
Finding Dependencies from
Defect History

Rajiv Das, Wipro Technologies

Jacek Czerwonka, Microsoft Corporation

Nachiappan Nagappan, Microsoft Corporation

Context – Windows Development

• Size and scope
– 40+ MLOC
– Development team spread all over the world
– 1B+ users
– 400,000 supported devices
– 6,000,000 apps running on Windows
– Up to 10 years of servicing

• Challenges
– Large, complex codebase with millions of tests
– Diverse customer base
– Time and resource constraints
– Diverse test execution
– Very low tolerance to failure

Problems

• Unknown Dependencies

– Static, Dynamic Analysis does not find everything

• Large number of Dependencies

– How to prioritize Integration Testing when changes are
routine and costs involved are high?

Motivation

Graphics Driver crashes
whenever user ‘Pastes’
image to Photo Editor

– Internal defect in driver,
exposed by unknown
dependency between
editor and driver

Defect Id 2125

Title
Graphics driver crashes
on Paste

Status Closed
Opened By Alice
Opened On 7-November-2005
Affected
Component

Drivers\Video\Driver.sys

Resolution Fixed
Resolved By Bob
Resolved On 1-December-2005

Sample Defect Record

* Source Component Photo Editor, not recorded explicitly

Definitions

• Dependency: If defects are found frequently in
component C1 when component C2 is tested, then C2

may be dependent on C1

• Source Component: The component containing the
defect

• Affected Component: The component affected due to
a defect

Frequent Itemset Mining

In a transaction dataset,
frequent itemsets X and
Y can be found using
Dependence Rules
Mining:

1. Support(X), Support (Y)
and Support(X and Y)
above threshold

2. Confidence(X=>Y)
above threshold

If X and Y are items in the
transaction dataset:

• Support(X): probability
of occurrence of X, p(X).

• Confidence(X=>Y) : how
frequently Y occurs
when X occurs, p (Y|X).

• Importance (X=>Y): The
log likelihood of Y
occurring with X, than
without it i.e.

How to Identify Dependencies

• Let CS be source component

• Let CA be affected component

• Find frequent pairs of source and affected components
in the component map using Dependence Rules, CS =>
CA where
1. Support(CA), Support(CS), Support(CA and CS) >= support

cutoff

2. Confidence(CS => CA) >= confidence cutoff

3. Importance(CS => CA) is positive, meaning that the
affected component is positively statistically dependent
on the source component

How to Rank Dependencies

• Rank dependencies first by confidence and then by
importance.

– Higher confidence has higher rank

– Higher importance has higher rank

• For k topmost dependencies,

– First chose all dependencies greater than confidence cutoff

– Then choose k dependencies out of them with largest
importance

Example

Affected Source

C3

C3

C2 C5

Rule Support Confidence Importance

C2 => C4

Component Map

• Support 0.25
• Confidence 0.1
• Importance > 0

Dependencies Found

2

C1

C1

C1

C1

C2

C2

C2
C2

C2

C2

C4

C4

2/6 = 0.33 0.176

Ladybug Tool

• Automates dependency
discovery

• Easily Customizable

• Built on SQL Server
Platform – Analysis
Services, Integration
Services, SQL Server

Workflow

Experiment

• Pre-release Defects for Windows Vista and Windows
Server 2008

Size 92,976
Defects Included 28,762
Affected Components 1,649
Source Components 1,480

Input Component Map

Dependencies Found

Dependencies found by varying Support with
Confidence 0.005

Dependencies found by varying Confidence with
Support 0.0001

Outcome indicates that dependencies can be found for
various combinations of support and confidence thresholds

0

300

600

900

1200

0.005 0.01 0.05 0.1

D
e

p
e

n
d

e
n

ci
e

s

Confidence

0

300

600

900

1200

0.0001 0.00015 0.0002 0.0004

D
e

p
e

n
d

e
n

ci
e

s

Support

Source and Affected Components

Source and Affected Components included in
dependencies found by varying Support with

Confidence 0.005

Source and Affected Components included in
dependencies found by varying Confidence with

Support 0.0001

Fewer components get included in the results as the
thresholds are raised

0

100

200

300

400
A

ff
e

ct
e

d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

0.0001 0.00015 0.0002 0.0004

C
o

m
p

o
n

e
n

ts

Support

0

100

200

300

400

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

A
ff

e
ct

e
d

So
u

rc
e

0.005 0.01 0.05 0.1

C
o

m
p

o
n

e
n

ts

Confidence

Effectiveness

Outcome indicates our approach can possibly find new
dependencies.

Comparison with MaX for dependencies found with
different Support values with Confidence 0.005

Comparison with MaX for dependencies found
different Confidence values with Support 0.0001

0%

50%

100%

0.0001 0.00015 0.0002 0.0004

D
e

p
e

n
d

e
n

ci
e

s

Support

Found By MaX Not Found By MaX

0%

50%

100%

0.005 0.01 0.05 0.1

D
e

p
e

n
d

e
n

ci
e

s

Confidence

Found By MaX Not Found By MaX

Manual Validation

Total dependencies 276
Votes Cast 211
Dependencies with Votes 182
Dependencies with
Multiple Votes

29

Experts Invited 127
Experts Participated 70

Vote tally for different buckets of dependencies

In general, owners seemed to confirm the dependencies
considerably more often than reject them

Dependencies found by our method with
support 0.0001 and confidence 0.005

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

All Confidence
≥ 0.4

Top 10%
Importance

Confirm Reject

Manual Validation (2)

Found by
MaX

Not Found
by Max

Row
Total

Confirmed 27 115 142

Rejected 12 28 40
Total 39 143 182

It is possible to discover additional new important
dependencies using our method

H0: Experts voted based on the rule
content and their background
system knowledge independently
of what the MaX data says, which
they may have seen before

We do not reject H0 at 95%
confidence level using Chi-Square
analysis.

Contingency table showing votes versus detection by
MaX

Applicability

We can start mining at early phase of software
development and keep refining model over time as more

data becomes available.

Dependencies found as a
function of defect reports, for
different confidence values
and support count 25,
indicates more defect reports
yielded more dependencies

0

50

100

150

200

250

D
e

p
e

n
d

e
n

ci
e

s

Percentage of Component Map
0.1 0.4

Alternative Input Component Maps

Component Map 1 Component Map 2

Ownership Error (%) 0 5
Map Size 89,075 92,976
Defects 28,028 28,762
Affected Components 1,637 1,649
Source Components 1,470 1,480

•Alternative Component Maps were extracted using
different values of Ownership Errors
•No noticeable difference in the results

* Detailed description available in paper

Threats to Validity

• Dependencies cannot be found for Components that
have not been part of significant number of defects in
the past

• Our study is on a well-componentized, large-scale
software system with a stable development process
and considerable number of defect reports.

• For practical applications, it may be useful to use
higher thresholds to restrict the outcome to the most
significant rules only.

Conclusions

• New Approach to identified software dependencies

• An approach to rank dependencies using defect history

• Ladybug tool to mine defect history for new dependencies

• Possible to start mining at any phase of development and
refine models over time

• Found a large number of dependencies confirmed by
experts but are not found by static analysis tools

• Ladybug analysis has been incorporated in a larger change
analysis and test targeting system used in Windows
Serviceability and recommendations are used by hundreds
of engineers every month

Future Work

• Apply Ladybug to defect datasets of other software

• Look at ways of incorporating user judgment to
generate better dependency recommendations

 Finding Dependencies from Defect History

Rajiv Das
Wipro Technologies,

Bellevue, Washington, USA

v-rdas@microsoft.com

Jacek Czerwonka
Microsoft Corporation,

Redmond, Washington, USA

jacekcz@microsoft.com

Nachiappan Nagappan
Microsoft Corporation,

Redmond, Washington, USA

nachin@microsoft.com

ABSTRACT

Dependency analysis is an essential part of various software

engineering activities like integration testing, reliability analysis

and defect prediction. In this paper, we propose a new approach to

identify dependencies between components and associate a notion

of ―importance‖ with each dependency by mining the defect

history of the system, which can be used to complement traditional

dependency detection approaches like static analysis. By using our

tool Ladybug that implements the approach, we have been able to

identify important dependencies for Microsoft Windows Vista and

Microsoft Windows Server 2008 and rank them for prioritizing

testing especially when the number of dependent components was

large. We have validated the accuracy of the results with domain

experts who have worked on designing, implementing or

maintaining the components involved.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics, Product

metrics. D.2.9 [Software Engineering]: Management—Software

quality assurance (SQA)

General Terms
Measurement, Reliability, Experimentation

Keywords
Empirical study, defect database, dependency, dependence rules

1 INTRODUCTION
Understanding software dependencies is essential to performing

various software engineering activities including integration testing

[17], reliability analysis for code churn [11], defect prediction

based on complexity of the dependency graph [20] and aiding

developers [12]. Any dependency missed during integration testing

can cause a costly new regression. For a large and continually

changing software system like Microsoft Windows, a reliable

dependency detection mechanism is necessary. Complete

integration testing of the entire system is unlikely to be cost

effective given the volume of changes that happen every day and

the complex setup and hardware requirement for so many

scenarios.

Dependencies in a system are usually identified by static analysis.

Tools like MaX can determine various control flow and resource

dependencies such as imports, exports and runtime dependencies

[17]. Data flow dependencies along with control flow

dependencies can be identified with CodeSurfer [3]. Dynamic

tracing by using Magellan/Echelon [16] can identify for us control

flows at runtime and possibly reveal new paths not found by static

analysis. However, for example, new resource dependencies will

not be found by MaX if adapters for the resource type are not

available. Other static analysis tools may have similar limitations.

Moreover, in order to use dynamic analysis we need to have tests

available to hit new paths and the ability to associate tests reliably

with the component, for which they were originally written.

Clearly, using only one approach may not be practical. While

multiple approaches can be used together to find more

dependencies, dependencies originating from semantic behavior of

systems are not usually detected in open process architectures like

Microsoft Windows that does not enforce high-level semantic

contracts [8]. Nevertheless, we must strive to find as many

dependencies as possible.

In addition, when considerable number of dependent components

is found for a change (e.g. an operating system kernel binary that is

used by almost every other binary), it is necessary to have a notion

of importance for each dependency so that we can rank them and

prioritize testing. For integration testing, those dependencies that

are more likely to find defects could be prioritized higher.

In this paper, while we build our dependency identification

approach around integration testing, we believe dependencies thus

identified may be useful in other software engineering activities as

well.

The defect history has been a useful source of information in

various studies like determining implementation expertise [4],

Feature Tracking [7], Component Failure Prediction [10], and

Defect Correction Effort Prediction [15]. The defect record

contains the circumstance in which it occurred, its causes as well

as the ensuing changes in the system. For large software systems,

the defect database would contain many defects. We propose to

look at the defect history of the system and see which components

frequently found defects in a particular changed component. In this

context, we define dependency in the following way:

Definition 1: If defects are found frequently in component C1 when

component C2 is tested, then C2 may be dependent on C1.

In the usual sense of software dependency, C2 being dependent on

C1 does not imply that C1 depends on C2. Further, when C2 is

dependent on C1 and C1 is dependent on another component C0, it

does not imply that C2 depends on C0. A component may have

multiple dependencies on itself and conversely, it can itself depend

on many other components.

We applied our approach to the defect database of Microsoft

Windows Vista and Windows Server 2008 and found several

important dependencies. These results have been validated with

domain experts and are being used for recommending

dependencies as part of a Change Analysis system for Windows.

1.1 CONTRIBUTIONS

The significant contributions of the work are:

 A new approach for identifying dependencies in software

systems, to our knowledge

 An approach to rank dependencies using defect history

that can be used to prioritize higher the frequently

defect-finding components when a large number of

dependencies are known

 A tool to mine dependencies from the defect history –

Ladybug that automates the entire mining process from

defect retrieval to results storage using Dependence

Rules mining [14] to identify frequent component pairs

and measure the statistical dependency between them.

 We show that defect mining can be started at any phase

of software development and the models can be refined

as new defects are found.

 A detailed experimental study of our techniques applied

to a large software system with numerous end-users. In

this study, we discovered a large number of confirmed

dependencies that were not found by static analysis.

The remainder of the paper is organized as follows. First, we

review related work. In Section 2, we describe the main principles

behind our work. The Ladybug tool is described in Section 3. We

discuss implementation details and results of our study in Section

4. Finally, in Section 5 we make concluding remarks.

1.2 RELATED WORK

Various approaches have been used to define software

dependencies and develop methods and tools to identify them.

Some of the early works in this field include the formal

dependency model defined by Podgurski et al [13], and the

Dependency Analysis Toolset for the dependency graph created by

Wilde et al [18]. In general, static analysis is used for dependency

identification. Some of the systems built on this approach are

CodeSurfer developed by Anderson et al to aid software inspection

using the data and control flow dependency graph of the entire

program [3] and the MaX toolkit developed by Srivastava et al to

guide integration testing that analyzes the compiled program rather

than raw source code [17]. NDepend is another dependency

discovery tool primarily targeted to assist software development on

the Microsoft.Net platform [12].

Dynamic analysis was used alongside static analysis by Eisenbarth

et al to map features to software components and hence aid

program comprehension [6]. The Echelon tool developed by

Srivastava et al can identify the most important tests for the change

and, therefore, dependent components for integration testing [16].

Apart from this, we found that a data mining approach was used by

Zimmermann et al in the eRose tool to discover program coupling,

undetectable by program analysis, by mining version histories for

co-occurring changes [19].

2 MINING DEPENDENCIES

Defects in a software component surface when other components

use it, sometimes in unanticipated ways.

For example, a Graphics Driver is observed to crash whenever the

Photo Editor tries to process a Paste command from the user. On

investigation, we find an internal defect in the driver that was

exposed by a dependency between the editor and the driver.

We call components like the Graphics Driver that contain the

defect as source and components like the Photo Editor that expose

the defect as affected. Note that though multiple components may

be affected by the same defect, as the Photo Editor found this

defect first it is considered the affected component.

To find dependencies, we look at the defect history for defects that

were found in a component when another component was being

primarily used (or targeted with testing), as in the example above.

If activity on a component Ca frequently exposed defects on

component Cs, we consider that component Ca is probably

dependent on component Cs. We can find such frequent pairs in the

dataset using Dependence Rule Mining [14].

2.1 DEFECT RECORD

Table 1 shows a fictional defect in Drivers\Video\GDriver.sys

component that was found by Alice on 7-November-2005 and

fixed by Bob on 1-December-2005. Note that the defect record

does not include the affected component, usage or deliberate

testing of which triggered the failure. In fact, defect repository

software is not usually configured to capture the affected

component. This information was not explicitly stored in the

Windows defect repositories we perused nor does it appear in the

default configuration of other known software for defect tracking

like Bugzilla for Mozilla [5].

Defect Id 2125

Title Graphics driver crashes on Paste

Status Closed

Opened By Alice

Opened On 7-November-2005

Affected Component Drivers\Video\GDriver.sys

Resolution Fixed

Resolved By Bob

Resolved On 1-December-2005

Table 1: Sample defect

However, it is possible to identify affected components, from

information usually available in defect reports, as required in our

analysis. We describe one such approach in section 4.1

2.2 DEPENDENCE RULES

Dependence Rules learning is a generalized form of Association

Rules learning that can be used to identify frequent itemsets from a

transaction dataset and measure the statistical dependence between

frequently co-occurring itemsets [14]. Dependence Rules can be

mined using the Apriori algorithm with minimum cutoffs for

support and confidence [1, 2] and importance [9].

If X and Y are items in the transaction dataset, these measures are

defined as follows:

Definition 2: Support(X) is the probability of occurrence of X,

p(X).

Definition 3: Confidence(X=>Y) is the measure of how frequently

Y occurs when X occurs, p (Y|X).

Definition 4: Importance (X=>Y) is the log likelihood of Y

occurring with X, than without it i.e.

Positive importance implies that Y occurs when X does while a

negative value implies Y will not occur when X occurs. For zero

importance, X does not influence the occurrence of Y. In other

words, importance determines the statistical dependence between

the itemsets.

For our problem, the defect dataset forms the transaction dataset

and each defect represents a transaction. If CA denotes the itemset

containing the affected component and CS the itemset containing

the source component, our goal is to find rules of the form CS =>

CA such that the following conditions are satisfied:

1. Support(CA), Support(CS), Support(CA and CS) are not

less than support cutoff

2. Confidence(CS => CA) is not less than confidence cutoff

3. Importance(CS => CA) is positive

Each rule found after mining is one of the most likely affected

components for a given source or, in other words, a dependency.

2.3 RANKING DEPENDENCIES

All the three parameters used in Dependence Rules mining –

support, confidence and importance – have been used for rule

ranking in literature.

In our experiments, we ranked dependencies first by confidence

and then by importance. When ranking by confidence, a

dependency with higher confidence than another is ranked higher.

Similarly, to rank by importance a dependency with higher

importance is ranked higher. To select k topmost dependencies, we

first chose all dependencies greater than the confidence cutoff and

then choose k dependencies with the largest importance values.

2.4 EXAMPLE

We now attempt to discover dependencies from a sample

component map shown in Table 2. Such a map can be derived

from the defect data as described in Section 3.1

Affected Source

C1 C2

C3 C2

C4 C2

C1 C3

C2 C5

C1 C2

C4 C2

C1 C2

Table 2: Sample component map

On mining for Dependence Rules with thresholds – minimum

support 0.25, minimum confidence 0.1 and positive importance,

we get a single dependency - C4 depends on C2 with confidence

0.333 and importance 0.176.

Rule Support Confidence Importance

C2 => C4 2 0.333 0.176

Table 3: Dependence rules found from table 2

3 LADYBUG

Ladybug tool has been developed to automate our dependency

discovery method. It is built using Microsoft SQL Server 2005

Integration Services and Microsoft SQL Server 2005 Analysis

Services and Microsoft SQL Server 2005.

Currently Ladybug is implemented as an Integration Services

package that has separate tasks for each of the workflow stages

described in Section 3.1. Besides, there are setup scripts for SQL

Server database initialization and Analysis Services mining model

creation. This design allows Ladybug to be easily configurable for

specific applications. For example, we can customize the defect

retrieval task to the specific schema of the defect store or various

types of stores including SQL databases, XML files and web

services, apply custom filters for different noise patterns and

experiment with various thresholds for the mining parameters.

Moreover, new tasks can be easily added or existing ones

modified.

3.1 Workflow

Figure 1 shows the different phases in the Ladybug workflow.

Figure 1: Ladybug workflow

1. Retrieve Defects and Clean Data: In this stage, we retrieve

defects from the data store and clean the data if necessary.

The attributes retrieved for the defects are usually the ones

shown in Table 1.

2. Create Component Map: If the defect data contains the

affected component for each defect a component map as

shown in Table 2 is readily available and we can proceed to

stage 3.

However, as we have noted in Section 2.1, a defect record

does not usually contain the affected component and it is

necessary to implement an application-specific approach to

determine the same, before a component map can be created.

3. Mine Dependencies: Ladybug uses the component map as

input and creates models for mining Dependence Rules using

the Microsoft Association Rules algorithm in SQL Analysis

Retrieve Defects and Clean Data

Create Component Map

Mine Dependencies

Store Results

Services. It uses manual thresholds for support and

confidence and zero for importance.

4. Store Results: Dependencies found by the mining step above

are retrieved from the Analysis Services data store,

transformed, and stored in an easily retrievable form as

required by the application.

4 EXPERIMENTAL RESULTS

We applied Ladybug to mine the pre-release defect reports of

Microsoft Windows Vista and Windows Server 2008.

4.1 EXPERIMENTAL SETUP

Customization

In order to use Ladybug for the current dataset, we customized the

various stages of the workflow as follows:

1. Retrieve Defects and Clean Data: We configured the

extraction routine for the target data store schema. Further, we

added a cleanup sub-task to remove defects on components

that no longer exist (placeholder components used during

development).

2. Create Component Map: We mapped all components

owned by the defect opener on the defect opening date as

affected components, provided she did not own the source

component. If the opener owned no components, no

associations were made. This approach complies with the

necessary condition in Definition 1 that the defect in the

source component was found while primarily using the

affected component. Further, more than one component can

be mapped as a potential affected component.

In order to get the components owned by a person on a date,

we used a temporal ownership map.

Create Temporal Ownership Map: Defects in the data store

were typically resolved by Component owners. Therefore, for

each (Component, ResolvedBy) pair in the retrieved dataset

we get an OwnershipItem as follows:

OwnershipItem
{

Component,

ResolvedBy AS Owner,

MIN (ResolvedOn) – ε/2 * Range AS Start,

MAX (ResolvedOn) + ε/2 * Range AS End

}

Range denotes the interval between MAX (ResolvedOn) and

MIN (ResolvedOn) in days.

The ownership error ε is used to model for the possibility that

a person had owned a component beyond the range observed.

In practice, a larger value of this parameter allows us to

associate more potential affected components with a defect.

This value will usually be a small fraction of the observed

ownership period. For example, if the maximum observed

ownership over all component-owner pairs is 500 days and

we want to allow at most 10 additional days of ownership for

any pair, we may use the value of the parameter ε as 10/500

or 2%. Note that we did not account for discontinuities in

component ownership, as that was deemed very unlikely in

this case.

3. Mine Dependencies: We experimented with various

thresholds for support and confidence as described in Section

4.2

Dataset

From around 28,000 defects, we created component maps with

different ownership errors. Table 4 shows two maps created with

ownership errors 0% and 5% respectively. In our dataset, the

maximum observed ownership period was around 2400 days and

the minimum observed was 1 day. Therefore, 5% error means we

add at most 120 days to the ownership periods.

 Component

Map 1

Component

Map 2

Ownership Error (%) 0 5

Map Size 89075 92976

Defects 28028 28762

Affected Components 1637 1649

Source Components 1470 1480

Table 4: Component maps used in experiment

We can see that Component Map 2 includes more defects, source

and affected components due to greater ownership error. Using

these maps, we created various mining models by varying support

and confidence thresholds.

4.2 DISCUSSION

Figure 2 and 3 show the outcome of eight mining models created

with Component map 1 and Component map 2 using various

support values and confidence 0.005. In figure 2, we can see that

the number of dependencies discovered decreased gradually with

increase in support. In figure 3, we can see at most around 22% of

the affected and around 21% of source components got included in

the Dependencies, for either map. Further, for the same support,

corresponding models for Component Map 1 and Component Map

2 had similar number of Dependencies and included components.

Figure 2: Dependencies found with confidence 0.005 and

different support cutoffs

0

300

600

900

1200

0.0001 0.00015 0.0002 0.0004

D
ep

en
d

en
ci

es

Support

Component Map 1 Component Map 2

Figure 3: Components included in dependencies found with

confidence 0.005 and different support cutoffs

In figure 4 and figure 5, we can see the characteristics of eight

more models with various confidence values and support 0.0001.

From Figure 5, we see that the number of affected and source

components included in the dependencies is at most 22% and 21%

of the input respectively. Even here, corresponding models for

Component Map 1 and Component Map 2 had similar outcomes.

Figure 4: Dependencies found with support 0.0001 and

different confidence cutoffs

Figure 5: Components included in dependencies found with

support 0.0001 and different confidence cutoffs

4.2.1 EFFECTIVENESS

In order to determine Ladybug’s effectiveness, we compared the

dependencies found from the different models above with

dependencies determined by MaX for the same systems. We

wanted to see how many dependencies were in common and

whether our approach finds new dependencies, at least for this

application.

Approach

Dependencies found by Ladybug are in terms of components.

However, dependencies found by MaX are in terms of functions -

(Binary1, Function1) depends on (Binary2, Function1). We

substituted the (Binary, Function) pairs with the component the

binary belongs to so that the MaX dependencies were identified in

terms of components. Then, for each dependency found by

Ladybug, if we could locate a path from the affected component to

the source component in the derived graph. We considered it to be

found by MaX as well, otherwise not.

Results

As we can see in Figures 6 and 7, the number of dependencies in

common with MaX for the eight models in Figure 2 is around 20-

30%. Similarly, for the eight models in Figure 4, 20-30%

dependencies are found in common with MaX as shown in Figures

8 and 9.

Figure 6: Comparison with MaX for dependencies found for

models using Component Map 1, confidence 0.005 and

different support cutoffs

Figure 7: Comparison with MaX for dependencies found for

models using Component Map 2, confidence 0.005 and

different support cutoffs

0

100

200

300

400

A
ff

ec
te

d

S
o

u
rc

e

A
ff

ec
te

d

S
o

u
rc

e

A
ff

ec
te

d

S
o

u
rc

e

A
ff

ec
te

d

S
o

u
rc

e

0.0001 0.00015 0.0002 0.0004

C
o
m

p
o
n

e
n

ts

Support

Component Map 1 Component Map 2

0

300

600

900

1200

0.005 0.01 0.05 0.1

D
ep

en
d

en
ci

es

Confidence
Component Map 1 Component Map 2

0

100

200

300

400

A
ff

ec
te

d

S
o

u
rc

e

A
ff

ec
te

d

S
o

u
rc

e

A
ff

ec
te

d

S
o

u
rc

e

A
ff

ec
te

d

S
o

u
rc

e

0.005 0.01 0.05 0.1

C
o
m

p
o
n

e
n

ts

Confidence
Component Map 1 Component Map 2

0%

50%

100%

0.0001 0.00015 0.0002 0.0004

D
ep

en
d

en
ci

es

Support

Found By MaX Not Found By MaX

0%

50%

100%

0.0001 0.00015 0.0002 0.0004

D
ep

en
d

en
ci

es

Support

Found By MaX Not Found By MaX

Figure 8: Comparison with MaX for dependencies found for

models using Component Map 1, support 0.0001 and different

confidence cutoffs

Figure 9: Comparison with MaX for dependencies found for

models using Component Map 2, support 0.0001 and different

confidence cutoffs

This outcome shows that our approach can possibly find new

dependencies.

4.2.2 VALIDATION

In order to validate our findings and to find out whether the new

dependencies we detected were accurate, we engaged with 127

domain experts (70 participated) who have worked on designing,

implementing or maintaining the components involved and were

the then component owners. We created an online survey for the

top 30% dependencies (276 in all) found by mining Component

Map 2 with support 0.0001 and confidence 0.005 and asked the

experts to confirm or reject the dependencies using their

knowledge of system architecture and interactions between the

components included in a rule. Along with a dependency, its

strength (support, confidence and importance values) was revealed

without explaining the significance of these metrics.

Total Dependencies 276

Votes Cast 211

Dependencies with Votes 182

Dependencies with Multiple Votes 29 (20 all agree + 3 all

disagree + 6 conflict)

Experts Invited 127

Experts Participated 70

Table 5: Summary of survey to measure effectiveness of

Ladybug results for the top 30% dependencies found by

mining Component Map 2 with support 0.0001 and confidence

0.005

Table 5 shows a summary of the survey. Of the dependencies with

votes, 29 received multiple votes as the components involved had

multiple owners. To summarize the votes and have the effective

vote tally we treated a dependency with multiple votes as follows:

if all votes were positive the dependency was considered as

accepted otherwise it was considered rejected.

As we can see in Figure 10, out of all 182 dependencies that

received votes 78% were accepted. If we consider the 18

dependencies with highest confidence (0.4 or greater), acceptance

ratio was 83%. Again, for the 27 dependencies with top 10%

importance, the acceptance was 90%. In general, we conclude that

owners seemed to confirm the dependencies considerably more

often than reject them.

Figure 10: Effective vote tally for different buckets of

dependencies

The contingency table in Table 6 shows for dependencies with

votes, whether they were discovered by MaX. We can see that

component owners confirmed as accurate 115 out of 143

dependencies found by Ladybug that were not detected by MaX

while rejecting the other 28. Note that participants of our survey

might have used MaX previously on these systems. Further,

whether a dependency was found by MaX too was not revealed to

them.

Found by

MaX

Not Found by

Max
Row Total

Confirmed 27 115 142

Rejected 12 28 40

Total 39 143 182

Table 6: Contingency table showing votes versus detection by

MaX

We performed chi-square test on Table 6 for hypothesis H0,

H0: Experts voted based on the rule and background system

knowledge independently of the MaX data, which they could

have seen before

For a probability value of 0.5 with one degree of freedom, the chi-

square cutoff value is 3.84 while the chi-square value for this table

is 0.134731. Hence, we do not reject H0 at 95% confidence level.

0%

50%

100%

0.005 0.01 0.05 0.1

D
ep

en
d

en
ci

es

Confidence

Found By MaX Not Found By MaX

0%

50%

100%

0.005 0.01 0.05 0.1

D
ep

en
d

en
ci

es

Confidence

Found By MaX Not Found By MaX

0%

20%

40%

60%

80%

100%

All Confidence ≥

0.4

Top 10%

Importance

Confirm Reject

Therefore, we believe that by using our approach it is possible to

discover additional important dependencies that may not be found

by, for example, static analysis of the system.

4.2.3 APPLICABILITY

In a sub-experiment, we created ten smaller maps from Component

Map 2 through percentage random sampling using 10% to 100%

of the entries. For each of these ten derived maps, we built three

mining models with confidence 0.1, 0.4, 0.7. A support count of 25

was used (the support percentage value varied based on the size of

the input dataset). In figure 11, we can see the number of

dependencies found for the 30 models.

Figure 11: Dependencies found as a function of number of

defect reports, for different confidence values and support

count 25, indicates more defect reports yielded more

dependencies

The graph shows that more defect reports yielded more

dependencies. Moreover, the graph suggests a linear relationship

between the number of component map items and the number of

dependencies found. Therefore, we can start mining for identifying

dependencies at early phase of software development and keep

refining the model over time as more data becomes available.

4.3 THREATS TO VALIDITY

It is not possible to discover all dependencies for a system through

defect history mining due to the scope of the data. Components

that have not been part of significant number defects in the past

will not benefit from this analysis. Therefore, we have to use the

method in conjunction with other dependency analysis methods

(static and run-time) to derive a comprehensive view of

dependencies.

Further, we have applied our method on a well-componentized,

large-scale software system with a stable development process.

The number of defect reports available to us was considerable. It is

possible the same method would not work on software systems

with smaller scale of development or with less componentization

in the architecture.

In our experiments, we have used for some models lower values

for support and confidence that helped find a larger number of

dependencies. For practical applications, it may be useful to have

higher thresholds to find the most significant dependencies only.

5 CONCLUSION AND FUTURE WORK

For large software systems, a reliable method of discovering and

ranking dependencies is important for understanding and

prioritizing the testing required. We have used defect history to

discover and rank dependencies in a software system. From our

experiments, it appears as a novel way of discovering new

information about dependencies in software.

We have shown that we can start the defect mining at any phase of

software development and refine the model gradually as more

defects are found.

We introduced a tool Ladybug that automates the mining process

for Windows Vista and Windows Server 2008. We have shown

that Ladybug discovers a number of dependencies that are not

found by MaX. We intend to adapt Ladybug for other systems and

study the dependencies in them. We also intend to see if we can

find patterns in dependencies that were not found by MaX and try

to trace then to a systemic deficiency in MaX.

In our study, we engaged with the component owners to validate

our results against their expert knowledge and they generally

confirmed dependencies provided by Ladybug as real. In the

future, we will look at other ways of incorporating expert

knowledge for creating better dependency recommendations.

Ladybug analysis has been incorporated in a larger change analysis

and test targeting system used in Windows Serviceability and

recommendations are used by hundreds of engineers every month.

6 ACKNOWLEDGEMENTS

We would like to thank Vivek Mandava and Alex Tarvo for their

inputs and Pratima Kolan for doing an initial investigation. We

also thank everyone who participated in the validation survey.

7 REFERENCES

[1] R. Agrawal, T. Imielinski, A. Swami, ―Mining Association

Rules between Sets of Items in Large Databases,‖ SIGMOD

Conference 1993: pp. 207-216, 1993

[2] R. Agrawal and R. Srikant, ―Fast Algorithms for Mining

Association Rules,‖ Proceedings of the 20th VLDB Conference

1994, pp. 487-49, 1994

[3] P. Reps Anderson, T. Teitelbaum, M. T. Zarins, ―Tool Support

for Fine-Grained Software Inspection‖, IEEE Software, 2003,

VOL 20; PART 4, pages 42-56, 2003

[4] J. Anvik, G.C. Murphy, ―Determining Implementation

Expertise from Defect Reports,‖ Mining Software Repositories,

2007ICSE Workshops MSR '07. Fourth International Workshop

on, vol., no., pp.2-2, 20-26 May 2007

[5] Bugzilla, Bug Tracking System for Mozilla,

https://bugzilla.mozilla.org

[6] T. Eisenbarth, R. Koschke, D. Simon, ―Aiding program

comprehension by static and dynamic feature analysis,‖

Proceedings of IEEE International Conference on Software

Maintenance, pp 602-611, 2001

0

50

100

150

200

250

D
ep

en
d

en
ci

es

Percentage of Component Map 2

0.1 0.4 0.7

[7] M. Fischer, M. Pinzger, and H. Gall, ―Analyzing and Relating

Defect Report Data for Feature Tracking,‖ Proceeding Working

Conf. ReverseEng., pp. 90-99, 2003

[8] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel, O. Hodson,

J. Larus, S. Levi, B. Steensgaard, D. Tarditi, T. Wobber, Sealing

OS processes to improve dependability and safety, Proceedings of

the ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007, March 21-23, 2007, Lisbon, Portugal

[9] Microsoft Association Algorithm Technical Reference

(Analysis Services - Data mining), online resource at

http://msdn.microsoft.com/en-us/library/cc280428(SQL.100).aspx

[10] N. Nagappan, T. Ball, A. Zeller, ―Mining metrics to predict

component failures‖, Proceeding of the 28th international

conference on Software engineering, May 20-28, 2006, Shanghai,

China

[11] N. Nagappan, Ball, T., ―Using Software Dependencies and

Churn Metrics to Predict Field Failures: An Empirical Case

Study,‖ Proceedings of International Symposium on Empirical

Software Engineering, pp. 364-373, 2007

[12] NDepend tool, http://ndepend.com

[13] A. Podgurski, L. A. Clarke, ―A formal model of program

dependences and its implications for software testing, debugging,

and maintenance‖, IEEE Transactions on Software Engineering,

Volume 16, Issue 9, Sept. 1990 Page(s):965 - 979

[14] C. Silverstein, S. Brin, R. Motwani, ―Beyond Market Baskets:

Generalizing Association Rules to Dependence Rules‖, Data

Mining and Knowledge Discovery, v.2 n.1, p.39-68, January 1998

[15] Q. Song, M. Shepperd, M. Cartwright, C. Mair, "Software

Defect Association Mining and Defect Correction Effort

Prediction," IEEE Transactions on Software Engineering, vol. 32,

no. 2, pp. 69-82, Feb., 2006

[16] A. Srivastava, J. Thiagarajan, ―Effectively prioritizing tests in

development environment,‖ Proceedings of the 2002 ACM

SIGSOFT international Symposium on Software Testing and

Analysis, pp. 97-106, 2002

[17] A. Srivastava, J. Thiagarajan, and C. Schertz, ―Efficient

Integration Testing using Dependency Analysis,‖ Microsoft

Research-Technical Report, MSR-TR-2005-94, 2005

[18] N. Wilde, R. Huitt, ―A reusable toolset for software

dependency analysis‖, Journal of Systems and Software, v.14 n.2,

p.97-102, Feb. 1991

[19] T. Zimmermann, P. Weißgerber, S. Diehl, A. Zeller, ―Mining

Version Histories to Guide Software Changes,‖ Saarland

University, September 2003. Proc. 26th International Conference

on Software Engineering (ICSE), Edinburgh, UK, May 2004

[20] T. Zimmermann, N. Nagappan, ―Predicting Component

Failures using Dependency Graph Complexities‖, Proceedings of

International Symposium on Software Reliability Engineering, pp.

227-236, 2007

http://www.st.cs.uni-sb.de/papers/icse2004/
http://www.st.cs.uni-sb.de/papers/icse2004/
http://www.icse-conferences.org/2004/
http://www.icse-conferences.org/2004/

