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Context – Windows Development

• Size and scope
– 40+ MLOC
– Development team spread all over the world
– 1B+ users
– 400,000 supported devices
– 6,000,000 apps running on Windows
– Up to 10 years of servicing

• Challenges
– Large, complex codebase with millions of tests
– Diverse customer base
– Time and resource constraints
– Diverse test execution
– Very low tolerance to failure



Problems

• Unknown Dependencies

– Static, Dynamic Analysis does not find everything

• Large  number of Dependencies

– How to prioritize Integration Testing when changes are 
routine and costs involved are high?



Motivation

Graphics Driver crashes 
whenever user ‘Pastes’ 
image to Photo Editor

– Internal defect in driver,
exposed by unknown
dependency between
editor and driver

Defect Id 2125

Title
Graphics driver crashes 
on Paste

Status Closed
Opened By Alice
Opened On 7-November-2005
Affected 
Component

Drivers\Video\Driver.sys

Resolution Fixed
Resolved By Bob
Resolved On 1-December-2005

Sample Defect Record

* Source Component Photo Editor, not recorded explicitly



Definitions

• Dependency: If defects are found frequently in 
component C1 when component C2 is tested, then C2

may be dependent on C1

• Source Component: The component containing the 
defect

• Affected Component: The component affected due to 
a defect



Frequent Itemset Mining

In a transaction dataset, 
frequent itemsets X and 
Y can be found using 
Dependence Rules 
Mining:

1. Support(X), Support (Y)
and Support(X and Y) 
above threshold

2. Confidence(X=>Y)
above threshold

If X and Y are items in the 
transaction dataset:

• Support(X): probability 
of occurrence of X, p(X).

• Confidence(X=>Y) : how 
frequently Y occurs 
when X occurs, p (Y|X).

• Importance (X=>Y): The 
log likelihood of Y
occurring with X, than 
without it i.e.  



How to Identify Dependencies

• Let CS be source component 

• Let CA be affected component

• Find frequent pairs of source and affected components 
in the component map using Dependence Rules, CS => 
CA where
1. Support(CA), Support(CS), Support(CA and CS) >= support 

cutoff

2. Confidence(CS => CA)  >= confidence cutoff

3. Importance(CS => CA) is positive, meaning that the 
affected component is positively statistically dependent 
on the source component



How to Rank Dependencies

• Rank dependencies first by confidence and then by 
importance.

– Higher confidence has higher rank

– Higher importance has higher rank

• For k topmost dependencies, 

– First chose all dependencies greater than confidence cutoff

– Then choose k dependencies out of them with largest 
importance 



Example

Affected Source 

C3

C3

C2 C5

Rule Support Confidence Importance

C2 => C4

Component Map

• Support 0.25
• Confidence 0.1 
• Importance > 0

Dependencies Found

2

C1

C1

C1

C1

C2

C2

C2
C2

C2

C2

C4

C4

2/6 = 0.33 0.176



Ladybug Tool

• Automates dependency 
discovery

• Easily Customizable

• Built on SQL Server 
Platform – Analysis 
Services, Integration 
Services, SQL Server

Workflow



Experiment

• Pre-release Defects for Windows Vista and Windows 
Server 2008

Size 92,976
Defects Included 28,762
Affected Components 1,649
Source Components 1,480

Input Component Map



Dependencies Found

Dependencies found by varying Support with 
Confidence 0.005

Dependencies found  by varying  Confidence with 
Support 0.0001 

Outcome indicates that dependencies can be found for 
various combinations of support and confidence thresholds
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Source and Affected Components

Source and Affected Components included in 
dependencies found by varying Support with 

Confidence 0.005

Source and Affected Components included in 
dependencies found by varying Confidence with 

Support 0.0001

Fewer components get included in the results as the 
thresholds are raised
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Effectiveness

Outcome indicates our approach can possibly find new 
dependencies.

Comparison with MaX for dependencies found with 
different Support values with Confidence 0.005

Comparison with MaX for dependencies found 
different Confidence values with Support 0.0001
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Manual Validation

Total dependencies 276
Votes Cast 211
Dependencies with Votes 182
Dependencies with 
Multiple Votes

29

Experts Invited 127
Experts Participated 70

Vote tally for different buckets of dependencies

In general, owners seemed to confirm the dependencies 
considerably more often than reject them

Dependencies found  by our method with 
support 0.0001 and confidence 0.005
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Manual Validation (2)

Found by 
MaX

Not Found 
by Max

Row 
Total

Confirmed 27 115 142

Rejected 12 28 40
Total 39 143 182

It is possible to discover additional new important 
dependencies using our method

H0: Experts voted based on the rule 
content and their background 
system knowledge independently 
of what the MaX data says, which 
they may have seen before

We do not reject H0 at 95% 
confidence level using Chi-Square 
analysis. 

Contingency table showing votes versus  detection by 
MaX



Applicability

We can start mining at early phase of software 
development and keep refining model over time as more 

data becomes available.

Dependencies found as a 
function of defect reports, for 
different confidence values 
and support count  25, 
indicates more defect reports 
yielded more dependencies
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Alternative Input Component Maps

Component Map 1 Component Map 2

Ownership Error (%) 0 5
Map Size 89,075 92,976
Defects 28,028 28,762
Affected Components 1,637 1,649
Source Components 1,470 1,480

•Alternative Component Maps were extracted using 
different values of Ownership Errors
•No noticeable difference in the results

* Detailed description available in paper



Threats to Validity

• Dependencies cannot be found for Components that 
have not been part of significant number of defects in 
the past

• Our study is on a well-componentized, large-scale 
software system with a stable development process 
and considerable number of defect reports. 

• For practical applications, it may be useful to use 
higher thresholds to restrict the outcome to the most 
significant rules only. 



Conclusions

• New Approach to identified software dependencies

• An approach to rank dependencies using defect history

• Ladybug tool to mine defect history  for new dependencies

• Possible to start mining at any phase of development and 
refine models over time

• Found a large number of dependencies confirmed  by 
experts but are not found by static analysis tools

• Ladybug analysis has been incorporated in a larger change 
analysis and test targeting system used in Windows 
Serviceability and recommendations are used by hundreds 
of engineers every month



Future Work

• Apply Ladybug to defect datasets of other software

• Look at ways of incorporating user judgment to 
generate better dependency recommendations
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ABSTRACT 

Dependency analysis is an essential part of various software 

engineering activities like integration testing, reliability analysis 

and defect prediction. In this paper, we propose a new approach to 

identify dependencies between components and associate a notion 

of ―importance‖ with each dependency by mining the defect 

history of the system, which can be used to complement traditional 

dependency detection approaches like static analysis. By using our 

tool Ladybug that implements the approach, we have been able to 

identify important dependencies for Microsoft Windows Vista and 

Microsoft Windows Server 2008 and rank them for prioritizing 

testing especially when the number of dependent components was 

large. We have validated the accuracy of the results with domain 

experts who have worked on designing, implementing or 

maintaining the components involved. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics—Process metrics, Product 

metrics. D.2.9 [Software Engineering]: Management—Software 

quality assurance (SQA)  

General Terms 
Measurement, Reliability, Experimentation 

Keywords 
Empirical study, defect database, dependency, dependence rules 

 

1 INTRODUCTION 
Understanding software dependencies is essential to performing 

various software engineering activities including integration testing 

[17], reliability analysis for code churn [11], defect prediction 

based on complexity of the dependency graph [20] and aiding 

developers [12]. Any dependency missed during integration testing 

can cause a costly new regression. For a large and continually 

changing software system like Microsoft Windows, a reliable 

dependency detection mechanism is necessary. Complete 

integration testing of the entire system is unlikely to be cost 

effective given the volume of changes that happen every day and 

the complex setup and hardware requirement for so many 

scenarios. 

Dependencies in a system are usually identified by static analysis. 

Tools like MaX can determine various control flow and resource 

dependencies such as imports, exports and runtime dependencies 

[17]. Data flow dependencies along with control flow 

dependencies can be identified with CodeSurfer [3]. Dynamic 

tracing by using Magellan/Echelon [16] can identify for us control 

flows at runtime and possibly reveal new paths not found by static 

analysis. However, for example, new resource dependencies will 

not be found by MaX if adapters for the resource type are not 

available. Other static analysis tools may have similar limitations. 

Moreover, in order to use dynamic analysis we need to have tests 

available to hit new paths and the ability to associate tests reliably 

with the component, for which they were originally written. 

Clearly, using only one approach may not be practical. While 

multiple approaches can be used together to find more 

dependencies, dependencies originating from semantic behavior of 

systems are not usually detected in open process architectures like 

Microsoft Windows that does not enforce high-level semantic 

contracts [8]. Nevertheless, we must strive to find as many 

dependencies as possible. 

In addition, when considerable number of dependent components 

is found for a change (e.g. an operating system kernel binary that is 

used by almost every other binary), it is necessary to have a notion 

of importance for each dependency so that we can rank them and 

prioritize testing. For integration testing, those dependencies that 

are more likely to find defects could be prioritized higher. 

In this paper, while we build our dependency identification 

approach around integration testing, we believe dependencies thus 

identified may be useful in other software engineering activities as 

well. 

The defect history has been a useful source of information in 

various studies like determining implementation expertise [4], 

Feature Tracking [7], Component Failure Prediction [10], and 

Defect Correction Effort Prediction [15]. The defect record 

contains the circumstance in which it occurred, its causes as well 

as the ensuing changes in the system. For large software systems, 

the defect database would contain many defects. We propose to 

look at the defect history of the system and see which components 

frequently found defects in a particular changed component. In this 

context, we define dependency in the following way: 

Definition 1: If defects are found frequently in component C1 when 

component C2 is tested, then C2 may be dependent on C1.  

In the usual sense of software dependency, C2 being dependent on 

C1 does not imply that C1 depends on C2. Further, when C2 is 

dependent on C1 and C1 is dependent on another component C0, it 

does not imply that C2 depends on C0. A component may have 

multiple dependencies on itself and conversely, it can itself depend 

on many other components.  

We applied our approach to the defect database of Microsoft 

Windows Vista and Windows Server 2008 and found several 

important dependencies. These results have been validated with 

domain experts and are being used for recommending 

dependencies as part of a Change Analysis system for Windows. 

1.1 CONTRIBUTIONS 

The significant contributions of the work are: 



 A new approach for identifying dependencies in software 

systems, to our knowledge 

 An approach to rank dependencies using defect history 

that can be used to prioritize higher the frequently 

defect-finding components when a large number of 

dependencies are known 

 A tool to mine dependencies from the defect history – 

Ladybug that automates the entire mining process from 

defect retrieval to results storage  using Dependence 

Rules mining [14] to identify frequent component pairs 

and measure the statistical dependency between them. 

 We show that defect mining can be started at any phase 

of software development and the models can be refined 

as new defects are found. 

 A detailed experimental study of our techniques applied 

to a large software system with numerous end-users. In 

this study, we discovered a large number of confirmed 

dependencies that were not found by static analysis. 

The remainder of the paper is organized as follows. First, we 

review related work. In Section 2, we describe the main principles 

behind our work. The Ladybug tool is described in Section 3. We 

discuss implementation details and results of our study in Section 

4. Finally, in Section 5 we make concluding remarks. 

1.2 RELATED WORK 

Various approaches have been used to define software 

dependencies and develop methods and tools to identify them. 

Some of the early works in this field include the formal 

dependency model defined by Podgurski et al [13], and the 

Dependency Analysis Toolset for the dependency graph created by 

Wilde et al [18]. In general, static analysis is used for dependency 

identification. Some of the systems built on this approach are 

CodeSurfer developed by Anderson et al to aid software inspection 

using the data and control flow dependency graph of the entire 

program [3] and the MaX toolkit developed by Srivastava et al to 

guide integration testing that analyzes the compiled program rather 

than raw source code [17]. NDepend is another dependency 

discovery tool primarily targeted to assist software development on 

the Microsoft.Net platform [12].  

Dynamic analysis was used alongside static analysis by Eisenbarth 

et al to map features to software components and hence aid 

program comprehension [6]. The Echelon tool developed by 

Srivastava et al can identify the most important tests for the change 

and, therefore, dependent components for integration testing [16]. 

Apart from this, we found that a data mining approach was used by 

Zimmermann et al in the eRose tool to discover program coupling, 

undetectable by program analysis, by mining version histories for 

co-occurring changes [19]. 

2 MINING DEPENDENCIES 

Defects in a software component surface when other components 

use it, sometimes in unanticipated ways. 

For example, a Graphics Driver is observed to crash whenever the 

Photo Editor tries to process a Paste command from the user. On 

investigation, we find an internal defect in the driver that was 

exposed by a dependency between the editor and the driver.  

We call components like the Graphics Driver that contain the 

defect as source and components like the Photo Editor that expose 

the defect as affected. Note that though multiple components may 

be affected by the same defect, as the Photo Editor found this 

defect first it is considered the affected component. 

To find dependencies, we look at the defect history for defects that 

were found in a component when another component was being 

primarily used (or targeted with testing), as in the example above. 

If activity on a component Ca frequently exposed defects on 

component Cs, we consider that component Ca is probably 

dependent on component Cs. We can find such frequent pairs in the 

dataset using Dependence Rule Mining [14]. 

2.1 DEFECT RECORD 

Table 1 shows a fictional defect in Drivers\Video\GDriver.sys 

component that was found by Alice on 7-November-2005 and 

fixed by Bob on 1-December-2005. Note that the defect record 

does not include the affected component, usage or deliberate 

testing of which triggered the failure. In fact, defect repository 

software is not usually configured to capture the affected 

component. This information was not explicitly stored in the 

Windows defect repositories we perused nor does it appear in the 

default configuration of other known software for defect tracking 

like Bugzilla for Mozilla [5]. 

Defect Id 2125 

Title Graphics driver crashes on Paste 

Status Closed 

Opened By Alice 

Opened On 7-November-2005 

Affected Component Drivers\Video\GDriver.sys 

Resolution Fixed 

Resolved By Bob 

Resolved On 1-December-2005 

Table 1: Sample defect 

However, it is possible to identify affected components, from 

information usually available in defect reports, as required in our 

analysis. We describe one such approach in section 4.1 

2.2 DEPENDENCE RULES 

Dependence Rules learning is a generalized form of Association 

Rules learning that can be used to identify frequent itemsets from a 

transaction dataset and measure the statistical dependence between 

frequently co-occurring itemsets [14]. Dependence Rules can be 

mined using the Apriori algorithm with minimum cutoffs for 

support and confidence [1, 2] and importance [9].  

If X and Y are items in the transaction dataset, these measures are 

defined as follows: 

Definition 2: Support(X) is the probability of occurrence of X, 

p(X). 

Definition 3: Confidence(X=>Y) is the measure of how frequently 

Y occurs when X occurs, p (Y|X). 

Definition 4: Importance (X=>Y) is the log likelihood of Y 

occurring with X, than without it i.e.  



Positive importance implies that Y occurs when X does while a 

negative value implies Y will not occur when X occurs. For zero 

importance, X does not influence the occurrence of Y. In other 

words, importance determines the statistical dependence between 

the itemsets. 

For our problem, the defect dataset forms the transaction dataset 

and each defect represents a transaction. If CA denotes the itemset 

containing the affected component and CS the itemset containing 

the source component, our goal is to find rules of the form CS => 

CA such that the following conditions are satisfied: 

1. Support(CA), Support(CS), Support(CA and CS) are not 

less than support cutoff 

2. Confidence(CS => CA)  is not less than confidence cutoff 

3. Importance(CS => CA) is positive 

Each rule found after mining is one of the most likely affected 

components for a given source or, in other words, a dependency. 

2.3 RANKING DEPENDENCIES 

All the three parameters used in Dependence Rules mining – 

support, confidence and importance – have been used for rule 

ranking in literature. 

In our experiments, we ranked dependencies first by confidence 

and then by importance. When ranking by confidence, a 

dependency with higher confidence than another is ranked higher. 

Similarly, to rank by importance a dependency with higher 

importance is ranked higher. To select k topmost dependencies, we 

first chose all dependencies greater than the confidence cutoff and 

then choose k dependencies with the largest importance values. 

2.4 EXAMPLE 

We now attempt to discover dependencies from a sample 

component map shown in Table 2. Such a map can be derived 

from the defect data as described in Section 3.1 

Affected Source  

C1 C2 

C3 C2 

C4 C2 

C1 C3 

C2 C5 

C1 C2 

C4 C2 

C1 C2 

Table 2: Sample component map 

On mining for Dependence Rules with thresholds – minimum 

support 0.25, minimum confidence 0.1 and positive importance, 

we get a single dependency - C4 depends on C2 with confidence 

0.333 and importance 0.176. 

Rule Support Confidence Importance 

C2 => C4 2 0.333 0.176 

Table 3: Dependence rules found from table 2 

3 LADYBUG 

Ladybug tool has been developed to automate our dependency 

discovery method. It is built using Microsoft SQL Server 2005 

Integration Services and Microsoft SQL Server 2005 Analysis 

Services and Microsoft SQL Server 2005.  

Currently Ladybug is implemented as an Integration Services 

package that has separate tasks for each of the workflow stages 

described in Section 3.1. Besides, there are setup scripts for SQL 

Server database initialization and Analysis Services mining model 

creation. This design allows Ladybug to be easily configurable for 

specific applications. For example, we can customize the defect 

retrieval task to the specific schema of the defect store or various 

types of stores including SQL databases, XML files and web 

services, apply custom filters for different noise patterns and 

experiment with various thresholds for the mining parameters. 

Moreover, new tasks can be easily added or existing ones 

modified. 

3.1 Workflow 

Figure 1 shows the different phases in the Ladybug workflow.  

 

Figure 1: Ladybug workflow 

1. Retrieve Defects and Clean Data: In this stage, we retrieve 

defects from the data store and clean the data if necessary. 

The attributes retrieved for the defects are usually the ones 

shown in Table 1. 

2. Create Component Map: If the defect data contains the 

affected component for each defect a component map as 

shown in Table 2 is readily available and we can proceed to 

stage 3.  

However, as we have noted in Section 2.1, a defect record 

does not usually contain the affected component and it is 

necessary to implement an application-specific approach to 

determine the same, before a component map can be created.  

3. Mine Dependencies: Ladybug uses the component map as 

input and creates models for mining Dependence Rules using 

the Microsoft Association Rules algorithm in SQL Analysis 

Retrieve Defects and Clean Data

Create Component Map

Mine Dependencies

Store Results



Services. It uses manual thresholds for support and 

confidence and zero for importance. 

4. Store Results: Dependencies found by the mining step above 

are retrieved from the Analysis Services data store, 

transformed, and stored in an easily retrievable form as 

required by the application. 

4 EXPERIMENTAL RESULTS 

We applied Ladybug to mine the pre-release defect reports of 

Microsoft Windows Vista and Windows Server 2008.  

4.1 EXPERIMENTAL SETUP 

Customization 

In order to use Ladybug for the current dataset, we customized the 

various stages of the workflow as follows: 

1. Retrieve Defects and Clean Data: We configured the 

extraction routine for the target data store schema. Further, we 

added a cleanup sub-task to remove defects on components 

that no longer exist (placeholder components used during 

development). 

2. Create Component Map: We mapped all components 

owned by the defect opener on the defect opening date as 

affected components, provided she did not own the source 

component. If the opener owned no components, no 

associations were made. This approach complies with the 

necessary condition in Definition 1 that the defect in the 

source component was found while primarily using the 

affected component. Further, more than one component can 

be mapped as a potential affected component.  

In order to get the components owned by a person on a date, 

we used a temporal ownership map. 

Create Temporal Ownership Map: Defects in the data store 

were typically resolved by Component owners. Therefore, for 

each (Component, ResolvedBy) pair in the retrieved dataset 

we get an OwnershipItem as follows: 

OwnershipItem  
{ 

Component, 

ResolvedBy AS Owner,  

MIN (ResolvedOn) – ε/2 * Range AS Start,  

MAX (ResolvedOn) + ε/2 * Range AS End 

} 

Range denotes the interval between MAX (ResolvedOn) and 

MIN (ResolvedOn) in days.  

The ownership error ε is used to model for the possibility that 

a person had owned a component beyond the range observed. 

In practice, a larger value of this parameter allows us to 

associate more potential affected components with a defect. 

This value will usually be a small fraction of the observed 

ownership period. For example, if the maximum observed 

ownership over all component-owner pairs is 500 days and 

we want to allow at most 10 additional days of ownership for 

any pair, we may use the value of the parameter ε as 10/500 

or 2%. Note that we did not account for discontinuities in 

component ownership, as that was deemed very unlikely in 

this case. 

3. Mine Dependencies: We experimented with various 

thresholds for support and confidence as described in Section 

4.2 

Dataset 

From around 28,000 defects, we created component maps with 

different ownership errors. Table 4 shows two maps created with 

ownership errors 0% and 5% respectively. In our dataset, the 

maximum observed ownership period was around 2400 days and 

the minimum observed was 1 day. Therefore, 5% error means we 

add at most 120 days to the ownership periods.  

 Component 

Map 1 

Component 

Map 2 

Ownership Error (%) 0 5 

Map Size 89075 92976 

Defects 28028 28762 

Affected Components 1637 1649 

Source Components 1470 1480 

Table 4: Component maps used in experiment 

We can see that Component Map 2 includes more defects, source 

and affected components due to greater ownership error. Using 

these maps, we created various mining models by varying support 

and confidence thresholds. 

4.2 DISCUSSION 

Figure 2 and 3 show the outcome of eight mining models created 

with Component map 1 and Component map 2 using various 

support values and confidence 0.005. In figure 2, we can see that 

the number of dependencies discovered decreased gradually with 

increase in support. In figure 3, we can see at most around 22% of 

the affected and around 21% of source components got included in 

the Dependencies, for either map. Further, for the same support, 

corresponding models for Component Map 1 and Component Map 

2 had similar number of Dependencies and included components. 

 

Figure 2: Dependencies found with confidence 0.005 and 

different support cutoffs 
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Figure 3: Components included in dependencies found with 

confidence 0.005 and different support cutoffs 

In figure 4 and figure 5, we can see the characteristics of eight 

more models with various confidence values and support 0.0001. 

From Figure 5, we see that the number of affected and source 

components included in the dependencies is at most 22% and 21% 

of the input respectively. Even here, corresponding models for 

Component Map 1 and Component Map 2 had similar outcomes. 

 

Figure 4: Dependencies found with support 0.0001 and 

different confidence cutoffs 

 

Figure 5: Components included in dependencies found with 

support 0.0001 and different confidence cutoffs 

4.2.1 EFFECTIVENESS 

In order to determine Ladybug’s effectiveness, we compared the 

dependencies found from the different models above with 

dependencies determined by MaX for the same systems. We 

wanted to see how many dependencies were in common and 

whether our approach finds new dependencies, at least for this 

application. 

Approach 

Dependencies found by Ladybug are in terms of components. 

However, dependencies found by MaX are in terms of functions - 

(Binary1, Function1) depends on (Binary2, Function1). We 

substituted the (Binary, Function) pairs with the component the 

binary belongs to so that the MaX dependencies were identified in 

terms of components. Then, for each dependency found by 

Ladybug, if we could locate a path from the affected component to 

the source component in the derived graph. We considered it to be 

found by MaX as well, otherwise not. 

Results 

As we can see in Figures 6 and 7, the number of dependencies in 

common with MaX for the eight models in Figure 2 is around 20-

30%. Similarly, for the eight models in Figure 4, 20-30% 

dependencies are found in common with MaX as shown in Figures 

8 and 9.  

 

Figure 6: Comparison with MaX for dependencies found for 

models using Component Map 1, confidence 0.005 and 

different support cutoffs 

 

Figure 7: Comparison with MaX for dependencies found for 

models using Component Map 2, confidence 0.005 and 

different support cutoffs 
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Figure 8: Comparison with MaX for dependencies found for 

models using Component Map 1, support 0.0001 and different 

confidence cutoffs 

 

Figure 9: Comparison with MaX for dependencies found for 

models using Component Map 2, support 0.0001 and different 

confidence cutoffs 

This outcome shows that our approach can possibly find new 

dependencies. 

4.2.2 VALIDATION 

In order to validate our findings and to find out whether the new 

dependencies we detected were accurate, we engaged with 127 

domain experts (70 participated) who have worked on designing, 

implementing or maintaining the components involved and were 

the then component owners. We created an online survey for the 

top 30% dependencies (276 in all) found by mining Component 

Map 2 with support 0.0001 and confidence 0.005 and asked the 

experts to confirm or reject the dependencies using their 

knowledge of system architecture and interactions between the 

components included in a rule. Along with a dependency, its 

strength (support, confidence and importance values) was revealed 

without explaining the significance of these metrics.  

Total Dependencies 276 

Votes Cast  211 

Dependencies with Votes 182 

Dependencies with Multiple Votes 29 (20 all agree + 3 all 

disagree + 6 conflict) 

Experts Invited 127 

Experts Participated 70 

Table 5: Summary of survey to measure effectiveness of 

Ladybug results for the top 30% dependencies found by 

mining Component Map 2 with support 0.0001 and confidence 

0.005 

Table 5 shows a summary of the survey. Of the dependencies with 

votes, 29 received multiple votes as the components involved had 

multiple owners. To summarize the votes and have the effective 

vote tally we treated a dependency with multiple votes as follows: 

if all votes were positive the dependency was considered as 

accepted otherwise it was considered rejected.  

As we can see in Figure 10, out of all 182 dependencies that 

received votes 78% were accepted. If we consider the 18 

dependencies with highest confidence (0.4 or greater), acceptance 

ratio was 83%. Again, for the 27 dependencies with top 10% 

importance, the acceptance was 90%. In general, we conclude that 

owners seemed to confirm the dependencies considerably more 

often than reject them. 

 

Figure 10: Effective vote tally for different buckets of 

dependencies 

The contingency table in Table 6 shows for dependencies with 

votes, whether they were discovered by MaX. We can see that 

component owners confirmed as accurate 115 out of 143 

dependencies found by Ladybug that were not detected by MaX 

while rejecting the other 28. Note that participants of our survey 

might have used MaX previously on these systems. Further, 

whether a dependency was found by MaX too was not revealed to 

them. 

 
Found by 

MaX 

Not Found by 

Max 
Row Total 

Confirmed 27 115 142 

Rejected 12 28 40 

Total 39 143 182 

Table 6: Contingency table showing votes versus detection by 

MaX 

We performed chi-square test on Table 6 for hypothesis H0,  

H0: Experts voted based on the rule and background system 

knowledge independently of the MaX data, which they could 

have seen before 

For a probability value of 0.5 with one degree of freedom, the chi-

square cutoff value is 3.84 while the chi-square value for this table 

is 0.134731. Hence, we do not reject H0 at 95% confidence level.  
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Therefore, we believe that by using our approach it is possible to 

discover additional important dependencies that may not be found 

by, for example, static analysis of the system. 

4.2.3 APPLICABILITY 

In a sub-experiment, we created ten smaller maps from Component 

Map 2 through percentage random sampling using 10% to 100% 

of the entries. For each of these ten derived maps, we built three 

mining models with confidence 0.1, 0.4, 0.7. A support count of 25 

was used (the support percentage value varied based on the size of 

the input dataset). In figure 11, we can see the number of 

dependencies found for the 30 models. 

 

Figure 11: Dependencies found as a function of number of 

defect reports, for different confidence values and support 

count 25, indicates more defect reports yielded more 

dependencies 

The graph shows that more defect reports yielded more 

dependencies. Moreover, the graph suggests a linear relationship 

between the number of component map items and the number of 

dependencies found. Therefore, we can start mining for identifying 

dependencies at early phase of software development and keep 

refining the model over time as more data becomes available. 

4.3 THREATS TO VALIDITY 

It is not possible to discover all dependencies for a system through 

defect history mining due to the scope of the data. Components 

that have not been part of significant number defects in the past 

will not benefit from this analysis. Therefore, we have to use the 

method in conjunction with other dependency analysis methods 

(static and run-time) to derive a comprehensive view of 

dependencies. 

Further, we have applied our method on a well-componentized, 

large-scale software system with a stable development process. 

The number of defect reports available to us was considerable. It is 

possible the same method would not work on software systems 

with smaller scale of development or with less componentization 

in the architecture. 

In our experiments, we have used for some models lower values 

for support and confidence that helped find a larger number of 

dependencies. For practical applications, it may be useful to have 

higher thresholds to find the most significant dependencies only. 

5 CONCLUSION AND FUTURE WORK 

For large software systems, a reliable method of discovering and 

ranking dependencies is important for understanding and 

prioritizing the testing required. We have used defect history to 

discover and rank dependencies in a software system. From our 

experiments, it appears as a novel way of discovering new 

information about dependencies in software. 

We have shown that we can start the defect mining at any phase of 

software development and refine the model gradually as more 

defects are found. 

We introduced a tool Ladybug that automates the mining process 

for Windows Vista and Windows Server 2008. We have shown 

that Ladybug discovers a number of dependencies that are not 

found by MaX. We intend to adapt Ladybug for other systems and 

study the dependencies in them. We also intend to see if we can 

find patterns in dependencies that were not found by MaX and try 

to trace then to a systemic deficiency in MaX. 

In our study, we engaged with the component owners to validate 

our results against their expert knowledge and they generally 

confirmed dependencies provided by Ladybug as real. In the 

future, we will look at other ways of incorporating expert 

knowledge for creating better dependency recommendations. 

Ladybug analysis has been incorporated in a larger change analysis 

and test targeting system used in Windows Serviceability and 

recommendations are used by hundreds of engineers every month. 
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