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Abstract increase, eating into the energy savings from reduced idle
energy. Further, the optimal point changes with accept-
able degradation in performance and application mix.

Lo . . .yDetermining the optimal point and tracking it as work-
optimization. As a first step toward enabling energy eﬁ"loads change, thus becomes important for energy effi-

cient consolidation, we study the inter-relationships be-Cient consolidation.

tween energy consumption, resource utilization, and per- _ . e
. This paper exposes some of the complexities in per-
formance of consolidated workloads. The study reveal . L o
Y orming consolidation for power optimization, and pro-
the energy performance trade-offs for consolidation an : T
. . . ) oses viable research directions to address the chal-
shows that optimal operating points exist. We model th . .
enges involved. We experimentally study how perfor-

consolidation problem as a modified bin packing prob- o2
i o . .~ ~ mance, energy usage, and resource utilization changes
lem and illustrate it with an example. Finally, we outline : . :
L . : as multiple workloads with varying resource usages are
the challenges in finding effective solutions to the con- .
L combined on common servers. We use these exper-
solidation problem. ) L . . . :
imental insights to infer optimal operating points that
1 Introduction minimize energy usage with and without performance

One of the major causes of energy inefficiency in dataconstraints. We then discuss consolidation as a modi-

centers is the idle power wasted when servers run at |O\Ded multl—d_|mer.15|onal bin-packing per'em of aIIocatT

utilization. Even at a very low load, such as 10% cpu'n9 and m!gratlng Workloads.to ach|eve_ energy Opt'.'
utilization, the power consumed is over 50% of the peawwal_operatlon. To concretely |IIu_strate th|§ r_esearch Q|—
power [1]. Similarly, if the disk, network, or any such '€Ction, we present a computationally efficient heuris-
resource is the performance bottleneck, the idle powefiC t© Perform consolidation in a simplified scenario.

wastage in other resources goes up. In the cloud compuf-"€"€ are many issues that affect consolidation, includ-
ing approach multiple data center applications are hostelf'9 S€rver and W9rk'°ad behawor, ,Se‘?“”ty restrictions
on a common set of servers. This allows for consoli-"€auiring co—_Iocatlon of certain ap_ph_catlon components,
dation of application workloads on a smaller number of&d POWer line redundancy restrictions. The paper fo-

servers that may be kept better utilized, as different workYS€S (;In:))/ on a mfénggiable but |mpotr)t_ant_subspahce
loads may have different resource utilization footprintsSPanNned by CEU an 4 'Sb resc(j);rce cgm mar']u_ons. T eI
and may further differ in their temporal variations. Con- many issues that need to be addressed to achieve a real-

solidation thus allows amortizing the idle power COStSworld implementation of such consolidation methods are
more efficiently also discussed to help point out fruitful research direc-

However, effective consolidation is not as trivial as tions.
packing the maximum workload in the smallest number ) o
of servers, keeping each resource (CPU, disk, networkd Understanding Consolidation
etc) on every server at 100% utilization. In fact such anUnderstanding the impact of consolidating applications
approach may increase the energy used per unit serviggn the key observable characteristics of execution, in-
provided, as we show later. cluding resource utilization, performance, and energy
Performing consolidation to optimize energy usageconsumption, is important to design an effective consol-
while providing required performance raises several conidation strategy.
cerns. Firstly, consolidation methods must carefully de- To explore this impact, we used the experimental setup
cide which workloads should be combined a com- shown in Figure 1. A cloud consisting ef = 4 physi-
mon physical server. Workload resource usage, perforeal servers hosting controlled applications services re-
mance, and energy usages are not additive. Understanduests from controlled clients. Each client generates re-
ing the nature of their composition is thus critical to quests at a desired rate. Each request consists of jobs
decide which workloads can be packed together. Secwith specified levels of resource usage on each server
ondly, there exists anptimal performance and energy resource (here, each server is considered as comprising
point. This happens because consolidation leads to peof two resources: processor and disk). Each server is
formance degradation that causes the execution time toonnected to a power meter (WattsUp Pro ES) to track

Consolidation of applications in cloud computing envi-



power consumption. The Wattsup meter samples pow~~
ata maximum rate of 1 Hz, and hence any desired utilizi
tion state must be sustained for more than 1 second. \
designed the request processing to maintain a unifor
utilization state for 60 seconds and averaged the readin
over this period to get accurate energy data. The resoul
utilization is tracked using the operating system’s buil
in instrumentation accessed throuah the Xperf utility t
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Consolidation influences utilization of resources in a (a) Performance degradation
non-trivial manner. Clearly, energy usage does not MOl 12 H2-3 13-4 W45 H5-6 WET

early add when workloads are combined, due to a e
nificant percentage of idle energy. But utilization ¢ S
performance also change in a non-trivial manner. Pe| - e
mance degradation occurs with consolidation becau:
internal conflicts among consolidated applications, s
as cache contentions, conflicts at functional units of
CPU, disk scheduling conflicts, and disk write buf
conflicts.

To study the impact of consolidation with multip
resources, we measured performance and energy
varying both CPU and disk utilizations. First, an apj
cation with 10% CPU utilization and 10% disk utiliz
tion is started. Then, it is combined with workloads
varying CPU and disk utilizations, ranging from 10% Disk utilizagjc,
90% in each resource. The results are plotted in Fig,
2(a). The performance degradation observed along th
CPU utilization axis is not as significant as that observecf
along the disk utilization axis implying that increasing
disk utilization is a limiting factor for consolidated per- @long the axis of disk utilization. Secondly, there ex-
formance on this server. ists an optimal combination of CPU and disk utilizations

Energy consumptioper transactiorof a consolidated Where the energy per transaction is minimum. This oc-
workload is influenced by both resource utilization andCUrS at 70% CPU utilization and 50% disk utilization for
performance. Typical variation of energy per transactiorthis setup, though the numbers could depend on the spe-
with utilization (of a single resource) can be expectedCific machines and workloads used. This energy optimal
to result in a “U”-shaped curve. When the resource uti-combination may vary if we further impose bounds on
lization is low, idle power is not amortized effectively the performance degradation tolerable to us, but we can
and hence the energy per transaction is high. At high';llways find an optimal combination of resource utiliza-
resource utilization on the other hand, energy consumptions that minimizes energy per transaction taking into
tion is h|gh due to performance degradation and |ongeﬁ0n5iderati0n both the resources. Note also that this op-
execution time. timal point may be significantly different than that deter-

Figure Z(b) p|0ts the energy Consumption per transacmined by Considering each resource in isolation.
tion of the consolidated workload, for the same scenario.

We can make a few important observations from this re3 Consolidation Problem

sult. Firstly, energy consumption per transaction is moreThe goal of energy aware consolidation is to keep servers
sensitive to variations in CPU utilization (as seen by thewell utilized such that the idle power costs are efficiently
deeper “U” along the CPU axis) than variations in disk amortized but without taking an energy penalty due to
utilization as seen by the relatively flat shape of the curventernal contentions.

Energy (J) per transaction

(b) Energy consumption

igure 2: Performance degradation and energy consumption with
arying combined CPU and disk utilizations.



The problem of loading servers to a desired utiliza-utilizations as the bin dimensions thus allows our algo-
tion level for each resource may be naively modeled asithm to operate with a closed form calculation of bin
a multi-dimensional bin packing problem where serversoccupancy when combining objects.
are bins with each resource (CPU, disk, network, etc) be- The algorithm proceeds as follows: The first step de-
ing one dimension of the bin. The bin size along each ditermines the optimal point, from profiling data such as
mension is given by the energy optimal utilization level. shown in Figure 2(b). Next, as each request arrives, it
Each hosted application with known resource utilizationsis allocated to a server, resulting in the desired workload
can be treated as an object with given size in each dimerdistribution across servers. The crux lies in using a sim-
sion. Minimizing the number of bins should minimize ple, efficient and scalable heuristic for bin packing. The
the idle power wastage. However, that is not true in genheuristic used here maximizes the sum of the Euclidean
eral, causing the energy aware consolidation problem talistances of the current allocations to the optimal point at
differ from traditional vector bin packing: each server. This heuristic is based on the intuition that
Performance degradation: Unlike objects packed in  we can use both dimensions of a bin to the fullest (where
bins, the objects here have a characteristic not modeletull” is defined as the optimal utilization point) after the
along the bin dimensions: performance. When two ob-current allocation is done, if we are left with maximum
jects are packed together, their performance (such asmpty space in each dimension after the allocation. The
throughput) degrades. Since performance degradation-dimensional Euclidean distanc& ) provides a scalar
increases energy per unit work, minimizing the numbemetric that depends on the distances to the optimal point
of bins may not necessarily minimize energy. This as-along each dimension. If the request cannot be allocated,
pect must be accounted for in the solution. a new server is turned on and all requests are re-allocated
Power variation: In a traditional bin packing problem, using the same heuristic, in an arbitrary order. This ap-
if the minimum number of bins is, then filling upn — 1 proach is adaptive to changing workloads (temporal vari-
bins completely and placing a small objectinthéh bin  ations in requests) as we allocate newer requests to ap-
may be an optimal solution. Here, even given the optimapropriate servers. It also works seamlessly in presence
number of bins, the actual allocation of the objects mayof heterogeneity: in that case the optimal combinations
affect the power consumed. would be different for each type of server.

Designing an effective consolidation problem thus re- To illustrate the heuristic, consider the simple exam-
guires a new solution. The actual implementation musple shown in Table 1. The current status of two servers
also address several other challenges discussed in sgs-shown: server A is currently executing at [30, 30],
tion 4. Before discussing those issues, we consider awhich represents 30% CPU utilization and 30% disk
example heuristic for consolidation, to help illustrate th utilization, and Server B is at [40, 10]. A new re-
problem concretely (though not necessarily providing aquest with workload requirement [10,10] is to be allo-

final or optimal solution). cated. Suppose the optimal point for both A and B is
[80, 50]. If the application is allocated to A, the sum of
3.1 Consolidation Algorithm the Euclidean distances to the respective optimal points,

This algorithm aims to find a minimal energy allocation 9¢ (40, 40] — 80, 50]) + 67 ([40, 10] — [80, 50]) = 97.8,

of workloads to servers. Minimum energy consumptioniS greater than that achieved by allocating the request to
occurs at a certain utilization and performance. How-B- Thus the request is allocated to A, leaving A running
ever, that performance may not be within the desired perét [40, 40] and B at [40, 10].

formance constraints and hence we design the algorithm

N N biect t f traint CPU | Disk || Opt.CPU | Opt_Disk s [ D4
0 minimize energy subject to a performance constraint— 73130 20 =5 sas %58
This constraint also helps account for the first difference Aafter | 40 | 40 80 50 412

; 4 L. H A B_orig 40 10 80 50 56.6 96.2
mentioned above from tr_ad|t|onal bin-packing: if we sett s+ 0 0 =0 T
the performance constraint to that needed for optimal en-
ergy consumption, the algorithm will not attempt to min- Table 1:Scenario to illustrate proposed heuristic.

imize the number of bins beyond the number that min-
imizes power. If the performance constraint is tighter Note that an optimal algorithm may find better allo-
than that required for optimal energy, the number of binscations. In the example above, as a result of the alloca-
is automatically never reduced below the optimal. tion chosen, it is feasible to allocate subsequent requests
Also, while energy and performance change in a nonsuch as [10, 40], [20, 40], [30, 40], [40, 30], and [40,
trivial manner when workloads are combined, it is worth 40], but not requests such as [50, 10], [50, 20], which
noting that the resource utilizations themselves are apwould have been feasible if the current request of [10,10]
proximately additive, especially at utilizations that are was allocated to B. At each decision point the heuristic
lower than the optimal levels for each resource. Usingchooses an allocation that would leave the system capa-



ble of servicing the widest range of future requests. Anproaches the optimal at infinite tolerance in performance
optimal scheme however, would choose the allocationslegradation for the test scenario.

based on all requests simultaneously rather than allocat-

ing the current request without changing existing alloca-4 Discussion

tions. In general, while it is pOSSible to deVeIOp betterThe consolidation prob'em discussed above helps ap-
heuristic algorithms, the algorithm presented here servegreciate some of the key aspects of the performance-
as an illustration to show that energy savings are possiblgtilization-energy relationship. Our ongoing effort in-de
over the base case. We reserve a more detailed study gfgning a solution has helped uncover several complica-
the pathological cases for this algorithm (like extremelytions, not addressed in the illustrative algorithm above,
random disk accesses) for future work. that lead to a rich set of research issues.

The optimal scheme may have a very high computa- Mmulti-tiered Applications:Unlike the application de-
tional overhead, making it infeasible to be operated at thecribed in the previous section, a realistic application
request arrival rate. However, for the purpose of comparmay use multiple servers such as a front-end request clas-
ison, we implemented the optimal scheme based on asjfication server, a back-end database server to access re-
exhaustive search of all possible allocations for a veryguested data, an authentication server to verify relevant

small cloud consisting of four servers. credentials and so on. Such an application is commonly
- : S referred to as a multi-tiered application. Each tier has a
#Apps | Total CPU utilization | Total disk utilization : . . .
il 5 8457 G586 different resource footprint and the footprints change in
Mix2 6 93.72 53.87 a correlated manner as the workload changes. The con-
Mix3 6 78.79 150.58 H H H H H H
M : 5157 0593 solidation problem involves allocating the multiple tiers

of all applications across a subset of available physical
Table 2:Various mixes of applications considered for our multipro- S€rvers such that each application may operate at its de-

grammed workload. sired performance level with minimum total energy us-
. . age. The allocation may have to be adapted dynamically
3.2 Experimental Evaluations as workloads evolve over time, either via intelligent allo-

Table 2 shows the characteristics of various mixes of apcation of new requests, or via explicit migration of exist-
plications used in the comparison of the example heurising state from one physical server to another.
tic with the optimal. The application mixes representa composability Profiles:We showed how the perfor-
range of consolidated workloads. Mix1 and Mix4 have mance, resource utilization, and energy vary as multiple
equal CPU and disk utilizations but vary in the abso-applications are consolidated on a common server with
lute total resource used. Mix2 and Mix3 are skewed tO'Varying workload serviced. The utilization and perfor-
ward hlgh CPU utilization and hlgh disk utilization re- mance was tracked using Xperf and power using an ex-
spectively. The energy consumption per transaction ofernal power meter. In a real cloud computing scenario,
consolidated workloads is experimentally measured USthe overhead of running performance tracking and de-
ing the setup of Figure 1. ploying external power meters may be unacceptable and
Optimal W Proposed Optimal M Proposed better alternatives may be needed [4]. Also, measuring
the energy-performance relationship itself is non-ttivia

S S
85 35
ug ~;‘ as the number of applications and the number of possi-
=2 2 ble combinations of their multiple tiers, across multiple
g; I I I I g’; I I I I server types, may be very large. The use of extra running
T Mkt M2 M3 Mxd | | Ml M2 Mix3  Mixd time for profiling of an application’s performance and
energy behavior with varying mixes may not be feasible
(@) tolerance = 20%. (b) tolerance = oo. due to cost reasons. Run time variations may even render
Figure 3: Comparison of our heuristic scheme with the optimal profiles less relevant. Thus, consolidation research also
scheme. involves developing efficient methods to understand the

composability behavior of applications at run time.
Energy per transaction with a maximum performance Migration and Resume CostsWhile the example

degradation tolerance of 20% and infinite tolerance arén the previous section assumed an application serving
plotted in Figures 3(a) and 3(b) respectively. Clearly,small stateless requests, that is not the only type of ap-
greater energy savings are achieved by both schemes plications. Other applications may maintain a signifi-
higher tolerance in performance degradation. The eneant persistent state, such as a long lived chat session
ergy used by the proposed heuristic is about 5.4% morgl] or a video streaming session. Such applications in-
than optimal (not considering the energy spent on comvolve a non-trivial overhead in migration from one ma-
puting the optimal) on an average at 20% tolerance. It apehine to another. Migration may involve initiating the re-



quired configuration and virtual machine needed for the Additionally, the example methods discussed here
migrating application, incurring additional costs. Also, only considered the CPU and disk resources. Other re-
the dynamic nature of allocation implies that the sleepsources such as network and memory should also be
and wake-up costs of the servers need to be consideredonsidered, as these may be the bottleneck resources
When multiple servers are running at low utilization duefor certain applications. Operational constraints such as
to workload dwindling off, their applications may be co-location of certain data and components for security,
consolidated to fewer servers allowing some physicapower line redundancies, and cooling load distribution
servers to be set to sleep mode. However, the migratiomay affect the design as well. Consolidation methods
costs and sleep/wake-up costs may sometimes overshowmiay need to account for several variations such as the
the benefit from shutdown of servers. Efficient meth-multiple types of requests served by an applications -
ods to dynamically adapt to the workload variations with their expected processing times and the exact set of tiers
realistic migration and server resume costs for differentused to service them. Some of the applications may use
categories of applications is an interesting problem. external services, not hosted by the cloud operator, fur-

Server Heterogeneity and Application Affinitiegle  ther making the relationship more complex.
initially assumed that any application may be hosted or;_)
any machine. However, in practice, certain application Re,lated work ) )
may have affinities for certain physical resources. For in-Consolidation of resources and controlling resource uti-

stance, it may be more efficient to run a database servdfations has been researched in recent times. A frame-

directly on the physical server that hosts the disk drivesOrk for adaptive control of virtualized resources in

since the database software may be optimized for the sp&ltility computing environments is presented in [S]. In
cial read-write characteristics of disks and may directlyth® Past, cluster resource management has posed simi-
access the raw storage sectors on the disks. RunniH@r problems to that of consolidation of virtualized re-

the database over network connected storage with addPOUTces: For instance, [7] proposes a two level resource
tional intermittent layers of storage drivers and networkdistribution and scheduling scheme, and [8] proposes a

file system abstractions may make it inefficient. Asidecluster level feedback control scheme for performance
from configuration, servers in a cloud facility may vary optimization. Power aware load balancing and migration

in energy-performance characteristics due to age of hard?! activity within a processor, among multicore proces-

ware. These variations are crucial to be exploited in conSOrs and servers has also been studied in [3, 2, 6]. How-

solidation as the energy usage of an application woul@Ve" there has been little work on joint power and perfor-

depend on which server is used and in what applicatioﬁnance aware schemes for multi-dimensional resource al-
mix. The consolidator may not always run an alop"(:a_location. Specifically, characterizing power-performanc
tion on the server most efficient for it since a global opti- characteristics of consolidated workloads with respect to

mization is performed. Migration and resume costs maynultlple resources has not been adequately addressed.

restrict the application from migrating to a more efficient Refer ences
server. Ensuring globally optimal operation in a dynamic
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