
E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 746–759, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Serial vs. Concurrent Scheduling of Transmission and
Processing Tasks in Collaborative Systems

Sasa Junuzovic and Prasun Dewan

Department of Computer Science, University of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA

{sasa,dewan}@cs.unc.edu

Abstract. In collaboration architectures, a computer must perform both
processing and transmission tasks. Intuitively, it seems that these independent
tasks should be executed in concurrent threads. We show that when multiple
cores are not available to schedule these tasks, a sequential scheme in which the
processing (transmission) task is done first tends to optimize feedback
(feedthrough) times for most users. The concurrent policy gives feedback and
feedthrough times that are in between the ones supported by the sequential
policies. However, in comparison to the process-first policy, it can noticeably
degrade feedback times, and in comparison to the transmit-first policy, it can
noticeably degrade feedthrough times without noticeably improving feedback
times. We present definitions, examples, and simulations that explain and
compare these three scheduling schemes for centralized and replicated
collaboration architectures using both unicast and multicast communication.

Keywords: collaboration architecture, scheduling policy, response time, feedback
time, feedthrough time, unicast, multicast, simulations.

1 Introduction

An important issue in collaborative systems is the architecture of the implementation,
which has an impact on the performance, the level of sharing, and correctness of the
system. This area has been studied extensively [3] and has identified several
important dimensions. In this paper, we focus on two related questions that have been
largely ignored previously – the manner in which the tasks needed to implement
collaborative systems are scheduled and the impact of the scheduling policy on local
and remote response times. We refer to local response times as feedback times and
remote response times as feedthrough times. Feedback times are also sometimes
called simply response times [4].

Two mandatory tasks performed by a collaborative system are processing and
transmission of user commands. The nature of these tasks depends on (a) whether
computation is centralized or replicated and (b) whether the commands are unicast or
multicast. We consider all four cases in the evaluation of policies for scheduling these
tasks.

The implementation and evaluation of scheduling schemes depend on how many
cores are available for scheduling. For example, if two cores are available for

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 747

scheduling, it is possible to carry out processing and transmission tasks in parallel.
Thus, additional cores have the potential to improve feedback and feedthrough times.
However, we assume only one core is available to execute the tasks of a collaborative
application, leaving multi-core scheduling as future work.

The rest of this paper is organized as follows. We first describe more precisely the
processing and transmission tasks. We then motivate, illustrate, and qualitatively
compare the sequential and concurrent policies for scheduling these tasks. Following
this, we present simulation results that quantitatively compare these policies in
realistic collaborations and give brief conclusions and directions for future work.

2 Processing and Transmission Tasks

The processing and transmission tasks in collaborative systems depend on the
underlying architecture. Two popular collaboration architectures are the centralized
and replicated architectures. In both cases, it is assumed that an application is logically
separated into a program and user-interface components. The program component
manages the object that is shared by all of the users. The user-interface component
allows interaction with the shared object by manipulating state that is not shared by the
users. A separate user-interface component runs on each user’s machine.

In the centralized architecture, all of the user-interface components are mapped to a
single program component. The computer running the program component is called a
master and the other computers are called slaves. A master computer receives input
commands from and sends output commands to all of its slaves. In addition, a master
is responsible for processing all input commands and their outputs. A slave, on the
other hand, is responsible for transmitting input commands from its user to the master
and processing the output of all input commands. A centralized architecture with six
users in which user1 is the master is shown in Fig. 1 (top). The figure shows the
transmission of an output for an input entered by user1. In the replicated architecture,
each user-interface component is mapped to the program component running on the
local computer. Thus, all of the computers are masters. To keep the program
components on different masters in sync, whenever a master receives an input
command from the local user, it transmits the command to all of the other computers.
A replicated architecture with six users is shown in Fig. 2 (top). The figure shows the
transmission by user1’s computer to all of the other computers after user1 enters an
input command.

One issue with the traditional architectures is that if inputs or outputs are large and
the number of users is high, then the cost of transmitting an input or output to many
users is also high. As a result, master computers can become performance bottlenecks.
It is possible to overcome this problem by using the bi-architecture model [4], in
which a collaborative system is separated into two sub-architectures. As in the
traditional architecture case, the user-interface components are still mapped to
program components; however, the mapping in this case is not bi-directional. In
particular, a slave computer sends input commands to the master computer to which it
is mapped, but the master computer does not have to directly send input and output
commands to all of the other masters and its slaves, respectively. Instead, multicast is
used allowing more than just the master to transmit the commands.

748 S. Junuzovic and P. Dewan

User3User2

User1

User6User5

User4

User3User2

User1

User6User5

User4

Input Output
Program
Component

User
Interface

Fig. 1. (top) Traditional centralized architecture and (bottom) the bi-architecture model with a
centralized architecture in which multicast is used for communication

User3User2

User1

User6User5

User4

User3User2

User1

User6User5

User4

Input Output
Program
Component

User
Interface

Fig. 2. (top) Traditional replicated architecture and (bottom) the bi-architecture model with a
replicated architecture in which multicast is used for communication

The idea of multicast requires, for each source of messages, the construction of a
multicast overlay that defines the paths a message takes to reach the destinations. The
bi-architecture model makes several assumptions regarding multicast. First, because

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 749

IP-multicast is not widely deployed, the model assumes an application-layer multicast
in which end-hosts form the overlay. Second, the model assumes that only the users’
computers can be used in the overlay. This is consistent with the notion of peer-to-
peer sharing systems.

With multicast, every computer may perform some part of the transmission task.
For example, if multicast is used in the centralized architecture, then a slave
computer, in addition to processing any outputs that it receives, may also need to
forward the outputs to other slaves as shown in Fig. 1 (bottom). Fig. 1 (bottom) shows
the transmission after user1’s computer, which is the master, computes the output for a
command entered by user1. The master transmits the output only to computers
belonging to user2, user3, and user4. User4’s computer, which is a slave, then forwards
the output to the computers belonging to user5 and user6. Similarly, if multicast is
used in the replicated architecture, a master computer that receives an input command
from another master may, in addition to processing the command, have to forward it
to other masters as shown in Fig. 2 (bottom). Fig. 2 (bottom) shows the transmission
of an input command entered by user1. User1’s computer transmits the command only
to computers belonging to user2, user3, and user4. User4’s computer forwards the
command entered by user1 to computers belonging to user5 and user6. When unicast is
used for communication among the computers, the bi-architecture model reduces to
the traditional model.

3 Scheduling of Tasks

While the bi-architecture model specifies the tasks that the users’ computers will
carry out, it leaves as an implementation issue the scheduling of these tasks on each
computer. In this section, we motivate, illustrate, and qualitatively analyze three
useful scheduling policies.

3.1 Running Example

To illustrate and compare the policies we consider in this paper, we will use the
replicated-multicast architecture shown in Fig. 2 (bottom) with the following
additional properties: (a) user1’s computer transmits commands first to user4, then to
user2, and finally to user3, while user4’s computer forwards the commands first to
user5 and then to user6; (b) user1 enters all of the commands; (c) the users all have the
same computers; (d) the network latency between any two computers is D; (e) the
time the computers require to process an input and output command is 3T and T,
respectively; and (f) the time the computers require to transmit an input command to a
single destination is T. The relationships between the various times were carefully
selected to allow this theoretical example to be used to easily compare all of the
policies. In our simulations, we use realistic values for all of these parameters, which
do not assume, for instance, that the network latencies among the users are the same.

For all of the scheduling policies we consider, we illustrate user1’s feedback time
and user6’s feedthrough time. The reason we consider user6 instead of other users is
because user6 is the “farther” from the source than any other user. As Fig. 2 (bottom)

750 S. Junuzovic and P. Dewan

shows, the path from user1 to user6 is longer than the path from user1 to any other
user, except user5. The paths from user1 to user5 and user6 both go through user4.
Since user4 transmits first to user5 and then to user6, we consider user6 to be farther
away than user5 is from user1. Once the calculation of user6’s feedthrough time is
understood, the feedthrough times of other users are easy to derive. Therefore, these
feedthrough times are presented without derivation in Table 1.

3.2 Process-first and Transmit-First Scheduling Policies

One way of scheduling the processing and transmission tasks it to execute them
sequentially. There are two sequential policies possible in which either the processing
or the transmission task is performed first.

The process-first policy provides better feedback times than the transmit-first
policy because, unlike the transmit-first policy, it does not delay the processing of a
command until the transmission task completes. Comparing the feedthrough times of
the two policies is more complicated. Transmitting first from a source seems to
improve the feedthrough times of the destinations. However, as each destination may
also be a source, delaying the processing of the received command can increase the
feedthrough time seen by the local user.

To understand the influence of these factors on the relative feedthrough
performance of the two policies, consider the feedthrough time of user6 in our running
example. In all policies, this time consists of four components: (1) the total network
delay the command experiences, (2) the time taken by user6’s computer to process the
command, (3) user1’s delay, and (4) user4’s delay, where user1’s (user4’s) delay is
equal to the time that elapses from the moment user1’s (user4’s) computer receives a
message to the moment it transmits it to user4’s (user6’s) computer. The first two
components have the same values in all policies. A command always traverses the
network twice, which requires 2D time. Since user6’s computer does not transmit
commands to other computers, once it receives the command, it always processes the
command and the corresponding output in 4T time. The values of the other two
components are policy-specific.

The calculation of the policy-specific components when process-first and transmit-
first scheduling are used is shown in Fig. 3 (top) and Fig. 3 (bottom), respectively. As
Fig. 3 (top) shows, with the process-first policy, user1’s delay is equal to the time
user1’s computer requires to process the input command and the corresponding
output, 4T, plus the time it takes to transmit the input to a single destination, T. Thus,
user1’s delay is equal to 5T. As Fig. 3 (top) also shows user4’s delay is equal to the
time user4’s computer requires to process the input command and the corresponding
output, 4T, plus the time it takes to transmit the input to two destinations, 2T. Thus,
user4’s delay is equal to 6T. Hence, user6’s feedthrough time with the process-first
policy is 4T+2D+5T+6T=15T+2D. On the other hand, as Fig. 3 (bottom) shows, when
transmit-first scheduling is used, user1’s delay is equal to the time user1’s computer
requires to transmit the input command to a single destination, T, while user4’s delay
is equal to the time user4’s computer requires to transmit the command to two
destinations, 2T. Hence, user6’s feedthrough time is 4T+2D+T+2T=7T+2D. The
feedthrough times for the remaining users are given in Table 1.

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 751

Time

User1

enters
command

User1 User4

4T (I/O proc)
T (trans)

4T
(I/O proc)

User1 sees
output

D
(n/w latency)

4T (I/O proc)
2T (trans)

User6

User6 sees
output

Time

User1

enters
command

User1 User4

3T (trans)
4T (I/O proc)

4T
(I/O proc)

User1 sees
output

D
(n/w latency)

2T (trans)

User6

User6 sees
output

Fig. 3. User1’s feedback time and user6’s feedthrough time for the architecture in Fig. 2
(bottom) when the (top) process-first and (bottom) transmit-first scheduling is used

Table 1 shows that in this theoretical example the transmit-first policy gives better
feedthrough times than the process-first policy for all of the users. However, this is
not true in all cases. For instance, suppose there were five more users in our example,
and the multicast overlay was organized so that these five users all receive inputs
from user4’s computer. In this case, user4’s computer would still receive the command
4T earlier with the transmit-first than with the process-first policy but would have to
transmit for 5T longer before processing it. Hence, the benefit from receiving input
early can, theoretically, get outweighed by the transmission cost; in this example,
user4’s feedthrough time would increase by T. Such an increase can only happen
when multicast is used. However, in our experience with a state of the art multicast
scheme, such an increase does not really occur because usually a small number of
computers actually forward commands. Moreover, an even smaller number of
computers forward commands to many destinations. As a result, the number of
destinations a computer forwards to is usually small enough that the total transmission
cost for a node is smaller than the benefit the node receives when the transmit-first
policy is used. Hence, we expect that the transmit-first policy will provide better
feedthrough times than the process-first policy to most, if not all, of the users.

Our running example also shows that the process-first policy gives better feedback
times than the transmit-first policy. As Fig. 3 (top) shows, user1’s process-first

752 S. Junuzovic and P. Dewan

Table 1. User1’s feedback times and user2’s, user3’s, user4’s, user5’s, and user6’s feedthrough
times under the three scheduling policies

Policy Process-first Transmit-first Concurrent

User1 4T 7T 7T

User2 10T+D 6T+D 8T+D

User3 11T+D 7T+D 10T+D

User4 9T+D 7T+D 8T+D

User5 14T+2D 6T+2D 8T+2D

User6 15T+2D 7T+2D 10T+2D

feedback time is 4T. On the other hand, as Fig. 3 (bottom) shows, user1’s transmit-
first feedback time is 7T.

In summary, a sequential scheme in which the processing (transmission) task is
done first tends to optimize feedback (feedthrough) times for most users If we are
interested in both good feedback and good feedthrough times, it is attractive to
investigate a concurrent approach in which separate threads perform the processing
and transmission tasks.

3.3 Concurrent Scheduling Policy

Intuitively, we would expect a concurrent policy to give feedback and feedthrough
times in between those supported by the two sequential policies. In fact, in this policy,
it is possible to get feedback times that are as bad as those of the transmit-first policy
and feedthrough times that are as bad as those of the process-first policy.

Let us analyze what happens on user1’s computer in our running example when the
computer receives an input command. As described above, in this case, the processing
and transmission task require 4T and 3T time, respectively. We assume that neither
task blocks because it is difficult to predict their behavior, otherwise. The non-
blocking task assumption is consistent with assumptions made in real-time systems
when tight performance bounds are required. While results exist for blocking tasks,
the upper-bounds for the performance in this case are extremely loose. Moreover, the
non-blocking task assumption is realistic as a well-designed application can help
ensure that the processing and transmission tasks do not block by using separate
threads and asynchronous communication, respectively. In addition, we consider
context switch times negligible as we have found that they are no more than a few
microseconds on modern operating systems running Pentium 4 desktops, which is
several orders of magnitude lower than processing and transmission costs we have
observed in real collaboration scenarios. Finally, for illustration purposes, we assume
here that the length of the scheduling quantum is much less than the processing and
transmission costs. In our simulations, we in fact, use a much more realistic value of
10ms for the quantum size. Given these assumptions and our earlier assumption that a
single core is available for scheduling, the execution of these tasks for the concurrent
and the two sequential policies is illustrated in Fig. 4. As Fig. 4 shows, with the

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 753

Fig. 4. Process and transmission task completion times for user1’s computer for the concurrent,
process-first, and transmit-first scheduling policies

Time

User1

enters
command

User1 User4

7T (I/O proc)

4T
(I/O proc)

User1 sees
output

D
(n/w latency)

4T (trans)

User6

User6 sees
output

6T (trans)

Fig. 5. User1’s feedback time and user5’s feedthrough time for the multicast communication
architecture in Fig. 2 (bottom) when the concurrent scheduling is used

concurrent policy, the shorter transmission task completes in 6T time, which is twice
the time it takes to complete when the task runs standalone. As Fig. 4 also shows, with
the concurrent policy, the longer processing task completes in 7T time, which is equal
to the total time required to process the processing and transmission tasks
sequentially. We can generalize the figure as follows: when the processing and
transmission tasks are executed concurrently, (a) the shorter of the two will complete
in exactly twice the time it would complete were it running standalone, and (b) the
longer of the two will complete in exactly the time required to run the two tasks
sequentially. In this example, the processing task is the longer one, so user1’s
feedback time is 3T+4T=7T.

As mentioned earlier, user6’s feedthrough time equals 4T+2D + user1’s and user4’s
delays. As Fig. 5 shows, user1’s delay with the concurrent policy is equal to the time
user1’s computer requires to transmit the command to a single destination while
concurrently processing the command. Since transmitting to a single destination takes
T time and the processing task takes 4T time, the transmission to a single destination
completes in 2T time since it is the shorter of the two tasks. Similarly, as Fig. 5 also
shows, user4’s delay is going to be 4T. Thus, user6’s feedthrough time equals
4T+2D+2T+4T=10T+2D. The feedthrough times of all users are shown in Table 1.

754 S. Junuzovic and P. Dewan

Based on the feedback times and the feedthrough times in Table 1, it seems that in
this theoretical example the concurrent policy combines the worst of both sequential
policies as its feedback time is no better and its feedthrough times are worse than the
transmit policy. Of course, it is easy to change the example to ensure that the
concurrent policy offers feedback and feedthrough times between those of the
transmit-first and process-first policies. Here we chose the example to make the subtle
point that this is not always the case. In general, however, if the goal is to equally
favor feedback and feedthrough times, the concurrent policy should be used.

3.4 Simultaneous Commands

One issue we have not addressed so far is the scheduling of multiple simultaneous
commands. In general, two types of commands can occur concurrently with user1’s
input command: 1) another collaboration-unaware user input command, or 2) a
collaboration-aware command, such as one caused by the concurrency control or
awareness mechanisms. Collaboration-aware commands have their own processing
and/or transmission tasks that must be scheduled. Scheduling of these commands is
beyond the scope of this paper and we leave it as important future work. In this paper,
we make the reasonable assumption that tasks for a command are completed
atomically with respect to tasks for other commands. Given this assumption, once a
computer begins to perform tasks for user1’s input command, other commands cannot
affect the feedback and feedthrough times of the command. However, it is possible
that when user1’s input arrives at a computer, the computer performs tasks for several
other commands before beginning the tasks for this command. The time the computer
takes to complete the tasks for these other commands adds to the feedback and
feedthrough times of user1’s command.

Collaboration-aware commands simply add some time to the feedback and
feedthrough times that is independent of the user command scheduling policies.
Hence, the differences in feedback and feedthrough times illustrated above stand.
User input commands also add some time to the feedback and feedthrough times of
user1’s command that is independent of our choice of scheduling policy. The reason is
that regardless of the scheduling policy, the time that elapses from the moment a
computer begins performing the first task for a user command to the moment it
completes the final task for the command is the same. Consider user1’s computer in
our running example. The time it takes to process user1’s input command and output
and transmit the input command is 7T in all cases. Thus, the illustrated feedback and
feedthrough time differences in our running example for the three scheduling policies
again stand.

4 Simulations

Our work so far has made several conclusions about the relative performance of the
three scheduling policies based on theoretical arguments. While these results are a
contribution on their own, it is important to see if the differences shown through a
theoretical evaluation can be significant when the policies are evaluated in practical
scenarios.

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 755

We determined the performance of the scheduling policies in practical scenarios
using bookkeeping or accounting mathematical equations that simulate a collaborative
system. Such simulation approaches are popular in other fields such as networking and
real-time systems. Because of lack of space, we omit the equation details.

4.1 Parameter Values

To perform meaningful simulations we need realistic values for the parameters that
influence the performance of the three scheduling policies: (a) input and output
processing and transmission costs; (b) the number of users; (c) the types of the users’
computers; and (d) the network latencies.

To obtain realistic input and output processing and transmission costs, we
identified user-commands in logs of actual application use and measured the costs of
these commands. We logged three different applications, but as we have space to talk
about the results with only one these applications, we focus only on it.

We analyzed recordings of two PowerPoint presentations. These recordings
contain actual data and users’ actions – PowerPoint commands and slides. We
assumed that the data and users’ actions in the logs are independent of the number of
collaborators, the processing powers of the collaborators’ computers, and network
latencies. PowerPoint turned out to be a good choice of an application for which to
analyze actual logs for two reasons: 1) the parameter values we measured in the
associated logs were fairly wide spread, and 2) it is frequently used in presentations.

To obtain the processing and transmission time parameter values, we created a
collaborative session with several computers. We designated one of the computers as
the source of the commands, and then we replayed the PowerPoint logs using a Java-
based infrastructure that has facilities for logging and replaying commands.

We measured the processing and transmission times on the source computer. We
used a P3 866MHz desktop and a P4 2.4 GHz desktop as sources, both of which were
running Windows XP. The P3 desktop is used to simulate next generation mobile
devices. We recorded the average processing and transmission times of each machine
for PowerPoint. We removed any “outlier” entries from the average calculation,
caused for instance, by operating system process scheduling issues. To reduce these
issues, we removed as many active processes on each system as possible. Ideally,
while we replay the recordings, we should run a set of applications users typically
execute on their systems. However, the typical working set of applications is not
publicly available so we would have to guess which applications to run. For fear of
incorrectly affecting transmission times by running random applications, we used a
working set of size zero, a common assumption in experiments comparing
alternatives.

We had to assign the values of the number of collaborators and the processing
powers of their machines. In the collaboration recordings that we analyzed, the
number of users ranged from thirty to sixty. Unfortunately, this is not a wide enough
range of values; in particular, the maximum value of the parameter needs to be much
bigger to be representative of large collaborations, such as a company-wide
PowerPoint presentation. Therefore, we chose synthetic but not unrealistic values for
the number of observers. As observers do not input commands, they do not influence
the logs. Moreover, the talks we observed had tight time constraints which did not

756 S. Junuzovic and P. Dewan

allow questions. Thus, they were independent of the number of observers. We
randomly assigned the type of computer of each observer to be a P3 or P4 desktop.

Based on pings done on two different LANs, we use 0ms to simulate half the
round-trip time between two computers on the same LAN. Similarly, based on pings
done between computers on different LANs, we use 15ms and 177ms to simulate half
the round-trip time between a Northwest and a Southwest U.S. LAN and an East-
coast U.S. and an Indian LAN, respectively. These values defined the minimum and
maximum network latencies in our evaluation.

4.2 Simulations

Using these parameter values, we simulated the feedback and feedthrough times for
all of the policies for both centralized and replicated architectures when unicast and
multicast are used for communication. Of all of the existing multicast algorithms, we
know of only one that that considers the time the users’ computers require for
transmitting on the network in the building of such a tree, which is the HMDM
algorithm [2]. In our experience, the cost of transmitting commands can be high in
data-centric applications such as PowerPoint. Thus, we implemented HMDM in Java
and used it to create our multicast overlays.

4.3 Process-First vs. Transmit-First

Our theoretical results predict that the process-first policy gives better feedback times
but worse feedthrough times than the transmit-first policy, and vice versa. To check if
this difference can be significant in practical circumstances, we consider a scenario in
which a PowerPoint presentation is being given to 200 audience members around the
world. Based on the ping times we reported earlier, we assume that the latencies
between all of the users are between 15ms and 177ms. The lecturer is using a next
generation PDA device. Moreover, the users are organized in a centralized
architecture in which the lecturer’s computer is the master. Finally, we assume that
multicast is used for communication.

Previous work has shown [6] that users can notice feedback times greater than
50ms. We consider a 50ms increment in feedback times significant. Moreover, since
we know of no feedthrough thresholds, we assume that 50ms increments in
feedthrough times are also significant. In this scenario, the process-first policy
feedback time, 650.4ms, is significantly better than the transmit-first feedback time is,
761.2ms. The difference between the process-first and transmit-first feedthrough
times are shown in Fig. 6. As Fig. 6 shows, the process-first feedthrough times results
are significantly worse, by as much as 2804ms. Hence, there are cases when the
process-first policy can provide significantly better feedback times and significantly
worse feedthrough times than the transmit-first policy. The results of another
simulation, which we do not have room to present, show that the process-first
feedthrough times can be significantly better than the transmit-first feedthrough times.
However, for a large majority of the users (99%), the feedthrough times were actually
either noticeably lower or not noticeably higher with the transmit-first than the
process-first policy.

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 757

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 26 51 76 101 126 151 176

m
s

User

Feedthrough Times

PF TF CONC

Fig. 6. Feedthrough times for the process-first (PF), transmit-first (PF), and concurrent (CC)
scheduling policies

4.4 Concurrent vs. Sequential

Our second theoretical result was somewhat counter-intuitive. It showed the
concurrent policy can be as bad as the transmit-first policy in terms of feedback times
and worse than the transmit-first policy in terms of feedthrough times. To find out if
the feedthrough time differences can be significant, we consider the same scenario as
in the previous result.

The scenario simulation results confirm that the concurrent policy feedback times
can be the same as those of the transmit-first policy (761.2ms for both). Moreover, the
simulation feedthrough times are shown in Fig. 6 and they show that the concurrent
policy feedthrough times can be significantly worse, by as much as 110.0ms, than the
transmit-first feedthrough times. Even worse is the fact that more than one quarter of
the users experience these significant feedthrough time degradations.

Another theoretical result regarding the concurrent scheduling policy is that it is
useful if both feedback and feedthrough times are equally favored because with the
concurrent policy, these times can be in between those provided by the process-first
and transmit-first scheduling policies. It turns out that these differences can be
significant in the following practical scenario.

Consider again the PowerPoint scenario described earlier with three differences:
(a) there are only 100 users watching the presentation, (b) they are all in the same
LAN as the lecturer and thus experience only LAN network latencies (i.e. 0ms), and
(c) unicast is used for communication.

758 S. Junuzovic and P. Dewan

0

500

1000

1500

2000

2500

3000

1 26 51 76

m
s

User

Feedthrough Times

PF TF CONC

Fig. 7. Feedthrough times for the process-first (PF), transmit-first (PF), and concurrent (CC)
scheduling policies

In this case, the concurrent policy feedback time, 860.4ms, is significantly worse
than the process-first policy feedback time, 650.4ms, but is significantly better than
the transmit-first feedback time, 1502.4ms. Moreover, the concurrent policy
feedthrough times are significantly better than those of the process-first policy for
some users. In addition, for those same users, the concurrent policy feedthrough times
are significantly worse than those of the transmit-first policy, as shown in Fig. 7. As
Fig. 7 shows, the feedback time for user 6 is (a) 105.2ms better with the concurrent
than with the process-first policy and (b) 100.0ms worse with the concurrent than
with the transmit-first policy.

5 Conclusions and Future Work

We show that scheduling of processing and transmission tasks can significantly
influence interactivity. As these are independent tasks, intuitively, it seems that they
should be executed in concurrent threads scheduled by the operating system.
However, we show that, when a single-core is available for processing, this policy is
dominated in several realistic collaborations by sequential policies that are aware of
the nature of these two tasks. This result also has an implication for multi-core
scheduling systems. These systems tend to require an application to decompose its
processing into one or more concurrent threads and schedule these threads on as many
physical cores/processors as available. Our results show that when the processing and

 Serial vs. Concurrent Scheduling of Transmission and Processing Tasks 759

transmission tasks cannot be scheduled simultaneously on multiple cores/processors,
it may be better, in many scenarios, to execute them in a single thread using process-
first or transmission-first scheduling rather than in multiple threads. Thus the main
conclusion of our work is that a generic collaboration infrastructure must support all
three scheduling policies and allow them to be dynamically switched based on system
and task parameters.

Certain collaborative applications adapt the amount of processing work done to
ensure tolerable feedback times. For example, certain game playing applications [1]
adapt the level of detail presented based on the scene and processing power of the
computer. Moreover, in many applications, several independent tasks can be
performed in the processing phase, and in multicast, sends and receives can be
performed in different threads [5]. Therefore, it would be useful to consider new
scheduling policies that take into account the fact that the processing/communication
task can be adapted and broken into independent work units. It would also be useful
to study the (potentially application-specific) scheduling policies used in current
commercial collaborative systems, which we have not been able to determine so far.
Future work is also needed to consider concurrent scheduling on multiple cores, better
and more formally characterize scenarios in which various scheduling policies should
be used, create an infrastructure that automatically adapts the policy based on the
various system and task parameters identified here, and most importantly, study how
the feedback/feedthrough tradeoff should be made in different collaborations.

Acknowledgements

This research was funded in part by a Natural Science and Engineering Research
Council of Canada scholarship, a Microsoft Research fellowship, and NSF grants ANI
0229998, IIS 0312328, IIS 0712794, and IIS-0810861.

References

1. Brockington, M.: Level-of-detail AI for a large role-playing game. AI Game Programming
Wisdom, Charles River Media (2002)

2. Brosh, E., Shavitt, Y.: Approximation and heuristic algorithms for minimum delay
application-layer multicast trees. In: INFOCOM (2004)

3. Dewan, P.: Architectures for collaborative applications. Trends in Software Computer
Supported Co-operative Work 7 (1998)

4. Junuzovic, S., Dewan, P.: Multicasting in groupware? CollaborateCom (2007)
5. Ostrowski, K., Birman, K.: Implementing High Performance Multicast in a Managed

Environment. Technical Report. Cornell University (2007)
6. Shneiderman, B.: Response time and display rate. Designing the User-interface: Strategies

for Effective Human-computer Interaction. Addison-Wesley, Reading (2004)

	Serial vs. Concurrent Scheduling of Transmission and Processing Tasks in Collaborative Systems
	Introduction
	Processing and Transmission Tasks
	Scheduling of Tasks
	Running Example
	Process-first and Transmit-First Scheduling Policies
	Concurrent Scheduling Policy
	Simultaneous Commands

	Simulations
	Parameter Values
	Simulations
	Process-First vs. Transmit-First
	Concurrent vs. Sequential

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

