

CI Mission

Built upon a strong foundation of science, partnership, and field demonstration, CI empowers societies to responsibly and sustainably care for nature for the wellbeing of humanity

Using Technology to Maintain Ecosystem Health and Services

Sandy Andelman, Ph.D Vice President Conservation International

Inadequate monitoring and understanding of ecological change

Early Warning System Standardized field measurements External data sources of climate, tropical biodiversity and ecosystem services. Markets **OUTPUTS** 1. Threats 2. Future Scenarios 3. Advice to Policy Makers 4. Recommended Actions 5. Communication Data verification, archiving, Threat analysis hub standardization Lakes Marine Savanna Data from other observatory networks

- Climate sensors
- Camera traps
- Acoustic sensors
- Soil sensors
- "Human sensors"

Varying levels of connectivity

Needs: Scientific Workflow Tools

June 2008

June 2009

June 2010

Mobile as the platform for:

- Participatory data collection
- Near real time mapping of global issues
- Local-scale impact and audit

Feedback to users:

- Fire alert system
- Fire risk / Forest flammability
- Flood alert system
- Agricultural drought alert
- Illegal logging alert
- Encroachment on protected areas

Decision support tools

Potential Fresh Water Sources

Water

China - Mekong River

Cambodia: Lake Tonle Sap

Tonle Sap

Key questions:

Forecasting

- How will land use change affect the provision, flows, benefits and values of ecosystem services?
- Where are critical areas for water flows for human uses?
- What will be the effects of climate change on water and food security?

Conservation planning

Where is it most efficient and cost-effective to invest in conservation for the combined provision of biodiversity and important ES?

Policy optimization

- What policy tools are likely to be most effective for the maintenance of ES and the minimization of environmental impact?
- How are opportunity costs distributed?
- How are probabilities of land conversion distributed?
- How are liabilities distributed?

- ARIES
- IBAT
- OSIRIS
- CONSVALMAP

Conservation International Decision Support Tools

The ARIES Project

Artificial Intelligence for Ecosystem Services

Gund Institute for Ecological Economics

- Ferdinando Villa, Marta Ceroni, Sergey Krivov, Josh Farley, Kenneth Bagstad, Gary Johnson
- Conservation International
 - Rosimeiry Portela, Miroslav Honzak
- Earth Economics
 - David Batker

National Science Foundation

ARIES in a nutshell

- Rapid <u>assessment toolkit</u> for ecosystem services and their values; not a single model but an intelligent system that customizes models to user goals
- Mapping process for ecosystem service <u>provision</u>, <u>use</u>, and <u>flow</u>
- Probabilistic Bayesian models inform decision-makers of likelihood of all possible outcomes; explore effects of policy changes and external events
- Web based, customizable for specific user groups, geographic areas and policy goals; custom tools implement specific "bottom line"

Five elements of modeling in ARIES

What Next: Interactive Models to Forecast Changes in Ecosystem Health and Services

- Interactive workflow systems for transparent, repeatable processing of large, complex data sets and algorithms
- Visualization tools to enable decision makers and society to understand complex information
- Integration of interactive models to forecast future states of ecosystem services and health

Climate Change

Key Concepts in REDD

Reduced Emissions from Deforestation & Degradation

- Additionality
- Reference Scenario
- Leakage

Deforestation carbon emissions / year = Research Area cleared / year x biomass removed / unit area

PAN-TROPICAL

Methods are in-hand to measure changes in forest area at pan-tropical, national, and project levels

NATIONAL

PROJECT

Deforestation carbon emissions / year = Research Area deared / year x biomass removed / unit area

DeFries 2009

Initial Emissions

Carbon uptake through Regrowth

Need to know:

- original biomass
- emission factors for each component
- time scale of interest

Possible at project level but more difficult at national level

	Project Level	National Level
Forest Area Change	✓ satellite and airborne	✓ satellite
Biomass	airborne and ground data	extrapolation only
Emission factor (initial fire, decay, uptake)	modeled; field measurements	modeled

Degradation is harder

Research

Burned peat in central Kalimantan

DeFries 2009

Logging in southern Amazon from satellite

Integrated Multi-Resolution Monitoring

"EcoHawk"

"Eco-sensors"

Northrop Grumman

Technology for managing, processing & Research visualizing data — establish baselines; visualize change

Knowledge Integration Centers – interpret complex information at scales relevant to particular user groups

4 Areas Where Technology Would be Transformational

- Cell Phone Platform for Ecosystem Health
- Workflow Tools
- Decision Support Tools & Integrated
 Modeling Platforms for Forecasting Change
- Technology to Support Climate Policy & Adaptation

