

Making parallel programming
synonymous with programming

Illiac

Extreme Scale

Computing

CUDA Center

of Excellence

Center of

Excellence

Number of transistors per chip doubles every 18 months

Performance of single thread increases

New generation hardware provides better user experience
on existing applications or support new applications that
cannot run on old hardware

People buy new PC every three years

Number of transistors per chip doubles every 18 months

Thread performance does not improve; number of cores
per chip doubles

power/clock constraints and diminishing returns on new
microprocessor features

New generation hardware provides better user experience
on existing application or support new applications that
cannot run on old hardware – only if these applications run
in parallel and scale automatically

Parallel Software is essential to maintaining the current
business model of chip and system vendors

Create opportunity

New client applications that require high performance and can
leverage high levels of parallelism

Create SW to exploit opportunity

Languages, tools, environments, processes that enable the
large number of client application programmers to develop
good parallel code

Create HW to exploit opportunity

Architectures that can scale to 100’s of cores and provide best
use of silicon a decade from now

Identify application types that

are likely to execute on clients

require much more performance than now available on a client

can run in parallel

Develop enabling parallel code (core libraries, application
prototypes) for such application types

hard to identify the killer app; easier to work in its “vicinity”

doing so gives us an understanding of the apps requirements;
demonstrates feasibility

and leads to the creation of reusable software

Intelligent user interfaces require high performance on the client side (!)
graphics, vision, NLP

Private information will be kept on the client side (?)
concerns for privacy and security

fewer efficiencies to be achieved on server side, because of limited sharing

NLP, data mining, search

High-availability services require client performance and adaptation
Provide “best answer”, given current connectivity

Adaptive applications (NLP)

More powerful client reduces app development time
Games, browser

Create Find

TransformCommunicate

Understand

human information

(John Hart)Flexibility

R
e

a
lis

m
Halo3

GTA4

2nd Life

WoW

Game Engineering

Faster, Cheaper

Online

Social

Spaces

More

Realistic

(Precomputation)

Multicore

Visual Apps

(T
im

e
,
$
$
$
)

Objective: build parallel library with
efficient spatial data structures to
accelerate graphics and
physical simulation

Ray triangle intersection

Photonray gathering

5-D ray classification/bundling

Pointsurface reconstruction

Collision detection

Also vision, machine learning

Photon

Mapping

scatters

light

particles

into scene

Ray Tracing

gathers light

particles

along lines

of sight

Simple, Direct Ray Tracing algorithms work well on GPUs,
but do not provide good quality images

Global Illumination algorithms are more irregular and do
not map well on GPUs

Different data structures and algorithms perform better on
different images

GPU is harder to program

CPU better than GPU on organizing hierarchical data

GPU lacks cache and stack

GPU needs synchronous control flow

4-core CPU: 5.84.fps

192-core GPU: 6.40 fps

4-core CPU: 23.5 fps

192-core GPU: 32.0 fps

K. Zhou, Q. Hou, R. Wang & B. Guo.

Real-Time KD-Tree Construction on

Graphics Hardware.

SIGGRAPH Asia 2008.

M. Shevtsov, A. Soupikov &

A. Kapustin.

Highly Parallel Fast KD-Tree

Construction for Interactive Ray Tracing

of Dynamic Scenes.

Eurographics 2007.

Tim Sweeney on impact of specialized
hardware on programming time:

“Anything over 2x is uneconomical for
software companies”

Implemented straightforward parallel
kd-tree build

Full quality SAH computation

Based on TBB

Nested parallelism

Programmer simplicity

Multithread: 2x

PS3 Cell: 5x

GPGPU: 10x +

“The Future of Games Programming,”

Need for Speed, 22 April 2009

Objective: Build a parallelized toolkit for image-based
rendering and video processing

2 On-going Projects:

Depth Image-Based Rendering (Q. Nguyen & D. Kubacki)

Video Event Detection (D. Lin & M. Dikmen)

Input: video from color and depth cameras at arbitrary locations.

Output: generated video from arbitrary viewpoints.

Applications:
Image & video synthesis/fusion

3D and free-viewpoint video

Telepresence

Enhanced recognition

Issues:
Need for speed: real-time operation

Computation done at client (point of display)

Quality, robustness increase computational demand

The algorithm is consciously developed with techniques that have
high degree of locality (e.g. bilateral filtering, Sobel operator, block-
based search)

Preliminary result:
Naïve CUDA-based implementation for a part of the algorithm

Hardware platform: Intel Core2 Duo E8400 3.0GHz and NVIDIA GeForce
9800GT

Speedup of ~200x

Mode Frame rate (in fps) Time (in msec)

Sequential 0.0878 11,389

Parallel 24.37 41.03

COMPARISON IN THE RUNNING TIME OF THE DEPTH

PROPAGATION OCCLUSION REMOVAL, AND DCBF STEPS

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same
person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home
called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The
poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a
fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh.
There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris
owned. Mr. Robin made them come to life with his words. The places in the story were all near
Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher
Robin and his animal friends. Most people don't know he is a real person who is grown now. He has
written two books of his own. They tell what it is like to be famous.

1. Christopher Robin was born in England. 2. Winnie the Pooh is a title of a book.

3. Christopher Robin’s dad was an author. 4. Christopher Robin must have been at least 64.

A process that maintains

and updates a collection

of propositions about the

state of affairs.

Multiple context sensitive disambiguation problems are solved (via machine learning methods) and global

decisions are derived as constrained optimization over these.

.8

Algorithmic Cores

Cost Constraints

problems

weights

Probabilistic

models

penalty

weight

illegality

of y

Statistical Machine Learning algorithms in Vision and Natural Language are
Optimization Based (e.g., conjugate gradients, integer linear programming;
search and sampling

Feature Extraction and Inference require graph operations and
sub-isomorphism

In addition: significant data parallelism needs to be exploited, e.g., for massive
indexing of processed data

Applications: coded in LBJ, a language for learned functions

Parts of Speech Tagger (which part-of-speech a word is?)

Co-Reference Finder (which words refer to the same entity?)

key components for intelligent spell-checking

Parallelism opportunities: independent computations at the sentence (POS Tagger)
or document level (CoRef)

Results:

parallelized applications using lightweight Java tasks

almost linear speedups up to 4 cores

Future Work:

parallelize Semantic Role Labeler

document common NLP patterns

semi-automate the parallelization process

Multiple 4-camera arrays convert scene
into scattered 3-D data points from
different viewpoints

Points sent over net and
reconstructed remotely

Applications in collaborative
engineering design, telemedicine,
gaming, etc.

Currently requires system of > 10
workstations – would want to integrate
in one small box

serial code
Identify “easy” outer level

parallelism

coarse grain control

parallel; e.g.

pipeline,

master-slave

parallelize “execution

harness”

good

enough?

fine grain, data parallel,

often

machine specific
parallelize kernels

good

enough?parallel code
Yes

identify & isolate

compute-intensive kernels

No

Yes
parallel code

No
Start again

serial code
Identify “easy” outer level

parallelism

parallelism

for all
parallelize “execution

harness”

good

enough?

parallelism

for few
parallelize kernels

good

enough?parallel code
Yes

identify and isolate

compute-intensive kernels

No

Yes
parallel code

No
Start again

Concurrent programming: concurrency is part of
application semantics

reactive code, e.g. system code, GUI, online transaction processing:
managing concurrent inputs or concurrent outputs

focused on concurrency management and synchronization: mutual
exclusion, atomic transactions, etc.

Parallel programming: concurrency is only needed for performance
transformational code, e.g. scientific computing, streaming: speeding up
computation, while external interactions are serial.

focused on deterministic programs and consumer-
producer synchronization

Multi-core creates significant new demand for parallel
programming, but no significant new demand for
concurrent programming

1. Parallel programming is inherently hard

multi-core will “fail”

2. Parallel programming, as currently done, is hard; it should
not be much harder than sequential programming, if one
uses the right methodologies, tools and environments

multi-core can succeed, but will require significant investments
in SW

We have a strong bias toward 2

We have some objective reasons to believe that 2 is right

Some forms of parallelism are routinely used:

vector operations (APL/Fortran90), domain-specific dataflow
languages (Cantata/Verilog/Simulink), concurrent object
languages (Squeak, Seaside, Croquet, Scratch)…

Work on shared memory programming has been almost
exclusively focused on (hard) concurrent programming

Investments on SW to support parallel programming have
been minuscule and focused on expert programmers and
“one-size-fits-all” solutions

Isolation: effect of the execution of a module does not
depend on other concurrently executing modules

Concurrency safety: Isolation is enforced by language

Determinism: program execution is, by default,
deterministic; nondeterminism, if needed, is introduced via
explicit notation

Sequential semantics: sequential operational model, with
simple correspondence between lexical execution state
and dynamic execution state

Parallel performance model: work, depth

Testing is much easier (single execution per input)

Makes debugging much easier

Easy to understand: execution equivalent to sequential execution

Easy to incrementally parallelize code

Can use current tools and methodologies for program development

Nondeterminism seldom (if ever) needed for performance parallelism

with exceptions such as chaotic relaxation, branch and bound, some
parallel graph algorithms

when needed, can be highly constrained (limited number of
nondeterministic choices)

for s in S do f(s);

• S is ordered set (or ordered iteration domain)

• iterations executed in order

forall s in S do f(s);

• Iterations are expected to be independent

• Safety: an exception occurs (compile time? runtime?) otherwise

• Execution deterministic

forall has same semantic as for, but parallel performance model

Notation that “makes parallel programming easier”
(concurrent safe, deterministic by default, sequential
semantics, parallel performance model)

Thesis (UPCRC research): can have such a notation for
OO languages that

is not too painful on user

is not too restrictive in expressiveness

is not leaving too much performance on the table

Auto-parallelization:

 determinism, sequential semantics, safety

 fails too frequently; no parallel performance model

Functional languages (e.g., NESL):

 determinism, isolation, safety, parallel performance model

✗ limited expressiveness and/or inadequate performance: cannot
handle concurrent updates to shared object

Conventional parallel language (e.g., OpenMP),
augmented with run-time checks (speculative execution)

safety, determinism, parallel performance model

✗ not clear can be done efficiently

✗ still need to test for concurrency bugs

How to enforce safety in a language with shared references
to mutable objects

compile-time enforcement: programmer provides additional
information on access patterns
 more performing, provides better feedback to programmer

 may require extensive program annotations

run-time enforcement: run-time & hardware detect conflicting,
non-synchronized accesses to shared memory

× requires HW support for performance

 less coding effort (but possibly more debugging effort)

 testing is harder

Should parallelism be implicit or explicit?

1. Write sequential program
add annotations that provide sufficient information for compiler to safely parallelize

 easier port strategy

 performance model not well-defined

2. Write parallel program
add annotations that provide sufficient information for compiler to ensure that program
is race-free

 well-defined performance model

 harder port strategy

No fundamental differences between two approaches if parallelism is deterministic:
(2) parallel constructs (e.g. forall) has same semantic as sequential construct (e.g. for); vs.

(1) parallel construct results from parallelization of sequential construct

Developers specify pivotal information at function boundaries

Heap data object shapes and sizes

Object access behavioral guarantees

Some can be derived from global analyses but others are practically
infeasible to extract from source code.

Compilers leverage the information to

Expose and transform parallelism

Perform code and data layout transformations for locality without harming
source code portability

(W M Hwu)(W. M-Hwu)

struct data {

float x; float y; float z;

};

int cal_bin(struct data *a,

struct data *b) {

1. __spec(*a: r, (data)[1]);

2. __spec(*b: r, (data)[1]);

3. __spec(ret_v: range(0,SZ));

int bin = . ; /* use *a and

b/

return(bin);

}

int *tpacf(int len, struct data *d) {

4. __spec(d: r, (int)[len]);

int *hist = malloc(SZ*sizeof(int));

5. __spec(hist: (int)[SZ]);

for (i=0; i < len; i++) {

for (j = 0; j < len; j++) {

6. int bin = cal_bin(&d[i],&d[j]);

7. hist[bin] += 1;

}

}

}

No side effect on input

elements of d, only 1

element accessed

Range of return value:

hist safe to privatize

d is a 1-D array of length

given by the first argument.

This is parallelizable nested loop

1. Show that such notations are sufficient to generate good
parallel code (in many cases).

2. Facilitate the creation of such notations (code refactoring).

Structure of Array: [e][z][y][x]
Address F(z, y, x, e) = e * |Z| * |Y| * |X|+ z * |Y| * |X| +y * |X| + x

4X faster than AoS on GTX280

Will also have significant effect on SSE

Gluon Enables More Than Parallelism
LBM Example

Array of Structure: [z][y][x][e]

Address F(z, y, x, e) = z * |Y| * |X| * |E| + y * |X| * |E| + x * |E| + e

y=0 y=1

y=0 y=1 y=0 y=1 y=0 y=1

The Best Layout Is Neither SoAnor AoS

Tiled Array of Structure, using lower bits in x and y indices, i.e. x3:0

and y3:0 as lowest dimensions: [z][y31:4][x31:4][e][y3:0][x3:0]
F(z, y, x, e) = z * |Y|/24 * |X|/24 * |E| * 24 * 24 +
y31:4 *

|X|/24 * |E| * 24 * 24 + x31:4 * |E| * 24 * 24 + e * 2 4 * 24+ y3:0 * 2
4 + x3:0

6.4X faster than AoS, 1.6X faster than SoA on GTX280:
Better utilization of data by calculation of neighboring cells

This is a scalable layout: same layout works for very large objects.

y=0 y=1 y=0 y=1 y=0 y=1 y=0

We are automating this transformation based on Gluon.

(Vikram Adve)

Extension to Java (and soon, C++)
Compatible with existing Java (C++) sofware

Explicit Parallel Control

Explicit type and effect system
Recursive parallelism on linked data structures
Array computations
Safe use of parallel object-oriented frameworks

Ongoing work
Run-time support for greater expressivity
Safe, explicitly non-deterministic algorithms

http://dpj.cs.uiuc.edu/

class C {

region r1, r2;

int f1 in r1;

int f2 in r2;

void m1(int x) writes r1 {f1 = x;}

void m2(int y) writes r2 {f2 = y;}

void m3(int x, int y){

cobegin {

m1(x);

m2(y);

}

}

}

C

f1 0

f2 5

C.r1

C.r2

Partitioning the heap

class C {

region r1, r2;

int f1 in r1;

int f2 in r2;

void m1(int x) writes r1 {f1 = x;}

void m2(int y) writes r2 {f2 = y;}

void m3(int x, int y){

cobegin {

m1(x);

m2(y);

}

}

}

C

f1 0

f2 5

C.r1

C.r2

Summarizing method effects

class C {

region r1, r2;

int f1 in r1;

int f2 in r2;

void m1(int x) writes r1 {f1 = x;}

void m2(int y) writes r2 {f2 = y;}

void m3(int x, int y){

cobegin {

m1(x); // Effect = writes r1

m2(y); // Effect = writes r2

}

}

}

C

f1 0

f2 5

C.r1

C.r2

Expressing parallelism

Can handle recursive partitioning (e.g., concurrent
operations on trees)

Can handle partitioning of linear structures

Can handle standard parallel algorithms (merge-sort,
Barnes-Hut…)

Can invoke trusted libraries with deterministic overall
behavior, even if those are implemented in
conventional language

Refactoring tools can help Java->DPJ port

An interactive Eclipse Plug-in (Danny Dig)

Input: Java program + region declarations + foreach / cobegin

Output: Same program + effect summaries on methods

Features:

Fully automatic effect inference

Supports all major features of DPJ
Region parameters; regions for recursive data; array regions

Interactive GUI using Eclipse mechanisms

Next step: Infer regions automatically as well

Evolution to new, safer languages will be slow; need to
support programmers using traditional multi-threading
support (C++, C#, Java, etc.)

Refactoring

Program testing (detection of concurrency bugs)

(Madhusudan Parthasarathy, Darko Marinov)

A key problem for testing concurrent programs:

 Even on a single test, a concurrent program exhibits myriad executions….
Interleaving explosion!

Question: How do we effectively search this extremely large space of
interleavings?

Eg. CHESS – checks all interleavings with a few context switches

Our idea:
Don’t look randomly at schedules for errors!

Examine bug databases for interleaving patterns that lead to bugs

Test a program and obtain one execution; use this trace to predict other
executions that correspond to the interleaving pattern

Using the test harness, check if alternate execution leads to an error

Violation of Atomicity

Atomicity
A local piece of code often wishes to access shared data
without (real) interference from other threads

Extremely common intention; violation leads to many errors

In bug studies, we and others (Lu-YYZ-et al) have found that
majority of errors (~70%) are due to atomicity violations

Questions
Can we predict from one run alternate runs that
violate atomicity?

If so, can we execute those non-atomic schedules and test
them against a test harness?

Run concurrent program

on test input

Concurrent Program

Annotate (heuristically) blocks of code

that we think may be atomic as transactions.

Example: Annotate all methods/procedures in a

Java program

BUGS

Test input

under a test

harness that

checks for errors

Obtain one execution

(has transaction

boundaries)

Predict alternate

schedules

that violate

atomicity

Run alternate

schedules against

test harness

Algorithms for efficiently prediction
Tractable solution if no synchronization

No practical solution likely for locking programs [TACAS’09]

However, for nested locking programs, efficient prediction algorithms
exist. Atomicity violations involving 2 threads and
1 variable can be found in linear time! [CAV’09]

Practical implementation of testing tool
Ongoing: Bytecode transformation to test alternate schedules

Challenges: Monitoring pgms; scheduling alternate executions; ensuring
predicted path is executed

New projects: Testing environment for concurrent programs; unit
testing; regression testing; incremental testing

serial code
Identify “easy” outer

level parallelism

parallelize “execution

harness”

good

enough?

parallelize kernels

good

enough?parallel code

identify and isolate

compute-intensive

kernels

parallel code

(David Padua)

Operations on dense and sparse arrays, sets and other objects
Encapsulate parallelism

Raise the level of abstraction

Due to encapsulation
Parallel programs based exclusively on these operations can be analyzed
for correctness as if they were sequential

Portability across classes of machines achieved by
re-implementing kernels

Due to higher level of abstraction
More opportunities for optimization such as selection of data structures
(e.g. to represent sparse arrays)

In the notation we developed, blocks of objects (tiles) can
be directly manipulated to control locality, communication,
and granularity (hierarchically tiled arrays)

This representation has proven quite effective to develop
readable and efficient codes

Ongoing work include

Identification of useful operations for symbolic parallel computing

Development of automatic optimization strategies
(compilers and autotuning)

upcrc.illinois.edu
60

Patterns: Encyclopedia of Parallel

Programming Patterns

• A good start
– Parallel Programming Patterns by Mattson, Sanders and Massingill

• But more patterns needed

– domain-specific: graphics, particle codes, …

– technology-specific: tiling (cache management), streaming

• It takes a village…

– document patterns used by students and others at Illinois

– work with others, including PPP authors

– annual workshop (ParaPlop), organized with Berkeley

– teach and promote patterns

(Ralph Johnson)

How doe scale and provide better support for
current software?

Bulk (J. Torrellas)

How do we take advantage of and better support new
parallel languages?

DeNovo (S. Adve)

How do we scale to >1000 cores?

Rigel (S. Patel)

(Josep Torrellas)

General-purpose hardware architecture for programmability

Novel scalable cache-coherent shared-memory (signatures and chunks)
Relieves programmer/runtime from managing shared data

High-performance sequential memory consistency
Provides a more SW-friendly environment

HW primitives for low-overhead program development and debug (data-race
detection, deterministic replay, address disambiguation)

Helps reduce the chance of parallel programming errors

Overhead low enough to be “on” during production runs

http://iacoma.cs.uiuc.edu/bulkmulticore.pdf

Idea: Eliminate the commit of individual instructions at a time

Mechanism:

By default, processors commit chunks of instructions at a time (e.g. 2,000
dynamic instr)

Chunks execute atomically and in isolation (using buffering and undo)

Memory effects of chunks summarized in HW address signatures

Advantages over current:

Higher programmability

Higher performance

Simpler processor hardware

[CACM 2009]

The Bulk

Multicore

Goal: Support deterministic replay of parallel programs with
minimal recording overhead and tiny logging requirements

Results:
By using the Bulk hardware, only need to record the interleaving of the
chunks. Reduced the log size requirements by over 2 orders of magnitude
[DeLorean in ISCA 2008]

Extended Linux to have multiple Replay Spheres, enabling virtualization of
the recording and replay hardware [Capo in ASPLOS 2009]

(Sam King)

RSM

Sphere 1

Recording

Sphere 2

Replaying

Sphere 3

Recording

HW Sphere 0 HW Sphere 1
HW

Log 1 Log 2

Log 3

CPU 1 CPU 2 CPU 3 CPU 4

SW

Goal: Use hardware to detect data races dynamically in production run
codes with very low overhead

Results:

Processors automatically collect the addresses accessed in hardware signatures.
An on-chip hardware module intersects the signatures in the background and
identifies races

Effective race detection with only 20% execution overhead
[SigRace in ISCA 2009]

Rethinking hardware with disciplined parallelism

Hypothesis 1: Future hardware will require disciplined parallel models for
Scalability
Energy efficiency
Correctness

Verifiability, testability, …

Hypothesis 2: Hardware/runtime support can make disciplined models more viable
How do disciplined models affect hardware (and runtime)?
Rethink hardware from the ground up

Concurrency model, coherence, tasks, …
Co-design hardware and language concurrency models

Goal: Hardware that is
Scalable
Performance
Energy-efficient
Easy to design

Language

model

Hardware

model

(Sarita Adve)

Disciplined software allows optimizing

Communication fabric

Memory model and semantics

Task scheduling and resource management

Goal

Unprecedented scalability and energy efficiency

Exploit from software

Structured control; region/effects; non-interference

Communicate only the right data to the right core at the
right time

Eliminates unscalable directory sharing lists, complex protocol
races, performance thwarting indirections

Enables latency-, bandwidth-, and energy-efficient data
transfers

No false sharing, efficient prefetching and producer-initiated
communication

Simulation prototype of DeNovo architecture

Broadening supported software

Unstructured synchronization and speculation

Legacy codes

Runtime support for disciplined languages

Speculation, sandboxing, contract verification, …

Virtual typed hardware/software interface

Language-, platform-independent virtual ISA

(Sanjay Patel)

 Non-HW
coherent caches

 Area-efficient
core design

 Primitive support
for scalable
synchronization
and reductions

 Cache management
support for locality
enhancement

 Compiler,
simulator,
RTL all
available now

1024 cores, 8MB Cluster
Cache, 4MB Global Cache
(~3 TOps/sec)

Synthesized Verilog @45nm
for cores, cluster cache logic

SRAM Compiler for
SRAM banks

Other Logic: interconnect,
mem controllers,
global cache

Typical power ~70-99W

Rigel Area Breakdown

1024 cores, 8MB Cluster Cache, 4MB Global Cache (~3
TOps/sec)

Synthesized Verilog @45nm for cores, cluster cache logic

SRAM Compiler for SRAM banks

Other Logic: interconnect, mem controllers, global cache

Typical power ~70-99W

Programming models that scale from 1000 chips in a
cluster to 1000 cores in a chip

Run-time systems for scalable work distribution

Locality management, architectural optimizations for
memory bandwidth

SIMD efficiency versus MIMD flexibility

Power/energy optimizations for throughput oriented
architectures

Summer School

One intensive week of parallel
programming

Principles, OpenMP, TBB, Java
&C# classes, CUDA, tools

Lectures and Lab

Intel and Microsoft participation
in teaching

56 on site, 109 online
participants

Graduate students, faculty,
professionals

From U.S. to Korea

High satisfaction

upcrc.illinois.edu76

© 2009 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the

current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information

provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

