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ABSTRACT

Commercial aerial imagery websites, such as Google Maps,

MapQuest, Microsoft Virtual Earth, and Yahoo! Maps, previd
high- seamless orthographic imagery for many populatedsare
employing sophisticated equipment and proprietary imag®-p
processing pipelines. There are many areas of the worldpaitn
coverage where locals might benefit from recent, high-ceiwl
orthographic imagery, but which do not fit into the schedaled
scaling model of the big sites.

This paper describes MapStitcher, a system that orthéiescti
and geographically registers imagery using only low-cagtuaring
equipment. MapStitcher combines manually-entered melakiips
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1. INTRODUCTION

Commercial aerial imagery sites, such as Google Maps,
MapQuest, Microsoft Virtual Earth, and Yahoo! Maps, pravid
high-resolution seamless orthographic imagery for dengepu-
lated areas. To be able to image large areas in a cost-effinem
ner, their techniques depend on special-purpose camenasteao
in gyro-stabilized mounts and flown in autopilot-equippé&glanes.
Together, these components tightly constrain the parametféhe
captured images, easing the task of post-processing thextoh
of images into a single orthorectified image mosaic. While al
lowing to amortize the cost of the system by imaging large ar-
eas, the equipment is also quite expensive; for exampleyeke

between images and known ground references with a MOPstbase cel UltraCam-D camera costs over half a million dollars. ther-

image-stitching technique that automatically discovenage-to-
image relationships. Our image registration pipeline frdtacts

more, there are only a few competitors, and they tend to iprior
tize imaging populous markets. Users in small markets waldd

and matches feature points, then clusters images, then usestand to benefit from access to recent, high-resolution rggbi

RANSAC-initialized bundle adjustment to simultaneougbyimize

all constraints over the entire image set. Simultaneousgztion
balances the requirements of precise stitching and alesplate-
ment accuracy. We used this technique to image a portioneof th
Skagit River Valley in the vicinity of the town of Concrete, ANV
(pop. 790) at 0.15 m/pixel. Our technique is more accurae th
stitching followed by “rubber-sheeting” (deforming théatied im-
age into global coordinates), while it also requires le$sreand
produces a better-stitched composite than rubber-sigeietiages
separately.

Categories and Subject Descriptors

1.4 [Image Processing and Computer Visiop Scene Analysis;
J.2 [Computer Applications]: Physical Sciences and Engineering
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cally registered aerial imagery. However, it is beyond theans
of small communities and other “long tail” users to purchtse
expensive tools used by the large imaging operations. litiadd
the post-processing pipelines used in the industry arerigtapy,
posing an additional barrier to entry for localized openagi.

A quick survey of the image tiles available on public imagery
sites reveals the lack of resolution for many regions of taette
For example, while most of the United States is covered at a
1 m/pixel resolution, with metropolitan areas imaged ab@rZpixel
(see Figure 1(a) and Figure 1(b), showing the eastern USites),
other continents are mostly covered at 16 m/pixel (see Eig(r)
and Figure 1(d), showing an area of the Earth bounded by the
Equator (S), the Arctic Circle (N), @W). and 90E longitudes
(E); some large cities and Western European countries higherh
resolution coverage). Furthermore, the imagery updatedsdbs
of the big sites are independent of important changes in the e
vironment, such as natural disasters, construction andlitéon
of roads, buildings and parking spaces. This paper descabe
system designed to provide such imagery at a low cost of entry
in a timely fashion: imagery is captured with a consumedgra
camera mounted on hardware-store plumbing pipe in a mitymal
equipped light airplane, and post-processed with a gepgéine
that depends on a small amount of human annotation. Whae thi
approach has a higher cost per image of human annotatiodrahe
matically lower capital costs lead to lower overall costdosmall
imaging project.

We contrast our approach with two simpler techniques for or-
thorectifying poorly-constrained aerial imagery.

The first approach is to simply manually annotate every cagtu
image and then deform each image into place (“rubber-siggti
with a tool such as MapCruncher [5]. MapCruncher scales,well
allowing users to readily reproject existing maps, pulaighmulti-



(a) Resolution of coverage in(b) Resolution of coverage in
Virtual Earth over the easternYahoo! Maps over the eastern
United States. United States.

(c) Resolution of coverage in(d) Resolution of coverage in
Virtual Earth over portions of Yahoo! Maps over portions of
Africa, Europe and Asia. Africa, Europe and Asia.
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M -
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Figure 1: Resolution of orthophoto coverage in large mappig
websites.

gigapixel images on the web in a client-bandwidth-frientilgd
format that interoperates with Microsoft Virtual Earth. 1Gaxper-
iments with this approach identified two problems: Firsgaiese
the post-processing system only had information aboutaglolace-
ment, relative inter-image placement often suffered, ifeatb ob-
vious discontinuities at image boundaries. Second, wherént-
ages covered undifferentiated or entirely changed tersioh as
a construction site, there was no easy way to manually lddsel t
images with ground reference pairs.

In the second approach, the captured images are stitcteed int
single image of large extent using a modern photo stitclong[2]
that makes inter-image camera-pose estimates to reptbgan-
ages to eliminate boundary discontinuities. The resultpano-
ramic” image represents a single theoretical image takem fa
single logical viewpoint; this image is then related to grduefer-
ences, and translated to a browser accessible user irgg&adn
practice, the lack of global constraints causes the phéthet to
accumulate error and emit images that correspond to no i@at v
point of the original terrain.

This paper describes MapStitcher, an image orthoreciificat
system that combines the two approaches above simultdgeous
MapStitcher’s stitching component discovers inter-imegeastraints.
A human annotates a few images with ground reference camistra

Figure 2: Our operation: a consumer camera zip-tied toa PVC
pipe protruding from a hand-flown Cessna 177.

Figure 3: Our 0.15 m/pixel composite aerial imagery, showig a
portion of the Skagit River Valley near Concrete, WA, overlad
on a map of the area.

model in the presence of outliers. Then it uses bundle adprst
to minimize error across the entire constraint set, botftira and
global. The resulting system is robust to poorly-consedinam-
era geometry, requires global constraints on only a smalsedu
of images, and produces output with minimal image-boundésy
continuities.

We demonstrate MapStitcher by capturing imagery of the Sk-
agit River Valley in the vicinity of the town of Concrete, Wasg-
ton. Concrete’s population of 790 has a long wait before nsgo-
vices will find it profitable to send a photo mission with expiee
equipment. Our mission, in contrast, involved an ordinanyr{
seat Cessna ($160/hour rental, including pilot), threé dé®VC
pipe, a consumer digital camera ($300), and two people: @ne p
lot and one to operate the camera shutter and change theédsatte
(Figure 2). In post-processing, we identified 25 groundresfee
pairs, and used 60 photos to produce a 208 megapixel image at a
resolution of 0.15 m/pixel (Figure 3).

2. RELATED WORK

The creation of aerial mosaics to form composite photomsps i
described in [4]. Our method is analogous with the creatibn o
semicontrolled mosaics, where ground reference pairs onadl s
number of images are combined with tie points between images
to compute the transformation parameters. €litch-firstcontrol
method is analogous with the creation of uncontrolled nussand
the no-stitthmethod is analogous with the creation of controlled

Then MapStitcher estimates the pose of each image’s caryera b mosaics. However, these digital mosaicking approaches ainl

first initializing with RANSAC, a general technique for fitg a

tempt to solve for rotation and translation parameters,rassy



vertical camera positions during image acquisition.

In order to perform digital mosaicking with less constraigam-
eras, the problem of estimating camera parameters mustideda
Analytical aerotriangulation with simultaneous bundlguatment
aims to recover the 3D coordinates of object points, and Ehio3
cation and exterior orientation parameters of all expostagons
[4]. These goals are similar to our objectives in our camaraime-
ter estimation step. Using GPS to obtaipriori knowledge about
the three-dimensional position of the exposure statior@spessi-
ble improvement [14]. Alternatives to bundle adjustmemtsolv-
ing the equations to estimate projection matrices and speim
locations are explored in [11]. For an introduction to 3Damrc
struction of cameras and scene structure from photograydse-
fer the reader to [7]. The problem of 3D scene reconstruaiging
bundle adjustment has also been explored recently in a dempu
vision context [1]. Bundle adjustment based methods [18]bemn-
efit from initialization with RANSAC [6]. Specific technigeelso
exist for the estimation of interior [9] and exterior pardars [8]
of cameras from line measurements, and for n-point camesa po
determination [13].

3. GOALS OF AERIAL IMAGE COMPOQOSI-
TION

Before describing MapStitcher's image processing pigeline
first describe its design goals.

The pipeline should convert an input set of overlapping iesag
acquired individually, into a single virtual image that eos the
same area. In constructing this composite image, we wolid li
to simultaneously optimize for two goals. The first is gepdia
fidelity: features should have the correct shape in the caitgo
image. For example, a straight road should not appear t®darv

the image. The second goal is seamlessness: the boundaries b !

tween the input images should be invisible in the compositgie.
That is, there should not be visible discontinuities in fees such
as roads.

To ensure our system is practical and economical, we als® hav
two usability goals. The first is that our pipeline shouldegtaea-
sonably unconstrained input images—for example, it shoatae-
quire pictures taken exactly straight down, or with camevhese
exact geometry or position is known. Such stringent requéngs
would significantly increase the cost of image acquisitionr sec-
ond usability goal is that the pipeline should require a munin of
user effort. A few hours of image acquisition should not bk fo
lowed by weeks of manual post-processing.

In light of these goals, it is instructive to consider the Weesses
of other methods for generating a geographically accu@igos-
ite image. In this section, we will consider two that are cooniy
used in low-cost applications: individually “rubber-sting” each
photo in the set, and rubber-sheeting a composite photoatiasit
created with an image stitching tool. The main weaknessexeh
methods is that they optimize for only one goal—geography or
seamlessness—at a time.

The first method is exemplified by our previous work,
MapCruncher [5], which can perform approximate Mercator re
projection of any image drawn to scale after being given a few
correspondence points as exemplars. We call these pioisd
reference pairs-that is, correspondences between a pixel in an in-
put image and a latitude and longitude in WGS84. MapCruncher
has a simple interface, depicted in Figure 4, for specifyimese
pairs. Although surveying techniques (e.g., GPS) can bé, uke
fastest and easiest way is to establish ground reference ipad
visually compare the newly acquired imagery with the erigtm-

Figure 4: The user interface of both MapCruncher and Map-
Stitcher. Users can specify ground reference pairs by findia
the same feature in their own image and the standard Virtual
Earth imagery. If the area has been manually surveyed, lati-
tude and longitude can also be entered numerically.

Figure 5: When overlapping aerial images are rubbersheeted
individually, discontinuities at the image boundaries areobvi-
ous.

agery that is part of Microsoft Virtual Earth. We have fourist
technique useful because a typical use-case is overlagiognt
high-resolution images on top of extant older or lower-hetson
images. MapCruncher shows the user’s images in one winddw an
Virtual Earth in another.

MapCruncher was originally designed for use with maps. Our
initial tests in using it for aerial image compositing werempising,
but had two major drawbacks. First, MapCruncher considess t
placement of each image individually, without global coaistts.
As a result, relative inter-image placement often suffeesising
obvious discontinuities at image boundaries, such as tblosen
in Figure 5. Second, where the images cover undifferemntiate
entirely changed terrain, such as a new construction gtesrgtion



Figure 6: A straight road, captured with 12 aerial photographs
and mosaicked using an image stitcher. Without geographic
constraints, the road appears to curve.

of ground reference pairs is difficult. The evaluation refer this
technique aso-stitch

A second common approach is a two-step procedure. First, use

a modern photo stitching tool [2] that makes inter-image @am
pose estimates and reprojects the images to eliminate boudis-
continuities. Next, rubber-sheet the mosaic to fit it to tepidted
geography. In practice, we have found the lack of geograpbrie
straints during the mosaic step causes the photo stitchecdio-
mulate error and emit images that correspond to no real igwp
of the original terrain. For example, the mosaic shown iruFegs
depicts about a mile of a straight north-south street, cegtwith a
dozen individual photos shot from an airplane. Without gapgic
constraints, the stitcher incorrectly emits a (seamlebsjymof a
curving road. The evaluation refers to this techniqustash-first

4. THE MAPSTITCHER IMAGE PIPELINE

The MapStitcher image pipeline works by simultaneously com
bining user-specified geographic image constraints, aimib
MapCruncher, and automatically generated image-stigcloion-
straints, similar to a photo stitcher. With relativelylgtuser effort,
MapStitcher can convert a series of overlapping aerial esagto

a seamless, orthorectified, and geographically accurabpasite.
Users typically only need to specify a small number (e.g),df0
ground reference pairs. For example, references might thlorse
only the first and last images in a series; the positions efinédi-
ate images are estimated automatically using feature adsopa
in the overlapping regions.

Image compositing is accomplished by first solving for theipo
tion and orientation of the camera at the moment each image wa
acquired. Then, each image is reprojected into an orthbgrap-
proximation and superimposed.

A homographic projection is used to model the view of the cam-
era at each instant it acquires each image. Our model i ool
intrinsic andextrinsiccamera parameters. Intrinsic parameters are
properties of the camera itself: currently just its focalgth, cap-
tured in theF’ matrix. The extrinsic camera parameters are the
translation and rotation, captured in theand R matrices, respec-
tively. In our model, a ground poinp§..nq) is projected to an
image point fimage) according to the chained transformations:

q=F -T -R- Mpre * Pground,
Pimage :Mpost . (g_: Z_Z)ly

wherepg,.und andg are 3D points represented as 4D homoge-
neous coordinatesF, T', R and M,,,. are 4D matrices;M st
is a 2D matrix; andpimage IS @ 2D point. As a typical scene
spansl0~% equatorial circumferences in Mercator coordinates, the
My, pre-transform matrix is used to scale the scene so that its
size is comparable to the size of its projection on the camera
image plane, which has a largest dimensionl ©f This scaling
avoids rounding errors that lead to ill-conditioned optiations.
The M,.s: post-transform matrix ensures that the scene’s projec-
tion is centered on the image plane. This centering is reduio
model the symmetry of the perspective projection aroundémneer
of the real camera’s imaging surface.

The remainder of this section will describe how all of the eam
era parameters are estimated for each image acquired. d@lgner
speaking, the procedure entails the following steps:

1. The user specifies ground reference pairs for a subseg of th
images to be stitched (Figure 4).

2. Mapstitcher automatically finds common features in insage
that overlap (Section 4.1).

3. Each camera’s model parameters are initialized to thé “no
estimated” state.

4. lterate:

(a) Initial estimates for camera model parameters are made
for each camera in a “not estimated” state, that has suf-
ficient ground reference pairs (Section 4.2).

(b) Nonlinear optimization (bundle adjustment) is used to
globally optimize the parameters of all cameras with es-
timates. Both the user-supplied ground reference pairs
and constraints introduced by feature match pairs are
used in this global optimzation step (Section 4.3).

Synthetic ground reference pairs are temporarily cre-

ated where two images overlap, and at least one has a
camera with a known model (Section 4.4). These are

used to initialize camera parameter estimates in future

iterations of Step 4a.

(c

~

5. ... until there are no camera poses given new estimates in
Step 4a.



The camera extrinsics (rotation and translation) for eatdgie
o Y1 Y1 r\' are initialized by performing RANSAC [6] on two sets of paint
® °, o V-4 o the ground-point and image-point half of each ground reieze

o ©° 9 %% % o %= ._L———’\ , pair. First, the inverse of the post-transformation masiapplied

o0 Y .;;.,o Y o0 \ luo\ to the image points, to ensure correct ce.nterilnqxst * Pimage)-
. é ) P,o \j Second, the pre-transformation matrix is applied to theuigto
points, to ensure correct scalin/{c pground). Finally, RANSAC

o () Y4 is preformed between these two sets of points, resultingriares-

(@) Feature(b) Feature (c) Geo- (d) Trans- formation matrix for each image, that is then used as thedgtit

points. matches. metrically formed images mation in the bundle adjustment algorithm.

Figure 7: Automatic establishment of feature match point co-
respondences between two images.

4.1 Automatic Extraction and Matching of Fea-

MapsStitcher uses Multi-Scale Oriented Patches (MOPs)d3] t
identify corresponding features in the overlapping posiof ad-
jacent images. MOPs can robustly identify features in commo
across images, even if they vary in scale, orientation ateh#i
ties.

The extraction of feature-matches is a five step process:

We refer the reader to [3] for specific details of the alganith
After the feature matching step is complete, MapStitcher da

1. Interest points are identified (Figure 7(a)) on each insage

. A 64-dimensional feature descriptor vector is computed f

. Finally, RANSAC is applied to remove additional outliers

consistent fea based on es-
ture matches tablished tie
after  outlier points.
rejection.

The camera intriniscs (i.e. the focal length) are direatigial-
ized from the EXIF metadata fields recorded in the image file by
the actual camera. If EXIF information is unavailable, welase
the image was taken with40° angle of view.

4.3 Optimization Using Bundle Adjustment

Once camera models have been given initial estimates, tieey a
refined using an iterative nonlinear optimization procesiedbun-
dle adjustmenf4]. Given a number of parameters to adjust (known
in bundle-adjustment terminology astive states and an error
metric based on those parameters, a bundle adjuster \idyati
makes small updates to the parameters until the error nfatisc
below a threshold.

As discussed in previous sections, MapStitcher has twostype
of constraints: constraints that pull images towards theirect
geography and constraints that place images to minimizasea
their overlap points. These two constraints are repredentawo
different types of error metrics to the bundle adjuster.

The representation of the geographic constraints areghtfai-
ward. The camera intrinsics and extrinsics are represestadtive
states. The user-supplied ground reference pairs are ossut-

ture Points

arately as local maxima of a "corner strength" function. The
orientation of interest points is also computed.

. The number of interest points is reduced for each image, Pute the error metric. MapStitcher computes the projeatiothe

while a uniform distribution of point locations on the image ~9round point into the image plane using the hypothesizedecam
is maintained. The goal of this step is to reduce the totaknum Parameters. The distance from the projected ground poittteto

ber of interest points, since the computational requirdgen USer-selected image point is the error.
for matching are superlinear. Image-stitching constraints are somewhat more complex to

model. In this case, the stitcher does not have a known ground
point—only a set of image points that, according to the fesatu
matcher (Section 4.1), depict the same ground feature. \Weaad
new active state for each group of feature match points;pitere

each remaining interest point using the local image stractu

. The lowest three non-zero wavelet frequencies of the fea- sents the hypothesized point on the ground depicted by flease

ture vectors are used to create a three dimensional halgh-tab  tyres. The initial estimate of this ground point is the ceiotof the

This hash-table provides fast lookup for feature pointstFa  projection of all the feature match points onto the grouridery
approximate feature matching is performed by lookups in the estimates of those images’ camera models. In eachidtet
this hash-table: a set of approximately matching featul#$o  the bundle adjuster, the hypothetical ground point is jtej: back
are found — across all images — for each feature point. Some jnto the image plane of each image using the updated cameta mo
of the matches are eliminated as outliers using a simplésieur g|s. The error metric is the sum (over each image) of the niist
tic (Figure 7(b)). in image space from these projections to the corresponeiaiyife
match points.

For further technical details, we refer the reader to [1]jclth
describes the application of the bundle adjustment alyorih a
similar context.

by finding geometrically consistent feature matches
(Figure 7(c)).

4.4 Grounding Images lteratively

list of feature point matche@~igure 7(d))—that is, pairs of points
on overlapping photos that visually correspond to the saatifes
on the ground.

4.2 Camera Parameter Initialization

Nonlinear estimation algorithms converge most reliablyewh
given an initial estimate in the neighborhood of the finalvears
Therefore, we estimate each camera’s parameters befotmgta
bundle adjustment.

If the user originally supplies ground reference pairsdoery
image in the mosaic, the procedure described above will work
a single step. Each camera’s parameters could be initiatly e
mated based on its image’s ground reference pairs, and all pa
rameters could be optimized in a single bundle-adjustmpet-o
ation. However, such a system would be difficult to use: itlsan
time-consuming to find ground reference pairs manually aadym
mosaics contain dozens or hundreds of images. To minimige us
effort, MapStitcher creates synthetic ground referendes psing



adjacent overlapping images that already have camera restiel
mates.

For example, imagine that our mosaic has imageand B. A
has user-supplied ground reference pairs,®uatoes not. The fea-
ture matching algorithm tells us that pixeli., A,) in image A
depicts the same feature as piXé¥., B,) in image B. Map-
Stitcher first “bootstraps” the mosaic usings ground reference
pairs to estimated’s camera parameters. It then uses those pa-
rameters to projedtA,, A,) onto a ground poinfA.4, A,4), and
creates a synthetic ground reference pair for im8ge( B, By)
corresponds t4A.4, Ayg). This technique can be used iteratively
to propagate camera model estimates to an entire contigusb s
overlapping images. We call this successive propagatierifple
algorithm Note that after each ripple,global bundle adjustment
is performed, as described in the previous section.

An example for a succession of ripple steps is shown in Fig-
ure 4.4. (For illustrative purposes, we depict only a smathber
of feature match points.) In the initial ripple, ground refiece pairs
(marked (i) on Figure 8(a)) are used to calculate the honpddca
transformations for image #2 and #9.

In the second ripple, feature match point pairs (markedofii)
Figure 8(b)) are found that have one of their points on thexkno
model images: #2 and #9. These feature matches add images #1
#3 and #8 to the ripple. Note that although #1 and #3 overlap, t
feature extraction and matching algorithm didn’t find angttee
match points between them in this case. The ground locafitheo
feature match points are calculated using the homographits+ (b) Second ripple; feature match points link some floating im
formation obtained for image #2 and #9 in the initial ripphdter ages to already grounded ones
bundle adjustment, the ripple’s three new images will alageh TR
their parameters for homographic transformation. i

In the fourth ripple (Figure 8(d)), feature match pointsaelt

In the third ripple (Figure 8(c)), feature match points oragas ("') (")

#3 and #8 add images #4, #5 and #7 to the ripple. Note that the i [:}‘—l m
two feature match points between the floating images #4 and #5 s ©°le [— |\

image #6 to both #5 and #7. Note that up until this ripple, géher

were two independent image groups: images #1—#5 were gedund ~ : 4

marked (iv), are feature match points without at least onagien i ‘

with a known position, and thus are not used in the RANSAC ini-  § 1

tialization of the third ripple. i

based on ground reference pairs from image #2, and images #7— } (“’)

49 were arounded based on Around reference pairs from imge # - s e
The link grovided by #6 joins tghese tWo groups, E:lnd the sul g (c) Third ripple; some feature match points link more than tw

bundle adjustment jointly refines all 9 camera modetgetherfor images

the first time in search of a globally optimal solution. In &ideh, e IE R :
the feature match points marked (iv) between #4 and #5 can now i 6 :
be grounded (using the homographic projections from theique N

ripple), which allows them to be used in the bundle adjustmen
After the fourth ripple, all images in the cluster are groeddvith

homographic transformations, and the algorithm termmate o o = 9} 2 o©
: KW
5. EVALUATION P2 ‘/\Q— u
MapsStitcher is designed to produce a well-georeferencedlae 3 (if) ° 9

imagery layer stack with low human data-entry cost. To eatalu 4 i
its design, we perform an experiment that compares a Ma:rh@tit N e srssssssnnsanaes .
orthorectified image with two control methoa)-stitchandstitch- (d) Fourth and final ripple; a globally optimal solution is-ap

first. We measure each method on two criteria: cost of registratio ~ Proached when independently estimated image groups join
measured in number of manual ground reference pairs, arityqua

of registration measured in deviation of unreferenced tgdirom Figure 8: A succession of ripples is used to estimate the pesi
ground truth. In these experiments, “ground truth” is defily tion of all images, even though only a subset have user-spfed
the lower-resolution Virtual Earth aerial photographyuf subject ground reference pairs.

region, and is affected by distortions in the Virtual Eartthorec-

tification pipeline.



Figure 10: The only images with manually entered ground ref-
— i et erence pairs in our MapStitcher example.
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el o jwow — s ket ) .
o) S ence pairs (Flgur.e 9(b)). . .
T & = For the MapStitcher method, we registered 25 points spraad o
s o, o d @? TN on 5 images (mean 0.4 points per image over the whole set; Fig-
e 5 M’ ure 9(c)). We show the five images with manually entered gioun
“‘é% reference pairs after transformation, on Figure 10, whitgife 3
5 shows all 60 images georegistered based on these five images.
: Figure 11 shows the number of manual ground reference pairs
(c) Ground reference points for MapStitcher method. for the three methods.
Figure 9: Locations of ground reference points. 5.3 Measuring Quality
We manually selected 12 recognizable points in the scemd, ea
. - from separate source images, none of which were used as lyanua
5.1 EXpe”ment Descrlptlon entered reference points in any of the methods. We measheed t
For this experiment, we use as input 60 source images we cap-“ground truth” position of each point in the low-resolutidirtual
tured of the Skagit River Valley in the vicinity of the town Gbn- Earth image. For each method, we computed the mean distance
crete, WA. We used each of the three techniques to combine all between where the method geolocates each point versusittiis po
source images to produce a single orthorectified, tiled @i ground truth position.
image of 208 megapixels. Figure 12 shows the mean and standard deviation of the regis-
. tration errors for the three methods. The-stitchmethod pro-
5.2 Measurlng Cost duces the best quality orthorectification, with.1 m mean error
For the no-stitchmethod, we registered 257 points (mean 4.3 and15.8 m standard deviation, but usirig).3 times as many man-
points per image; Figure 9(a)). ual points as the other methods. The referestieh-firstmethod
For thestitch-firstmethod, we stitched the images with the fully  results in a mean error (4.1 m (with a large167.9 m stan-
automatic photo stitcher described in [2]. We georegisitéhne re- dard deviation), showing that it is difficult to recover geaghy

sulting composite image with 25 manually-entered grouridrre as a discrete step if a mosaic is created using seamlessiryun
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Figure 12: Mean and standard deviation of registration erra.

constraints alone. Our method, which jointly optimizes ge&do-
ground and image-to-image alignment, results in a meam #1ad

is 234% (58.83 m) of the no-stitch method (with a standard devia-
tion of 37.9 m), while needing only).7% of the manually entered
ground reference pairs of the latter method. The increased e
may be due to placing too much relative weight on image-tagien
alignment—that is, in some cases, we may be sacrificing afesol
positional accuracy for the sake of output that looks better

6. FUTURE WORK

While our current system produces composite imagery whose [0l

georeferencing quality approaches that of the manual itast
method, it suffers from similar problems as that method: gena
boundaries remain clearly visible at some image boundaségh-
ing techniques employ graphcut algorithms to reduce \esbams
in the final composite [10], and gain compensation and ninaltiel
blending is used to correct for unmodelled camera effects (g-
gnetting) [2]. Our application would also benefit from théseh-
niques. MapsStitcher currently has agriori information about the
relative positions of any images, and thus must attempt tbféa-
ture matches between all image pairs. Adding a constraantridi-
cates potential image overlaps will simplify the problenfioling
feature matches, as the number of candidate images to belcons
ered will be reduced fror®(n?) to a constant-sized neighborhood.
This will significantly improve processing speed and redieeg¢ure
match outliers, and can be achieved using a low-cost (comsum
grade) GPS that is only loosely coupled to the image acdprisit
process.

7. CONCLUSION

MapStitcher produces orthorectified aerial imagery masfagm
images with poorly constrained geometry and only minimahusé
labeling. The result is a system with low capital cost thadpices
high-quality image mosaics. We anticipate that accessdio kuwv-
costimaging will lead to a much wider grass-roots effortrioduce
aerial photography. We hope to facilitate community-surgmbef-
forts aimed, for example, at better coverage of non-urbaasar
timely coverage of special events or natural disasters,aefre-
quent converage of fast-changing areas. Ultimately, ibhenag-
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