [10]. In this paper, we propose an SME-based 

intraEnv training to further enhance the discriminative capability 

of parameters in the ESS space over the MCE-based intraEnv 

training and therefore achieve better ESSEM performance.  

Original ESS Space After IntraEnv After InterEnv  
 

Figure 1. IntraEnv and interEnv training. 

2.2 Online Mapping Function Estimation 
In the ESSEM online process, we estimate the target super-vector, 

VY, for the testing environment through a mapping function, Gϕ: 

  )(Ω=V VY φG .                                  (1) 

The form of Gϕ depends on the amount of adaptation data and 

distortion types. We can estimate the nuisance parameters φ̂ in 

Gϕ
  based on the ML criterion: 

     ),,Ω  |( = Y WφFPargmaxφ
φ

V
ˆ ,                   (2) 

where W is the transcription corresponding to the testing 

utterances, FY. With the estimated target super-vector, VY, we can 

build the set of acoustic models for the testing condition. In the 

following description, we will present four types of online 

mapping functions, including best first (BF), linear combination 

(LC), linear combination with a correction bias (LCB) and 

multiple cluster matching (MCM). 

2.2.1 Best First (BF) 
With the prepared environment structure, the BF function 

determines the super-vector that best matches to the testing 

condition based on a maximum likelihood (ML) criterion: 

    )V( =V YY p
p

FPmaxarg | , p=1, 2…P.                  (3) 

In the implementation, we can use a parallel decoding scheme or a 

tree structure to facilitate the BF process. 

2.2.2 Linear Combination (LC) 
When using LC as the online mapping function, the target super-

vector is estimated based on a linear combination of the super-

vectors prepared in the ESS space. 
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where pŵ is the p-th weighting coefficient in the linear 

combination function. Similarly, we estimate the set of weighting 

coefficients based on the ML criterion: 
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2.2.3 Linear Combination with a Correction Bias (LCB) 
The BF and LC mapping functions can enable ESSEM to well 

characterize distortions that are prepared in the training set. 

However, the performance is limited when dealing with new 

distortion types that are not collected in the training set. Therefore, 

we derived more complex mapping functions. First, we improve 

LC in Eq-(4) by incorporating a correction bias b̂  :  

                                 bw
P

p
pp

ˆˆ +V =V ∑
1=

Y .                       (6) 

Similarly, the weighting coefficients and correction bias can be 

estimated base on the ML criterion: 
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2.2.4 Multiple Cluster Matching (MCM) 
We derived the MCM mapping function based on the ensemble 

estimator (EE) algorithm [11, 13]. The MCM mapping process 

consists of two steps. In the first step, a mapping function 

transforms the original ESS space to a new environment structure, 

E
VΩ . This environment structure has a better coverage and 

resolution to characterize the testing condition. In the second step, 

another mapping function,
E
φG  transforms the new environment 

structure to the target super-vector, VY: 

        )(Ω=VY
EE

φ VG ,                            (8) 

where 

                               )Ω , |( VY E

E

E
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This particular mapping function provides the best performance in 

our ESSEM evaluations. More details on the above four mapping 

functions have been provided in our previous study [11, 12]. 

3. SME ON REFINING ESS SPACE 
In this section, we first introduce the SME algorithm; then we 

discuss applying SME for intraEnv training to increase the 

discriminative ability of ESS spaces.  

3.1 SME Algorithm 
Originated from the statistical learning theory [14], SME 

considers the test risk to be bounded by two terms, an empirical 

risk and a generalization term (generalization term is bounded by 

a decreasing function of margin [14]). During optimization, SME 

not only minimizes the empirical risk but also maximizes the 

margin. Therefore, the objective function for SME is defined as: 
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where Λ denotes HMM parameters, Λ),( uFl  is a loss function 

for the u-th utterance Fu, U is the number of training utterances, ρ 

is the soft margin, and λ is a coefficient to balance the soft margin 

maximization and the empirical risk minimization. The loss 

function is defined by a hinge loss function ( (x)+=max(x,0) ) as: 
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with the separation measure d defined as: 
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where Du is the frame set in which the frames have different 

labels in the competing strings; nu is the number of frames in Du; 

I(.) is an indicator function; Fur is the r-th frame of utterance Fu; 

)  |( 
Λ u

ur
SFP  and )  |( 

Λ u
ur

SFP ˆ are the likelihood scores for the target 

string Su and the most competing string uŜ , respectively. By 

plugging Eq-(11) and Eq-(12) into Eq-(10), the final objective 

function to minimize for the SME algorithm becomes: 
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3.2 SME for Refining Environment Structures 
In this study, we introduce the SME-based intraEnv training to 

refine the ESS space. Similar to the MCE-based intraEnv training 

[10], each environment-specific HMM set is first trained on ML 

and then refined by SME. By only considering mean parameters, 

we derive the following objective function for the SME refinement:  
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where  u
pF is the u-th training utterances in the p-th environment. 

In this paper, we limit our discussion on applying SME to 

enhance the discriminative ability of each individual super-vector. 

Incorporating SME for interEnv training to increase the separation 

among different super-vectors will be studied in the future.  

4. EXPERIMENTS 
This section presents experimental setup and results. As reported 

in our previous study, after MCE-based intraEnv and interEnv 

training, the ESS space possesses better discriminative power and 

enables ESSEM to provide better performance than the original 

ML-trained ESS space [10]. In the following experiments, we will 

compare the ESSEM performance achieved by SME-based and by 

the original MCE-based intraEnv training. 

4.1 Experimental Setup 
The ESSEM performance was evaluated on the Aurora-2 

connected digit database [15]. We used the multi-condition 

training set to build environment-specific HMMs and to construct 

the ESS space. This training set includes the same four types of 

noise as in test set A (Subway, Babble, Car, Exhibition noises) 

sampled at four SNR levels (20 dB, 15 dB, 10 dB, and 5 dB) 

along with clean data. Therefore we have speech data for 17 

(4×4+1) different speaking environments. We further divided the 

training set by each speaker’s gender identity, and finally, we can 

have speech data for 34 (17×2) different speaker and speaking 

environments. We used a modified ETSI advanced front-end 

(AFE) for feature extraction [16] and the complex back-end 

configuration for HMM topology [17]. All digits were modeled by 

16-state whole word models with each state characterized by 20 

Gaussian mixture components. The silence and the short pause 

were modeled by 3 states and 1 state, respectively, with each state 

characterized by 36 Gaussian mixture components. The full 

evaluation set of Aurora-2 was used to test performance, and we 

only reported the testing results from 0dB to 20dB in this paper. 

In the training stage, two gender-dependent (GD) HMM sets were 

first trained by using the ML estimation. Then, 17 environment-

specific HMM sets for each gender were obtained by adapting (we 

used the MAP algorithm) mean vectors from that GD HMM set. 

Therefore, two ESS spaces corresponding to the two genders were 

prepared. We have included more details on the experimental 

setup in our previous study [10-12]. In the following, we denote 

the results of ESSEM using this original ESS space as “ML” 

results. Next, we refined the ML-based ESS space with MCE-

based intraEnv training and SME-based intraEnv training and 

obtained two refined ESS spaces; both ESS spaces were then 

retrained by MCE-based interEnv training. For simplicity, we call 

the ESSEM results of using SME-based intraEnv and MCE-based 

intraEnv training as “SME” and “MCE” results, respectively. 



In addition to the intraEnv and interEnv training, we implemented 

the EC approach to improve the overall performance. In the 

offline, we constructed an EC tree, with each node consisting of a 

group of environments. In the online, a cluster selection (CS) 

process was performed to select the group of environments that 

best matches to the testing condition. The selected environments 

then form a new ESS space for the online transformation process. 

More details about EC can be found in our previous study [10].  

4.2 Experimental Results 
In this section, we first compare parameter separations of the ESS 

spaces trained with ML, MCE and SME. Next, we present the 

ESSEM recognition performance on the Aurora-2 task. 

4.2.1 Parameter Separation  
We adopted an accumulated divergence distance to quantitatively 

measure the parameter separation in individual super-vector [6]. 

In this paper, we chose the environment of “Exhibition noise, 

10dB SNR, female speakers” as a representative and illustrated 

its corresponding accumulated divergence distances for “ML”, 

“MCE”, and “SME” in Table 1. The comparison between “ML” 

versus “MCE” and “SME” intraEnv training corresponds to the 

left versus the middle panels in Figure 1. Please note that for the 

intraEnv training, we only adjust mean parameters. Therefore, the 

same variance parameters were used when calculating the 

accumulated divergence distances.  

From Table 1, it is clear that after MCE-based intraEnv training, 

parameter separation in the HMM set is increased over that 

without intraEnv training (the “ML” results). Additionally, it is 

clear that SME-based intraEnv training can further increase the 

separation in the HMM set over MCE-based intraEnv training. 

These observations indicate that SME has better capability to 

enhancing discrimination among model parameters than MCE and 

ML, which is actually consistent to our previous study [6].  

Table 1. Divergence distances for different training methods 

Training Method ML MCE SME 

Accumulated Divergence  67.18 68.09 68.83 

 

4.2.2 Recognition Performance 
In the previous section, we demonstrated the parameter 

separations of environment structures estimated by “ML”, “MCE” 

and “SME” training criteria. However, the separation measure is 

not the only indicator of accuracy. In this section, we present the 

recognition results, in average word error rates (WER), of ESSEM 

using ESS spaces estimated with the three different training 

methods. We evaluated the ESSEM recognition performance in a 

per-utterance unsupervised self-adaptation mode on a gender 

dependent (GD) system [10-12]. Each testing utterance was first 

decoded into an N-best list (N=8) and then used for ESSEM 

adaptation. The two GD HMM sets were used for an automatic 

gender identification (AGI) process to determine every speaker’s 

gender. During testing, we used every incoming testing utterance 

to: 1) identify speaker’s gender and select the corresponding 

gender-specific HMMs; 2) perform the CS process to locate the 

most suitable EC-clustered ESS space; 3) implement the ESSEM 

adaptation in an unsupervised self-adaptation manner; 4) test 

recognition with the ESSEM-adapted acoustic models. 

4.2.2.1 Baseline 
First, we show the baseline results of the three systems in Table 2. 

Because the two sets of GD HMMs were also refined by intraEnv 

training, we can see that the baselines of “SME” and “MCE” give 

better overall performance than that of “ML”. However a close-up 

investigation reveals that when comparing to “ML”, although 

“MCE” achieves better performance in SetA and SetB, it gives 

worse performance in SetC (which contains additional channel 

distortion). It should be the natural limitation of the MCE training 

that aims at increasing distance among modeling units only 

according to the available training data [4, 6]. On the other hand, 

we find that “SME” can provide better performance than “ML” 

for all the three testing sets. These results confirm the outstanding 

generalization capability of SME training for HMMs. In the 

following, we will further investigate the ESSEM performance 

using different forms of mapping function. 

       Table 2. Baseline: WER (in %) from 0dB to 20dB 

 SetA SetB SetC Overall 

  Baseline (ML) 5.11 5.51 6.42 5.53 

  Baseline (MCE) 5.11 5.38 6.56 5.51 

  Baseline (SME) 5.05 5.31 6.31 5.41 
 

4.2.2.2 LC mapping function 
In this section, we evaluated the ESSEM results using LC (in Eq-

(4)) as the mapping function and listed the results in Table 3. 

From Table 3, we find similar results to the baseline results in 

Table 2. First, “MCE” achieves better performance than “ML” in 

SetA and SetB, while worse in SetC. Meanwhile, “SME” gives 

the best performance among the three training methods for all the 

three test sets. These results again verify that the SME training 

has a promising capability to increase the generalization of the 

ESS space to handle different types of distortion. 

Table 3. ESSEM with LC: WER (in %) from 0dB to 20dB 

 SetA SetB Set C Overall 

      LC (ML) 4.71 5.21 5.60 5.09 

      LC (MCE) 4.64 4.99 5.64 4.98 

      LC (SME) 4.52 4.87 5.48 4.85 
 

4.2.2.3 Other forms of mapping function 
We further compared the SME-based and MCE-based intraEnv 

training using other forms of mapping function. Table 4 

summarizes the performance of ESSEM using BF, LCB, and 

MCM. From Table 4, it is clear that SME training gives better 

performance than MCE training when using a same type of 

mapping function. For example when using LCB, SME-based 

training achieves 4.72% WER, which is clearly better than 4.85% 

WER achieved by MCE-based training. Moreover, we can see that 

for both MCE-based and SME-based training, ESSEM provides 

better overall recognition performance when a more complex 

mapping function is used. In this paper, the combination of SME-

based intraEnv training with the MCM mapping function achieves 

the best performance and provides 4.62% WER on the Aurora-2 

task. In Table 5, we include the detailed results of “SME+MCM” 

for the 50 different testing conditions in Aurora-2. 



Table 4. ESSEM with different mapping functions 

 SetA SetB SetC Overall 

     BF (MCE) 4.98 5.22 6.38 5.35 

     LCB (MCE) 4.62 4.95 5.13 4.85 

     MCM (MCE) 4.48 4.95 5.00 4.77 

     BF (SME) 5.00 5.12 6.22 5.29 

     LCB (SME) 4.48 4.85 4.96 4.72 

     MCM (SME) 4.38 4.71 4.90 4.62 
 

5. CONCLUSION 
In this paper, we incorporate the SME algorithm to perform 

intraEnv training so as to refine the environment structure in the 

ESSEM framework. From the experimental results, we first verify 

that SME can refine the environment structure by increasing the 

discriminative power. Moreover, by using the SME refined 

environment structure, ESSEM can achieve better performance 

than by using either an ML-based or MCE-based trained 

environment structure. When combined with our best online 

mapping function, multiple cluster matching (MCM), ESSEM 

provides 4.62% WER on the Aurora-2 task, which corresponds to 

14.60% WER reduction over our best SME baseline as shown in 

Table 2. Based on the success of SME-based intraEnv training, 

our first future work is to derive an SME-based interEnv training 

scheme.  We believe that by maximizing the margins between 

different speaker and speaking environments, the discriminative 

power and coverage of the environment structure will be further 

enhanced. Next, we will research on applying the SME algorithm 

to refine the online mapping function estimation in the future. 
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Table 5. ESSEM with the SME-based intraEnv training and MCM online mapping function 

 

Set A Set B Set C Overall 

Subway Babble Car Exhibition  Average Restaurant Street Airport Station Average Subway M Street M Average Average 

20dB 99.66 99.49 99.58 99.48 99.55 99.72 99.40 99.49 99.75 99.59 99.69 99.40 99.55 99.57 

15dB 99.51 99.18 99.43 99.14 99.32 99.39 99.09 99.55 99.51 99.39 99.54 99.12 99.33 99.35 

10dB 98.74 98.49 98.72 97.84 98.45 98.37 97.76 98.39 98.52 98.26 98.31 97.58 97.95 98.27 

5dB 96.47 94.98 96.81 94.35 95.65 95.00 94.62 95.62 95.87 95.28 96.01 94.29 95.15 95.40 

0dB 87.35 79.87 88.61 84.63 85.12 81.21 82.98 86.13 85.37 83.92 85.14 81.95 83.55 84.32 

Average 96.35 94.40 96.63 95.09 95.62 94.74 94.77 95.84 95.80 95.29 95.74 94.47 95.10 95.38 


