

The Foundations and Tools for
Software Engineering Lab

Department of Computing, FCEN,
University of Buenos Aires, Argentina

Sebastian Uchitel

You are here. We are here.

About us
 Research:

– Foundations and Tools for Software Engineering

 People

– Directors: Victor Braberman and Sebastian Uchitel

– 3.5 Staff

– 1 Postdoc

– 6 PhD Students

– Several master’s level research assistants

About us
 Ongoing Collaborations

– Microsoft, University of Toronto, Imperial College London,
University College London, University of Louvain-la-Neuve,
CNRS-France

 Consultancy

– Kodak UK, Polo IT Buenos Aires, HP, Telco’s, Pragma, MS
Corp, Argentine Government, etc...

 Teaching

– Undergraduate, Graduate and Industry

About us
 Publication track record

– Journals: TOSEM, TSE, FMSD, STTT, ASEJ, ...

– Conferences: ICSE, FSE, RTSS, ASE, TACAS, CAV, ...

 Grant track record (currently over 2.3 million USD)

– ANCPYT, ECOSUD (Argentina/France), CONICET, UBACYT, EPSRC (UK), EU-FP6 (EU),
CECYT-MAE (Argentina/Italy)

 International Recognition

– Program Committees: ICSE (2005, 2007, 2008), ISSTA 06, FASE (2006-2007), ASE
(2003-2006), ICTAC 05, FSE (2005-2007), RE (2005, 2007), ...

– Program Chairs: SCESM 2004, ASE 2006, ICSE 2010.

– Journal Editorial Boards: TSE (2006-), REJ (2007-)

– Awards: Microsoft Research, IBM, Leverhulme Trust, Nuffield Foundation, CESSI,
Argentine National Academy of Science...

Overview
 Technical areas

– Model Extraction

– Static Analysis

– Memory usage prediction

– Dynamic Analysis

– (Distributed) Model Checking

– Test-case generation

– Test-guided model checking

– Quantitative Modeling and Analysis

– Machine learning

– AOP

– Model Synthesis

– Partial Behaviour Models

 Application Domains

– Real time systems

– Service Oriented Architectures

– Distributed and Concurrent systems

– Object-oriented programs

– Embedded systems

– Dynamic and reconfigurable systems

 Software Engineering Activities

– Requirements Engineering

– Software Architecture

– Testing

– Design

Our vision: We believe that...
 Models should play a central role in software engineering.

 Traditional engineering approach

– Abstract & Precise

– Amenable to analysis.

– Complexity: Model << System.

 Pre-development analysis of behaviour

– Prevent consequences

– Early detection -> cheaper fix

 Costs << Benefits

Implementation

Problem &

Solution

Feedback

ModelsModelsModels

Feedback

Our Research Focus

 Models

 Automated Analyses

 Verification and
Validation

Implementation

Problem &

Solution

Feedback

ModelsModelsModels

Feedback

Theme 1: Validation

 How do I know
I’ve modelled the
right thing?

Theme 1: Validation of Contract Specifications

 Contract specifications

– Pre/Post-conditions + invariants

appear in a variety of software artefacts

– Specification (Z, Design by Contract, Use Cases)

– Code (Spec#-C#, Eiffel, Java)

– Output of Analysis tools (Daikon, DySy)

 However, they are far from trivial to understand

Contracts are hard to validate

Validation Strategies
 Visualise state space

– Even simple contract specifications are infinite state

 Execute / Simulate

– Very partial exploration

– When do we stop?

– No big picture

 Prove properties (model check)

– Which properties?

– Do we have them all?

– Must validate the properties…

Our validation strategy: Abstraction

 What is the right abstraction of an infinite state space that will
aide validation?

– Precision vs. Size trade-off is key

 A: Finite State Machine that preserves action enabledness

– Two concrete states are in the same abstract state if and only if
they allow the same set of actions
(i.e. preconditions that hold for both
are the same)

[ICSE 09]

Enabledness Preserving Finite State Machine

Model A

Model B

Circular Buffer has an error

“(r != w)” is missing from the invariant

Tools Support
Open source available at http://lafhis.dc.uba.ar/contractor

Validating Windows Server protocols

 Negotiate Stream Protocol

– A protocol for the negotiation of credentials between a client and a server
over a TCP stream

– 13 operations, potential state space of 2^13 = 8192

– Challenge: Will the size allow for manual validation?

 WINS Replication and Autodiscovery Protocol

– Governs the process by which a set of name servers discover each other
and share their records in order to keep an up-to-date vision of the name
mappings

– 33 operations, potential state space of 2^33 = 8 Billion

– Challenge: Can we build it, let alone validate?

Windows Negotiate Stream Protocol 2.0

Experimental Setup

Windows Negotiate Stream Protocol 2.0

Windows Negotiate Stream Protocol 2.0

Various problems were found in the TD 2.0.
These problems were fixed in TD 3.0

Case studies
Operations Reachable states Execution time

(seconds)

Web Fetcher [de Line 2004] 4 2 0.3

ATM [Whittle 2000] 8 6 5

MS-NSS 13 10 4

MS-WINSRA 33 39 97

Future Work
Talking to the Microsoft Protocol Engineering Team

Implementation

Problem &

Solution

Feedback

ModelsModelsModels

Feedback

Theme 2: Model Construction and Elaboration

 Models are hard to build!

Synthesis from Heterogeneous Partial Specifications

[TSE03][FSE04][TOSEM04]

unsubscribe

disable

enable

eos

unsubscribe

disable

subscribe

enable

eos

unsubscribe

disable

subscribe

enable

eos

msg

eos eos

0 1 2 3 4

User

AdminServer

Use cases, Scenarios,

Architecture, Requirements,

Class Diagrams, Contracts,…

Behaviour models

Eg. Labelled Transition Systems

Synthesis

Semantic Mismatch

unsubscribe

disable

enable

eos

unsubscribe

disable

subscribe

enable

eos

unsubscribe

disable

subscribe

enable

eos

msg

eos eos

0 1 2 3 4

User

AdminServer

Partial Description Complete Description

Required

Behaviour

Proscribed

Behaviour

Required

Behaviour

Proscribed

Behaviour

Undefined

Behaviour

Synthesis

Solution: Partial Behaviour Models

 Capable of distinguishing Required,
Proscribed and Unknown behaviour

– Eg. Modal Transition Systems

 Research threads

– Refinement

– Model Checking

– Synthesis

– Merge and Composition

request?

request

reply

[TSE09][FSE08][ASE08][ICTAC09][FM06]

 MTS Model Checker

 Open source: http://sourceforge.net/projects/mtsa/

Tool Support

Implementation

Problem &

Solution

Feedback

ModelsModelsModels

Feedback

Theme 3: Program Analysis

 What can be said about
the code?

Implementation

Invariants

Bound on memory

consumption as a function

of parameter values

Automatic Generation of Memory
Consumption Certificates

[TVLSI09][JOT08][JOT06]

Implementation

Problem &

Solution

Feedback

ModelsModelsModels

Feedback

Theme 4: Model Checking

 Can we increase
scalability of model
checking procedures?

Feedback ZEUS

Optimised Timed Automata

Behaviour Model

Optimised

Real Time Property

Timed Automata

Behaviour Model

Real Time Property

ZEUS: Real Time Distributed Model Checking

Obslice

STTT’05,
FMSD’06

Overview
 Technical areas

– Model Extraction

– Static Analysis

– Memory usage prediction

– Dynamic Analysis

– (Distributed) Model Checking

– Test-case generation

– Test-guided model checking

– Quantitative Modeling and Analysis

– Machine learning

– AOP

– Model Synthesis

– Partial Behaviour Models

 Application Domains

– Real time systems

– Service Oriented Architectures

– Distributed and Concurrent systems

– Object-oriented programs

– Embedded systems

– Dynamic and reconfigurable systems

 Software Engineering Activities

– Requirements Engineering

– Software Architecture

– Testing

– Design

The Foundations and Tools for
Software Engineering Lab

Department of Computing, FCEN,
University of Buenos Aires, Argentina

Sebastian Uchitel

Submit to ICSE

Deadline for

submissions to the

technical track:

September 6

http://www.sbs.co.za/ICSE2010/

