
Phylogenetic Dependency Networks: Inferring Patterns
of CTL Escape and Codon Covariation in HIV-1 Gag
Jonathan M. Carlson1,2*, Zabrina L. Brumme3, Christine M. Rousseau4, Chanson J. Brumme3, Philippa

Matthews5, Carl Kadie1, James I. Mullins4,6, Bruce D. Walker3,7, P. Richard Harrigan8,9, Philip J. R.

Goulder3,5,10 , David Heckerman1*

1 eScience Group, Microsoft Research, Redmond, Washington, United States of America, 2 Department of Computer Science and Engineering, University of Washington,

Seattle, Washington, United States of America, 3 Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United

States of America, 4 Department of Microbiology, University of Washington, Seattle, Washington, United States of America, 5 Department of Paediatrics, Nuffield

Department of Medicine, University of Oxford, Oxford, United Kingdom, 6 Department of Medicine, University of Washington, Seattle, Washington, United States of

America, 7 Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America, 8 B.C. Centre for Excellence in HIV/AIDS, Vancouver, British Columbia,

Canada, 9 Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada, 10 HIV Pathogenesis Programme, The Doris Duke Medical

Research Institute, University of KwaZulu-Natal, Durban, South Africa

Abstract

HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is
mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte
antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account
for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when
attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a
phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources
of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for
identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to
account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17
and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada
(predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic
dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations
among HIV codons. These associations include the complete reconstruction of several recently defined escape and
compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic
dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and
compensatory mutations are largely consistent even across different clades, although we also identify several differences
between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of
immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a
major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes.
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Introduction

Cytotoxic T-lymphocytes (CTL) eliminate HIV-infected cells

through the recognition of short virus-derived peptides, called

epitopes, presented on the surface of the infected cell by Human

Leukocyte Antigen (HLA) class I molecules [1]. The genes

encoding the class I molecules are among the most polymorphic

in the human genome, with each allele encoding a unique HLA

molecule capable of presenting a variety of possible epitopes [2].

Due to rapid rates of mutation, HIV is able to evade the CTL

response through the evolution of mutations in or around these

epitopes that decrease antigen presentation and/or CTL recog-

nition (CTL escape) [3]. Therefore, both the processes of antigen

presentation to CTL as well as CTL escape are HLA-restricted.

Indeed, CTL escape is to some extent predictable based on host

HLA profile. That is, correlations between HLA alleles and HIV

polymorphisms identified at the population level can identify

important sites of immune selection on the viral genome and

common pathways of immune escape [4,5].

Moore et al. first demonstrated the presence of HLA footprints

at the population level by identifying HIV polymorphisms that

were associated with specific HLA alleles [6]. The 89 codons in the

HIV protein Reverse Transcriptase that were reported to be

correlated with HLA alleles suggested that CTL pressure was

dramatically shaping HIV evolution. Moreover, the correlations

reported by Moore et al. provided directly testable hypotheses

about the specific escape pathways employed by HIV to evade the

cellular immune response. Although their logistic regression

analysis was later shown to lead to high false positive rates due

to the confounding effects of the HIV phylogeny [7], the broad
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conclusions of the Moore et al. study were recently confirmed in

two independent cohorts using methods that account for the

phylogeny [8–11]. These population-based studies support the

importance of the CTL response in the control of HIV.

This population approach can be considered an application of

the comparative method, which is generally defined as the study of

correlated evolution among traits (genotypes or phenotypes) or

between traits and the environment [12–14]. In the classical case,

the entities studied are species. In the case of HIV, the high rate of

mutation leads to genetically distinct populations, called quasispecies,

within each infected individual [15–17], making the two endeavors

highly analogous.

Since the late 1970s, researchers have noted the confounding

effect of phylogeny on the comparative method, with the classical

approach for continuous traits provided by Felsenstein’s method of

independent contrasts [18] and a more general solution found in

generalized least squares [19]. The problem of confounding arises

due to the fact that some (quasi-) species are inherently more similar

to each other than to other species by virtue of their relatively recent

time since divergence. Thus, statistical analyses that assume samples

are independent and identically distributed (such as those that use

Fisher’s exact test or logistic regression) have unexpectedly high

variance and often exhibit systematic bias that increases both false

positive and false negative rates [12,18–21].

The comparative method for discrete traits has received much

attention in the study of protein evolution. Here, the comparative

method is used to identify coevolving codons within a protein or

between proteins in the hopes of identifying structural or

functional codon interactions and their resulting constraints on

protein evolution (for review, see [22]). Although many methods

that correct for phylogenetic structure have been proposed for this

field [12,20,23–31], nearly all share a common weakness:

computational considerations constrain the models to look for

correlations only between pairs of attributes. Thus, where chains

of interactions exist (ARBRC) these pairwise tests will fail to

distinguish between direct associations (A — B) and indirect or, more

specifically, one-hop associations (A — C), which may lead to

incorrect hypotheses about the underlying biological system. These

chains of interactions are almost certainly the norm in codon

coevolution, as observed covariation is often driven by the

constraints of three-dimensional physical interaction [32–36]. To

date, only Poon et al. [37] have addressed chains of interactions in

protein evolution in a phylogenetic context, although their method

was not applied to the analysis of HLA-mediated selection pressure.

In the HIV field, the tasks of identifying codon covariation and

HLA-mediated escape mutations have been treated as separate

problems (see, e.g., [6–11,23,37]. If, however, both phenomena are

widespread, then each will confound the other. When identifying

HLA-mediated escape mutations, confounding due to codon

covariation may arise in the case of compensatory mutations that

partially reduce the fitness cost of the primary escape mutations

[3,38–41]. Because these escape mutations typically arise in the

context of the compensatory mutations, both escape and compen-

satory mutations may appear correlated with the HLA allele in

question. When identifying codon covariation, patterns of epitope

targeting, including order of escape due to immunodominance and

inter-patient variations in the overall strength of the immune system,

will lead to patterns of correlation at the HIV codon level. In what

follows, we show that these two processes significantly confound one

another, making identification of codon covariation and HLA-

mediated escape inextricably linked.

HLA linkage disequilibrium (LD) will further confound the

detection of HLA-mediated escape mutations. Because the HLA

class I loci are located in close proximity on chromosome 6, the

alleles tend to be in tight LD, meaning inheritance of (e.g.) a

specific HLA-B allele is strongly correlated with inheritance of a

specific HLA-C allele [42]. Thus, a sufficiently powered study will

tend to find both B and C alleles associated with each escape

polymorphism, even if escape is driven by only one allele. The

problem of HLA LD was first adjusted for in large scale HLA

escape studies by Brumme et al. [8] and Rousseau et al. [10] who

corrected for it by computing LD and assigning associations to

alleles based on strength of the correlation as well as previously

determined experimental evidence. More recently, Matthews et al.

[11] presented an automated method for correcting for LD using

the Decision Tree model, which we describe in Methods.

In summary, when detecting HIV escape mutations, there are at

least two sources of confounding in addition to the phylogenetic

structure of the HIV sequences: (1) covariation among HIV

codons, and (2) HLA linkage disequilibrium. There is therefore a

potential need for a statistical model that can accurately account

for both sources of confounding in a phylogenetic context. In what

follows, we describe a variation of the dependency network [43],

what we call a phylogenetic dependency network (PDN), that accounts for

phylogenetic relationships among the data by conditioning those

relationships on a model of evolution. In addition, we describe the

Noisy Add distribution, a parsimonious distribution (i.e., one with

few parameters) that is suitable for modeling HIV escape and

codon covariation. This Noisy Add distribution is a generalization

of the distribution described by Carlson et al. [21], in which only

pairwise correlations are considered.

We demonstrate the utility of phylogenetic dependency

networks for modeling HLA-mediated escape in HIV. We first

examine synthetic data generated from the Brumme et al. study

[9] to demonstrate the need for simultaneously accounting for

phylogenetic structure, HLA linkage disequilibrium, and HIV

codon covariation, as well as to explore the ability of the PDN to

detect these associations. We then extend the synthetic studies to

examine method performance on datasets containing HIV

sequences from two different subtypes (clades) and determine the

power available for different cohort sizes. Finally, we undertake an

Author Summary

One of the enduring challenges facing HIV vaccine design
is the remarkable rate of viral mutation and adaptation
that limits the ability of the immune system to mount a
lasting effective response. This rapid rate of mutation leads
to extensive within- and between-host viral diversity that
makes creation of a broadly reactive vaccine difficult. A
first step in overcoming this challenge is to identify
consistent patterns in viral adaptation. Recently, several
studies have analyzed large groups of HIV-infected
individuals and looked for correlations between HIV
polymorphisms and the HLA class I alleles that restrict
the cellular immune response. Here, we point out a
limitation of previous approaches: correlations among HLA
alleles and HIV codons lead to statistical confounding if
not taken into consideration. In response, we develop two
statistical models of evolution that explicitly represent
stochastic selection pressure from multiple sources. After
validating these models on synthetic data, we analyze the
patterns of immune escape in a multicenter cohort of over
1000 individuals. Our results identify a dense network of
interactions between HLA alleles and HIV codons, as well
as among HIV codons, reflecting both a complexity and a
promising consistency in the way that HIV adapts to the
human immune response.

Phylogenetic Dependency Networks for HIV Gag
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HIV/HLA cross sectional analysis with the largest cohort to date,

combining Gag p17/p24 sequences and individual HLA data

from the HOMER cohort from British Columbia, Canada

(predominantly HIV-1 clade B) [9] and the Durban cohort from

Durban, South Africa (predominantly HIV-1 clade C) [10,44] to

yield a mixed clade B/C dataset of 1144 Gag p17/p24 sequences

from chronically infected, HLA-typed, antiretroviral naı̈ve indi-

viduals. Using this large cohort, we infer a dense phylogenetic

dependency network that suggests a substantial role of HLA-

mediated selection pressure in shaping HIV evolution along with

specific predictions of escape pathways employed by the virus. Our

model suggests that many patterns of escape are the same across

the two clades. In addition, our model is consistent with known

pathways of CTL escape and reveals many novel findings that

should inform vaccine design.

Methods

Here, we describe phylogenetic dependency networks generally

and use the domain of HLA-mediated HIV codon evolution to

illustrate the concepts. A dependency network represents the

probabilistic dependencies among a set of predictor and target

attributes. In our domain, target attributes, denoted Y, correspond to

the presence or absence of amino acids at all codons in an HIV

protein. For a given Y in Y, the predictor attributes, denoted X,

correspond to the presence or absence of amino acids at all codons

other than that for Y and the presence or absence of all HLA

alleles. Note that all attributes are binary. We have found that this

choice yields more statistical power in practice.

A dependency network (phylogenetically corrected or otherwise)

has two components. The first component, sometimes referred to

as the structure of a dependency network, is a directed graph linking

nodes, where each node corresponds to one of the attributes in the

domain. (We use the same name—e.g., Y—for the attribute and its

corresponding node in the graph.) An arc from X to Y in the graph

is a statement that the probability distribution for Y depends on X.

Thus, in our domain, a dependency network graphically depicts

which HLA and codon attributes predict each codon. The second

component is a collection of conditional or local probability

distributions, one for every target attribute of interest. The local

probability distribution for target attribute Y is P(Y|X̂), where

X̂#X are the parents of Y in the graph. Therefore, in our domain,

a dependency network contains a probability distribution for each

codon attribute conditioned on various HLA and codon attributes.

When constructing a dependency network, each local probability

distribution is learned independently. This approach is computa-

tionally efficient, although it can lead to a decrease in statistical

efficiency (see Discussion).

A phylogenetic dependency network (PDN) for our HIV

application is a dependency network in which each local

probability distribution is corrected for the phylogenetic structure

of the HIV sequences. That is, the probability that a codon in an

individual is a given amino acid depends on not only the attributes

X̂, but also on where that individual’s HIV sequence sits in the

phylogeny (Figure 1). Specifically, a PDN is a collection of the

distributions PY(Y|X̂), one for each Y in Y, where PY refers to a

distribution corrected for phylogeny.

In this paper, we use a model-selection approach to identify X̂,

the set of parents for Y. Specifically, we use significance tests—

False Discovery Rate (FDR) thresholds based on likelihood-ratio

tests (LRTs)—to determine X̂. To avoid the inappropriate use of

an LRT, we exclude attributes as possible predictors when the

corresponding predictor-target pair has a 262 contingency table

that includes at least one bin where both the observed and

expected value is at most three. This parameter was chosen based

on performance with independent data (not shown).

Phylogenetically Corrected Distributions for One
Predictor Attribute

A simple approach for identifying a set of attributes that predict

a given codon (i.e., for identifying the parents of a target attribute

in a PDN) is to test for pairwise correlations between a target

codon and each predictor attribute. The details of a statistical

model that follows this approach, hereafter referred to as the

univariate model, are described in the section ‘‘Model Details’’ and

evaluated in [21]. We will review the univariate model here, as it

forms a basis for our multivariate model.

To determine whether there is a significant pairwise correlation

between predictor attribute X and target amino acid Y, we

compare the likelihood of a null model that reflects the assertion

that Y is under no selection pressure to an alternative model that

reflects the assertion that Y is under selection pressure induced by a

single predictor attribute X. The null model assumes the target

codon Y can be described completely by a model of independent

evolution along a phylogenetic tree (Figure 2A). The leaves of the

tree correspond to individuals in the study and are typically

observed. The interior nodes of the tree correspond to unseen

individuals infected by an HIV sequence that is a point of

divergence. These nodes are hidden—that is, never observed. We

use Yi to denote attribute Y for the ith individual in the study

Figure 1. Phylogenetic dependency network (PDN). A PDN is a
graphical model consisting of target attributes whose outcome is a
probabilistic function of predictor attributes. Each of these probabilistic
functions takes the phylogeny of the sequences into account. Here, the
target attributes (green nodes) are binary and represent the presence or
absence of amino acids at codons. These target attributes may have
dependencies on other codons (codon covariation) and/or on HLA
alleles (HLA-mediated escape), which are denoted by blue nodes. Arcs
represent the learned dependencies between target and predictor
attributes. All target attributes are assumed to be influenced by the
phylogeny (red arcs). The probability components of a PDN are the local
conditional probabilities, each of which relates a single target attribute
to the phylogeny and a subset of the predictor attributes. These local
conditional probabilities are learned independently for each target
attribute. In the hypothetical example depicted here, B*57 and B*58
predict M1 and A*02 predicts A5. A5 predicts A3, and there is a cyclical
dependency among M1, G2, A3 and R4, in which most of the arcs are
bidirectional.
doi:10.1371/journal.pcbi.1000225.g001

Phylogenetic Dependency Networks for HIV Gag
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(i = 1,…, N). (Note that Yi is a variable in the ordinary statistical

sense.) Because each target attribute is binary, a natural null model

is the two-state version of the continuous time Markov process,

commonly used in phylogenetics [45]. This model assumes

evolution is independent between different branches of the

phylogeny and that the only informative predictor of a node in

the evolutionary tree is its parent node in the tree.

The alternative model adds a component of selection pressure

derived from the predictor attribute X (Figure 2B). We use variable

Xi to denote the attribute X for the ith individual in the study

(i = 1,…, N), and do not explicitly name X for the unseen

individuals represented in the interior of the phylogenetic tree.

Because X may not share the same evolutionary history as Y, we

assume X influences Y only at the leaves of the tree. In particular,

we assume that, among the variables corresponding to attribute X,

only Xi influences Yi for each i. This assumption was evaluated

more fully by Carlson et al. [21] and found to be a reasonable

approximation, even when X and Y share the same evolutionary

history. To model selection pressure at the leaves, we extend the

null model by adding a hidden attribute H (with corresponding

variables Hi, i = 1,…, H) that represents what Y would have been

had there been no selection pressure. The probability distribution

for Yi then depends on Hi and Xi. When the values of Hi and Yi are

different, we say that a transition conditioned on Xi has taken

place. The precise rules governing the transitions conditioned on

Xi are given by the univariate leaf distribution PY(Y|X) = P(Yi|Hi, Xi).

We assume that this leaf distribution is not a function of i—that is,

this distribution is the same for each individual i = 1,…, N. Also

note that the subscript Y is a reminder that Yi depends not only on

Xi, but also on the phylogeny through variable Hi.

In the univariate case, we define four possible leaf distributions.

Escape means an individual may transition to Yi = 0 only when

Xi = 1. Reversion means an individual may transition to Yi = 1 only

when Xi = 0. Attraction means an individual may transition to Yi = 1

only when Xi = 1. Repulsion means an individual may transition to

Yi = 0 only when Xi = 0. Given a univariate leaf distribution, a

single parameter s specifies the probability that the transition

occurs given the appropriate state of Xi. Note that attraction/

repulsion correspond to a positive correlation between Xi and Yi,

whereas escape/reversion correspond to a negative correlation.

The names of these leaf distributions correspond to various

processes for selection pressure [21]. For example, the B*57-

restricted CTL response selects for escape from the susceptible

threonine at position 242 of the HIV Gag protein [46]. So, from

the perspective of hidden and target attributes that correspond to

the presence and absence of threonine, the amino acid can

transition from threonine to not threonine (H = 1, Y = 0) with a

non-zero probability only when the individual has the B*57 allele

(X = 1), which corresponds to the escape distribution just

described. In addition, escape from threonine bears a fitness cost

that leads to reversion in B*57-negative individuals [46].

Consequently, the amino acid can transition from not threonine

to threonine (H = 0, Y = 1) with non-zero probability only when

the individual lacks B*57 (X = 0), corresponding to the reversion

distribution. The codon for threonine usually escapes to the

resistant amino acid asparagine [46]. Continuing the example from

the perspective of hidden and target attributes that correspond to

the presence and absence of asparagine, the amino acid can

transition from not asparagine to asparagine (H = 0, Y = 1) only

when the individual has the B*57 allele (X = 1), which corresponds

to the attraction distribution. Finally, the amino acid can transition

from asparagine to not asparagine (H = 1, Y = 0) only when the

individual lacks the B*57 allele (X = 0), which corresponds to the

repulsion distribution. Although there is a natural pairing between

escape/reversion and attraction/repulsion, in that the former

indicates a negative correlation and the latter a positive

correlation, the processes are each distinct and may provide

information as to the underlying mechanism (see the section on

distinguishing leaf distributions in Results). Furthermore, whereas

the vast majority of clinically-derived HIV sequences have either

threonine or asparagine at codon 242, most codons are more

variable, with more than one amino acid susceptible to, or

resistant from, CTL pressure mediated by the HLA allele.

Consequently, escape/attraction and reversion/repulsion for

alternate amino acids often provide additional information. Note

that by restricting the univariate leaf distribution to one of these

four forms, we have assumed that only one process (escape,

reversion, attraction, or repulsion) is occurring for a given

predictor-target pair. Although in reality both escape and

reversion (or attraction and repulsion) may occur with the same

HLA-epitope combination, relaxing our assumption leads to

substantial loss of power. Thus, we apply each of the four leaf

distributions to the predictor-target pair and include only the most

significant correlation in the model.

Figure 2. The univariate model. (A) The null model, in which an amino acid evolves independently down the tree until it reaches a leaf. (B) The
alternate model, in which an amino acid evolves independently down the tree until is reaches an individual, where it is influenced by selection
pressure from the predictor. The variable Hi for the ith individual represents the variable Yi had there been no influence from Xi. Only the Yi and Xi are
observed. Conditional probability distributions are not shown.
doi:10.1371/journal.pcbi.1000225.g002

Phylogenetic Dependency Networks for HIV Gag

PLoS Computational Biology | www.ploscompbiol.org 4 November 2008 | Volume 4 | Issue 11 | e1000225



Phylogenetically Corrected Distributions for More Than
One Predictor Attribute

The univariate model works well when there are no correlations

among predictor attributes or among target attributes [21]. As

discussed, however, use of the model in the presence of linkage

disequilibrium among HLA alleles and HIV codon covariation

will likely lead to spurious associations. To avoid this problem, we

use a multivariate model, in which more than one attribute can be

used to predict a particular target attribute. In this model, for a

given target attribute Y, shown in Figure 3, the target attribute is

allowed to evolve independently down the tree until it reaches a

leaf in the tree corresponding to an individual in the study. At this

point, selection pressure within the individual is governed by a

multivariate leaf distribution, denoted PY(Y|X̂), which depends on

multiple predictor attributes X̂. As in the univariate case, this leaf

distribution is the same for each individual i = 1,…, N.

The set of significant predictor attributes can be identified by a

number of methods including forward, backward, and forward/

backward selection. In this work, we concentrate on forward

selection, wherein X̂ is iteratively augmented with the most

significantly associated attribute at each iteration. For each added

attribute, we record only the most significant leaf distribution

(escape, reversion, attraction, or repulsion). The significance of a

predictor X with respect to target attribute Y is computed using

false discovery rates based on an LRT in which both the null and

alternative models are conditioned on all significant predictors that

were identified in previous iterations of forward selection. For

practical purposes, we terminate forward selection when the most

significant association has a p-value greater than or equal to some

threshold to be described.

There any many possibilities for the form of the multivariate leaf

distribution PY(Y|X̂). In this paper, we consider two distributions:

Decision Tree and Noisy Add.

Decision Tree. A straightforward way to represent the

multivariate leaf distribution PY(Y|X̂) is to list the probability

distribution for Y given every possible instance of the attributes H

and X̂. Unfortunately, the length of this list grows exponentially

with the number of predictor attributes. An alternative is to use a

Decision Tree, which is a compact representation of such a list.

The use of the Decision Tree as a multivariate leaf distribution was

recently employed by Matthews et al. [11] to account for HLA

LD. Here, we describe the approach in some detail.

A graphical depiction of the Decision Tree leaf distribution is

shown in Figure 4. Note that this tree should not be confused with

the phylogenetic tree. To help avoid this confusion, we use the

term tip to refer to the bottom points on the Decision Tree. Each

path in the tree from root to tip defines a particular instance of a

subset of the attributes X̂, which in turn defines a conditioning

event for the distribution of the target attribute. For example, in

Figure 4, we consider the set of predictor attributes X̂ = (B57, C06,

M28), with each branch labeled 0 or 1. The path that follows the

value 0 for the attribute B57, the value 0 for the attribute C06, and

the value 1 for the attribute M28 corresponds to the instance

(B57 = 0, C06 = 0, M28 = 1)—that is, the individual has M28 but

not B57 or C06. At the tip of this path sits the corresponding

conditional probability distribution PY(Yi|B57 = 0, C06 = 0,

M28 = 1). In general, each tip k in the Decision Tree is associated

with the conditional distribution PY(Yi|X̂ = pathk), where pathk is

the conditioning event corresponding to the kth path. The

collection of these conditional distributions over all tips constitutes

the multivariate leaf distribution.

A Decision Tree leaf distribution can be constructed in many

ways. As mentioned, we use forward greedy search. First, we

initialize the tree to a single root node, which is simply the

univariate leaf distribution for the most significant attribute. We

then grow the tree iteratively. At each iteration, we consider

extending (or splitting) a tip node k on some attribute not already in

the path to the tip. When splitting tip node k on an attribute X, the

node is replaced with two branches and two corresponding tip

nodes. The left and right branches correspond to adding X = 1 and

X = 0, respectively, to the conditioning event associated with the

original tip node. The split is made if the resulting local

distribution is a significantly better estimate than that prior to

the split, as measured by an LRT. The LRT is computed using the

univariate model applied to those individuals whose attribute

values match those described by pathk. To make the process more

efficient in our HIV application, we consider splitting the tip node

only under the path X = 0 for all X in X̂. That is, we repeatedly

apply the univariate model to all individuals for whom X = 0 for all

the previously identified significant predictor attributes. We iterate

this process until no significant predictors are found, using a

threshold of p,0.05.

Noisy Add. One drawback of the Decision Tree approach is

that, as the tree grows, the number of samples that we use to test

Figure 3. The multivariate model. Here, an amino acid evolves
independently down the tree until is reaches an individual, where it is
influenced by one or more predictor attributes.
doi:10.1371/journal.pcbi.1000225.g003

Figure 4. Decision Tree leaf distribution. Each path from root to
leaf yields a distinct local probability distribution.
doi:10.1371/journal.pcbi.1000225.g004

Phylogenetic Dependency Networks for HIV Gag
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for the next split decreases. Rather than consider smaller and

smaller subsets of the data, the Noisy Add leaf distribution models

selection pressure as an additive process among the predictor

attributes. That is, the Noisy Add leaf distribution is based on the

assumption that each predictor attribute independently

contributes a positive or negative selection pressure on the target

attribute. These pressures then sum to determine the value of the

target attribute.

In the univariate case, each leaf distribution can be seen as

representing three mutually exclusive and exhaustive events (for

each individual): (1) the selection pressure is absent, either because

the state of the predictor attribute excludes selection pressure or,

with probability 12s, no transition occurred despite the potential

for selection pressure; (2) selection pressure leads to Yi = 1

(attraction or reversion); or (3) selection pressure leads to Yi = 0

(escape or repulsion). We can represent these three possible events

by a hidden attribute I that takes on the values 0, 1, and 21,

respectively. Given a set of M predictor attributes, we can associate

a hidden variable I
j
i for the jth attribute in the ith individual.

Then, assuming that selection pressure across the predictor

attributes contributes independently and equally to the outcome

of Yi, we can determine the outcome of Yi by summing the values

of the I
j
i variables: Si~I1

i z � � � IM
i . If Si is 0, then it is as if no

selection occurred. If Si,0, then negative selection (escape/

repulsion) has occurred, and the target variable Yi will be zero. If

Si.0, then positive selection (attraction/reversion) has occurred,

and the target variable will be one. Of course, we don’t know the

actual values of Ij for each predictor variable, so we must sum over

the possibilities, resulting in a probability distribution over Si. The

strength or frequency of selection pressure contributed by each

predictor attribute j is captured by the parameter sj. Like the

corresponding parameter s in the univariate model, sj is the

probability that the predictor attribute exerts selection pressure

(I
j
i =0), given the appropriate state for the predictor attribute. A

more precise definition of Noisy Add, including the generalization

from the univariate model, specifics of learning the parameters sj,

and methods for reducing computation time can be found in the

section on model details.

The contribution of a given predictor attribute XjMX̂ as a

predictor of target Y is quantified using an LRT against the null

model consisting of X̂2Xj. The most significant predictor attribute

is added to the Noisy Add model on each iteration, stopping when

the most significant predictor fails to achieve p,0.005. (We use a

more aggressive threshold than that for Decision Tree because

Noisy Add is more computationally intensive.)

q-Values
We identify significance using q-values [47], which conserva-

tively estimate the false discovery rate (FDR) [48] for each p-value.

The FDR is defined to be the expected proportion of false positives

among results called significant at a given threshold t. The q-value

of t is the minimum FDR observed for all t9$t [47]. Following

Storey and Tibshirani [47], we use the approximation

FDR tð Þ~E
F tð Þ
S tð Þ

� �
&

E F tð Þ½ �
E S tð Þ½ � , ð1Þ

where S(t) is the number of associations called significant at t and

F(t) is the number of true nulls (false positives) at t. To estimate the

numerator, we order the p-values of the association tests in

increasing order p1,…, pm and use the approximation E[S(pi)]<S(-

pi) = i. To compute E[F(t)], Storey and Tibshirani point out that

uniformity of p-values allows the approximation

E F pið Þ½ �&p̂p0pim ð2Þ

where p̂p0 is a (conservative) estimate of the proportion of all

hypotheses that are truly null. In our case, we assume a priori that

the vast majority of the many hypotheses tested will be null (i.e.,

most codons and HLA alleles have no direct effect on a given

target attribute), and so conservatively set p̂p0~1.

The asymptotic conservative guarantee of (1) requires a

conservative estimate of (2), which requires a valid (or stochasti-

cally conservative) p-value. In order to achieve a valid p-value, all

model assumptions must be reasonably met. In particular, all

sources of confounding must be accounted for. In principle, our

multivariate models can account for these sources, provided the

input phylogeny is reasonable and all other sources of confounding

are provided as predictor attributes in X̂. To confirm this

argument for the Noisy Add leaf distribution, we constructed

QQ plots using the mixed clade dataset and a synthetic dataset as

described in the following section (Figure 5). On null synthetic data

(i.e., synthetic data in which no predictor-target pairs where

associated), the QQ plot indicates that Noisy Add yields a uniform

distribution of p-values. The distribution starts deviating from

expected at p,0.001, at which erroneous associations that

represent one-hop associations and associations with wrong arc

direction start skewing the distribution. Including a panel of 550

synthetically planted non-null associations (see the following

section) shifts the distribution as expected. Likewise, the distribu-

tion on real data follows the pattern observed on synthetic data

that includes planted associations.

Alternatively, E[F(t)] can be estimated from null data by (e.g.)

permuting the predictor attributes [21,49], though permutation

breaks any covariation among predictors and may lead to biased

estimates.

In what follows, we compute q-values using the method of

Storey and Tibshirani for Noisy Add for the model that corrects

for phylogeny, LD, and covariation, and the permutation test for

all other models, as these models fail to account for key sources of

confounding, rendering their p-values stochastically liberal. For

these other models, we found that across all datasets tested, the

permutation test was more conservative than using equation (2),

which consistently yielded overly liberal q-values (data not shown).

Finally, FDR represents the expected proportion of tests called

significant that are null. When different classes of predictor

attributes are considered, this may lead to confusion. For example,

an FDR of 20% for an association between an HLA allele and

Figure 5. Quantile-Quantile (QQ) plot of p-values on the mixed
clade cohort. Values correspond to 2log10(p).
doi:10.1371/journal.pcbi.1000225.g005
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codon does not imply that 20% of HLA-codon associations at that p-

value are expected to be null, but that 20% of all associations

(including codon-codon associations) are expected to be null.

Thus, we find it useful to compute FDR separately for each class of

association. In what follows, we compute q-values for HLA-codon

and codon-codon associations separately. The final combined

association lists are then ordered by the q-values, with ties broken

by p-values.

Data
These methods were applied to population-based HIV

sequences from chronically infected, antiretroviral naı̈ve and

HLA-typed individuals from two cohorts: the HOMER cohort

from British Columbia, Canada, consisting of 567 predominantly

clade B gag sequences [9], and the Durban cohort, consisting of 522

predominantly clade C p17/p24 gag sequences from Durban,

South Africa [10,44]. Individuals in the HOMER and Durban

cohorts were HLA-typed to two- and four-digit resolution,

respectively. Here, we truncate the Durban data to two-digits for

comparison with the HOMER cohort. Viral sequences were

determined by nested reverse-transcriptase polymerase chain

reaction (RT-PCR) amplification of extracted plasma HIV RNA

followed by bulk sequencing, as previously described [8–10].

Phylogenies were constructed from these sequences using PHYML

[50], run using the general time reversible model over the HIV

sequences and estimating all parameters via maximum likelihood.

Synthetic datasets were designed to mimic the real datasets as

closely as possible. We first fit a specified model to the real data to

identify parameters and q-values for each predictor-target pair. We

then planted predictor-target pairs for each significant (q#0.2)

predictor-target pair identified from the real data. Specifically, we

generated a synthetic target amino acid for each consensus amino

acid in the sequence, such that (1) if the amino acid had no

significant (q#0.2) associations, then the amino acid was generated

according to the parameters of the independent evolution model

(the null model from the univariate case), and (2) if the amino acid

had M.0 associations, then the amino acid was generated

according to the given multivariate model with the predictor

parameters s1,…, sM, taken from the real data. When an

observation was missing in the real data, the corresponding

observation in the synthetic data was also made to be missing. We

treated amino acid insertions/deletions and mixtures as missing

data.

Our goal was to generate data that is as realistic as possible,

both in the values of the parameters used and the number of

predictors deemed correlated with the target. Because our recall

rate is less than 100% (see section on synthetic results), planting

only those associations that are found in the real data would result

in a smaller proportion of synthetic predictor-target pairs called

significant than real predictor-target pairs called significant. We

therefore planted two associations for every observed significant

association in the real data and reduced the number of

independently evolving codons accordingly. For the Noisy Add

model, this procedure planted 72 HLA-codon and 612 codon-

codon associations in the HOMER cohort and 114 HLA-codon

and 952 codon-codon associations in the combined HOMER-

Durban cohort. In hindsight, doubling the number of planted

associations was an overcompensation, as experiments on this

synthetic data yielded a 75% recall rate. Nonetheless, the doubling

produced a reasonable result, as Noisy Add declared 0.56% of all

synthetic predictor-target pairs significant at q#0.2 compared to

0.65% of all predictor-target pairs in the real data for the

combined HOMER-Durban cohort.

Data Analysis
As mentioned, we binarized all data. For example, if three

amino acids were observed at a given sequence position, we

created three binary attributes corresponding to the presence and

absence of each amino acid. When reporting results, however, we

assumed that the most relevant information was at the codon level.

Thus, unless stated otherwise, HLA-codon associations refer to the

most significant associations between an HLA allele and any

observed amino acid at the codon under any of the four leaf

distributions. Likewise, codon-codon associations refer to the most

significant association between the codons over all the associations

computed for the complete repertoire of observed amino acids and

possible leaf distributions at those codons. This approach was

taken exclusively in the synthetic studies, though the results were

similar when we looked at exact associations (at the level of

observed residues and leaf distributions; data not shown).

We report power results as Precision-Recall (PR) curves, where

the x-axis is recall (TP/(FN+TP)) and the y-axis is precision (TP/

(TP+FP)), where TP is the number of true positives, FP is the

number of false positives, and FN is the number of false negatives.

To construct PR curves, we computed precision and recall for

every observed q-value for each method. We used as a gold

standard the synthetic data as described in the previous section.

Accuracy of q-values, called calibration, is plotted as (12Precision)

versus q-value. A perfectly calibrated result is a line with slope one.

To compare two PR curves, we computed p-values using the

absolute value of the difference between the areas under the two

curves as the statistic. The null distribution assumes the two curves

will on average provide the same ranking over the predictor target

pairs and is constructed using a permutation test in which two

pseudo-curves are generated by randomly swapping the ranks

between the two methods for each predictor-target pair. That is, if

methodsM1 andM2 provide ranks of r1 and r2, respectively, for a

predictor target pair PT, then with probability 0.5, M1 will be

reassigned rank r2 and M2 will be reassigned rank r1 for PT.

Resulting ties in ranks were broken at random. Ranks were used

rather than q-values so that the scores of two uncalibrated methods

could be compared directly. 10,000 permutation tests were run to

compute each p-value.

When we refer to associations involving codons, we will

sometimes find the following notation useful. T242 will refer to

an amino acid (in this case threonine) at a specific codon (242). If

the association is escape or reversion, then T242 is the susceptible

form. If the association is attraction or repulsion, then T242 is the

resistant form. The PDN will often find complementary associa-

tions. For example, T242 is the susceptible form with respect to

B*57, and N242 is the resistant form. We will sometimes refer to

such associations as T242N. For simplicity, we will usually report

only the smaller q-value of the two associations. If only the

susceptible association is significant (q#0.2), we will sometimes

write T242X. Likewise, if only the resistant is significant, we will

sometimes write X242N.

Optimally defined epitopes [51] were taken from http://www.

hiv.lanl.gov/content/immunology/tables/optimal_ctl_summary.

html, accessed on December 21, 2007. To allow the inclusion of

processing mutations [52], we called an association a match to the

optimal epitope if it was within three codons of the epitope

boundary, as described elsewhere [8,10]. When using the optimal

epitopes as a bronze standard for comparing methods, we

considered only the most significant HLA-codon association per

HLA-epitope pair to prevent double counting that arises due to

the extent of within-epitope covariation (see Results). Similarly, in

cases where an HLA-codon pair was not within three codons of an

optimal epitope, we computed the most likely predicted epitope
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using Epipred [53] so that neighboring associations in putative

epitopes were not double counted.

Model Details
In this section, we provide details regarding the univariate and

Noisy Add models, in addition to a brief discussion on

computational requirements for the models.

Details of univariate model. First, let us consider the null

model. Consider target attribute Y that denotes the presence

(Y = 1) or absence (Y = 0) of a particular amino acid at a particular

codon. We use variable Yi, i = 1,…, N to denote the attribute Y for

the ith individual in the study. (We use corresponding notation for

predictor attributes and variables.) It is quite common to assume

that the variables Y1,…, YN are independent and identically

distributed (IID). In our application, however, the variables are

related through a phylogenetic tree. We can model these

relationships using a probabilistic phylogenetic model as shown

in Figure 2A. Nodes at the leaves of the tree, labeled Y1,…, YN

correspond to the variables with the same name. (In general, we

will use the same designation for both a variable and its node.)

Unlabeled nodes in the interior of the tree correspond to events of

divergence. We use Y to denote the structure (branchings and

branch lengths) of the tree.

Associated with each variable (or node) B in this phylogenetic

tree is a conditional probability distribution P(B|A), where A is the

parent node of B. As in the probabilistic model of Felsenstein [45]

for a phylogenetic tree, we assume that the conditional probability

table is described by a continuous time Markov process (CTMP)

and parameterized by h = (p,l), where p is the stationary

distribution of Y = 1 and l is the rate of mutation. The conditional

probability table of the CTMP from parent node A to child node B

along a branch of length d is given by

P B~bjA~a,dð Þ~
e{ldzpb

: 1{e{ld
� �

if a~b

pb
: 1{e{ld
� �

if a=b:

(
ð3Þ

where pb = p when b = 1, and pb = 12p when b = 0. This evolution

model is reversible, making the choice of root in the tree arbitrary

[45].

Given a set of observations for (typically, all of) Y1,…, YN, there

are several criteria that can be used to identify good values for the

parameters p and l and the structure Y of this model (or, in the

Bayesian case, a distribution over these quantities). For this and all

models discussed in this paper, we choose parameters and

structure using the maximum likelihood criterion, as is done in

(e.g.) [45]. There are a number of methods for identifying the

maximum-likelihood parameters, including gradient decent and

the Expectation-Maximization (EM) algorithm. In this paper, we

use the EM algorithm [54] to learn h. To learn the structure Y, we

apply PhyML to the (gag p17–p24) nucleotide sequences using the

general time reversible GTR model with all other parameters

estimated from the data [50].

We denote this null model PY(Y|h), as it represents a

phylogenetically corrected distribution for Y. Note that this model

includes the situation where the observations of Y1,…, YN are IID

as a special case (i.e., the limit as l tends to infinity.)

Now let us consider the alternative model, which reflects the

assumption that a codon is under selection pressure induced by a

single predictor attribute X. To construct this model, shown in

Figure 2B, we begin with the null model and first change each Yi to

Hi, which represents what Yi would have been had there been no

influence from Xi. Then, we assume that, for each individual i, the

probability distribution for Yi depends on Xi and Hi. Further, we

assume that these conditional distributions P(Yi|Hi, Xi) are the

same for each individual i, and collectively denote them by

PY(Y|X). In general, this univariate leaf distribution can have four

parameters corresponding to the four states of the conditional

variables Hi and Xi. In our experience, however, use of such a

distribution leads to loss of power. Consequently, we consider four

separate distributions (as was previously defined [21]) and, for any

given association, choose the one that best fits the data:

Escape P(Yi = 0|Hi = 1, Xi = 1) = s.0; P(Yi = 1|Hi = 0,

Xi = 1) = 0; P(Yi = a|Hi = a, Xi = 0) = 1. That is, Hi and Yi can be

in different states only when Hi = 1 and Xi = 1.

Reversion P(Yi = 1|Hi = 0, Xi = 0) = s.0; P(Yi = 0|Hi = 1,

Xi = 0) = 0; P(Yi = a|Hi = a, Xi = 1) = 1. That is, Hi and Yi can be

in different states only when Hi = 0 and Xi = 0.

Attraction P(Yi = 1|Hi = 0, Xi = 1) = s.0; P(Yi = 0|Hi = 1,

Xi = 1) = 0; P(Yi = a|Hi = a, Xi = 0) = 1. That is, Hi and Yi can be

in different states only when Hi = 0 and Xi = 1.

Repulsion P(Yi = 0|Hi = 1, Xi = 0) = s.0; P(Yi = 1|Hi = 0,

Xi = 0) = 0; P(Yi = a|Hi = a, Xi = 1) = 1. That is, Hi and Yi can be

in different states only when Hi = 1 and Xi = 0.

This model is reversible in the sense that the choice of root node

among non-leaf nodes does not affect the likelihood of the data.

We also note that, in principle, all parameters h = (p, l, s) and the

structure Y can be optimized simultaneously. In practice,

however, we find that using the structure Y learned in the

absence of information about X works well, and is computationally

more efficient. In addition, it may seem counter-intuitive that the

HLA alleles of the individuals corresponding to the interior nodes

of the phylogeny are not being taken into account. A path from

one node to the next in the phylogeny, however, presumably

reflects a series of infections over many individuals, some who will

have the allele and some who will not. Thus, there will be some net

evolution, which we account for by optimizing the parameters p
and l for each codon individually. Finally, we note that this model

can be thought of as a (discrete) mixed-effects model, wherein the

predictor variables Xi correspond to the fixed effects and the

hidden variables Hi correspond to the random effects [55]. Rather

than being related by (e.g.) a Gaussian covariance matrix, the

random effects are related by a phylogenetic tree.

Both the null and alternative models are instances of what is

known as a generative or directed acyclic graphical (DAG) model. In

general, a generative model consists of a structure, a directed

acyclic graph, in which nodes correspond to variables and missing

arcs specify conditional independencies among the variables, and a

set of conditional probability distributions, one distribution for

each node. The conditional probability distribution for a given

node is the distribution of the node given its parents. The

conditional independences specified by the structure of the graph

allow the joint distribution of the data to be written as the product

over the nodes of their conditional distributions. The indepen-

dences represented by the model facilitate computationally

efficient inference, parameter estimation, and structure learning

[56]. Importantly, given a set of parameters learned from real

data, synthetic data can be easily generated from the model. When

constructing PDNs, we separately learn a DAG model to encode

each local probability distribution. As mentioned in the Discus-

sion, however, one can restrict the arcs in a PDN to be acyclic,

thus resulting in a single (phylogenetic) DAG model for all the

attributes in the dataset.

In the following section, we consider the multiple-predictor case

and again use graphical models to represent phylogenetically

corrected distributions. As we shall see, the computational

efficiencies afforded by graphical models will play an even more

important role.
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Details of Noisy Add model. To understand the Noisy Add

leaf distribution, let us recast the univariate distribution as the

generative process shown in Figure 6A. (Recall that this

distribution is independent of i. In the text that follows, we

describe this and the generalized process for an arbitrary

individual i. In the corresponding figures, we drop the subscript

i to simplify the notation.) If Xi = 1 (for escape or attraction; Xi = 0

for reversion or repulsion), a coin weighted with probability s for

heads is flipped. If the coin lands heads, then the intermediate

variable Ii gets the value 1 (for attraction or repulsion; 21 for

escape and reversion). Otherwise, Ii gets the value 0,

corresponding to no selection pressure. The value of Ii is then

copied to the value of another variable Si. (The copy is not

necessary here, but will help us generalize.) Finally, the target

variable Yi is assigned a value based on the deterministic function

shown in Figure 6B. With a little checking, it can be seen that this

process produces precisely the univariate leaf distributions for

escape, reversion, attraction, and repulsion.

The generalization of this process to multiple predictor variables

X̂Xi~X 1
i , . . . ,X M

i is shown in Figure 6C. Here, there is an X
j
i and

I
j
i node for each predictor variable X

j
i . The weight on the coin is

possibly different for each predictor variable. We use sj to denote

the weight for predictor variable X
j
i , and s to represent the

collection of parameters (s1,…, sM). The variable Si is now a sum

of the intermediate variables I1
i , . . . ,IM

i . Finally, as in the

univariate case, Yi is a deterministic function of Si and Hi as

given in Figure 6B.

Applying this generative process to individuals i = 1,…, N,

we obtain the conditional distribution P Y1, . . . ,YN ,H1,ð
. . . ,HN ,I1

1 , . . . ,IM
N X 1

1 , . . . ,X M
N ,h

�� Þ, where h = (s,p,l) are the

parameters of the model. Maximum likelihood values for

these parameters can be inferred efficiently. The sum-

mation Si~I1
i z . . . zIM

i can be grouped as Si~

I1
i zI2

i

� �
zI3

i

� �
z . . . zIM

i

� �
, yielding the graphical model

shown in Figure 6D. This grouping makes it possible to compute

the distribution for Yi for any instance of the variables X̂i and Hi in

time that is quadratic in M. Furthermore, given any instance of the

predictor variables X̂i, Hi, and Yi, the probability distributions for

I1
i , . . . ,IM

i can be computed in time that is quadratic in M.

Consequently, we can use the EM algorithm to estimate the

parameters s efficiently. To estimate the full set of Noisy Add

parameters h, we embed this estimation procedure within an outer

loop as follows.

E-step. Compute P Hi,Yi Y1, . . . ,YN ,X 1
1 , . . . ,X M

N ,h
��� �

using

any standard algorithm for graphical models (e.g., [56]).

Iterate to convergence in likelihood:

E-step. For j = 1,…, M

Compute

P I
j
i Y1, . . . ,YN ,X 1

1 , . . . ,X M
N ,h

��� �
~

X
Hi ,Y

P I
j
i Hi,Yi,X

1
i , . . . ,X M

i ,h
��� �

:P Hi,Yi Y1, . . . ,YN ,X 1
1 , . . . ,X M

N ,h
��� �

ð4Þ

M-step. Given these probabilities, choose s to maximize the

likelihood

M-step. Given these probabilities, choose p and l to

maximize the likelihood using a standard M-step for CTMP

(e.g., [57])

Note that, in Equation 4, we have used the simplification

P I
j
i Hi,Y1, . . . ,YN ,X 1

1 , . . . ,X M
N ,h

��� �
~P I

j
i Hi,Yi,X

1
i , . . . ,X M

i ,h
��� �

afforded by the conditional independencies in the generative

model (Figure 3).

Computational requirements. In this section, we briefly

outline the theoretical and practical computational requirements

of the models. The running times are primarily a function of the

number of target attributes |Y|, the number of predictor

attributes |X|, and the number of individuals in the study N.

|Y| and |X| slowly increase with N, as larger cohorts will have

more observed HLA alleles and amino acids at each codon. In the

present study, the HOMER cohort had values N = 567,

|Y| = 1177, and |X| = 1242, and the combined HOMER-

Durban cohort had values N = 1144, |Y| = 1287, and

|X| = 1357. Roughly, analyses using these models scale as

O(|X||Y| Nlog2N), as we run one test for each X2Y pair and

likelihood calculations on a tree are O(N log2 N). The number of

EM iterations required to converge is roughly independent of the

size of the data. In the case of the multivariate models, there is an

additional penalty due to the forward selection procedure that

requires a complete pass through all predictors to identify the most

significant predictor for each iteration. Likelihood maximization is

slower for Noisy Add, due to the increased number of iterations

required for EM to converge for large numbers of significant

predictor attributes, and inference being quadratic in the number

of significant predictors.

Figure 6. Noisy Add leaf distribution. (A) A generative process for the univariate leaf distribution. Here, the hidden variable I takes on a value of
0, 1 or 21 depending on whether selection pressure is absent, positive, or negative. (The subscript i, denoting a particular individual, is suppressed
for simplicity.) The result is copied to S, which determines the result of the selection pressure. (B) The function that maps S and H to Y. (C) A
generative process for the multivariate Noisy Add leaf distribution. (D) The grouping of the multivariate Noisy Add leaf distribution into a series of
summations, grouped as S2 = I1+I2, S3 =S2+I3, and so on. This grouping makes inference much faster.
doi:10.1371/journal.pcbi.1000225.g006
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In practice, all of the models were run on a 320 node Windows

HPC cluster and completed in 1–24 hours, with the shortest times

corresponding to the univariate model run on the smaller

HOMER cohort and the longest times corresponding to the

Noisy Add model run on the combined HOMER-Durban cohort.

Results

Model Validation on Synthetic Data
In this section, we use synthetic data to demonstrate the power

and calibration of the proposed models and to demonstrate that

failure to account for the phylogenetic tree, linkage disequilibrium

(LD) among HLA alleles, and covariation among the amino acids

will lead to a significant drop in power and inflation in estimates of

significance.
Noisy Add represents real data better than Decision

Tree. We have described two models that can each

simultaneously account for the shared evolutionary history

among viral sequences, linkage disequilibrium among HLA

alleles, and covariation among the HIV amino acids. Before

proceeding, it is useful to determine which of the two models

better represents the real data. To examine this issue, we

generated synthetic data from the HOMER Gag data according

to (1) the Decision Tree model fit to real data (D DTð Þ), and (2) the

Noisy Add model fit to real data (D NAð Þ). We then applied both

models to both datasets. In general, the model that generated the

data should be the optimal model for performing inference on that

data. We indeed found this to be true in our experiments, but in

addition, we found that the performance of the Noisy Add model

was equivalent to that of the Decision Tree model on D DTð Þ (there

was no detectible difference between the PR curves; p = 0.46),

whereas the performance of the Noisy Add model on D NAð Þ was

significantly better than that of the Decision Tree model

(p,0.0001) (Figure 7). Thus, the Noisy Add model appears to be

better able to capture the relationships in the true data than the

Decision Tree model. Consequently, in what follows, we

concentrate exclusively on the Noisy Add model. We note,

however, that the Decision Tree model is computationally more

favorable and may be useful when resources are limited.
Covariation confounds simple tests. As we have discussed,

there are at least three major sources of statistical confounding for

HIV-HLA association tests: phylogeny (P), linkage disequilibrium

among HLA alleles (L), and covariation among HIV codons (C).

Previous approaches to finding HLA-associated polymorphisms

have accounted for LD but not phylogeny [6], accounted for

phylogeny but not LD [7], or accounted for phylogeny and LD but

not covariation [8–11]. None of the previous approaches

considered HIV codon covariation. To compare the relative

contribution of each of these sources of confounding, we

constructed five models that each account for a subset of the

confounding sources as well as a baseline model that does not

account for any source of confounding:

1. No correction for confounding (MFET). We use Fisher’s exact

test to compute exact p-values for associations between X and Y

assuming X and Y are independent and identically distributed

across individuals.

2. HLA LD only (ML). We use the Noisy Add model where only

HLA-allele attributes are predictors and no correction for

phylogenetic structure is made (achieved by fixing l to be

infinity). This model is similar to the one used by Moore et al.

[6], except that Moore et al. used logistic regression rather than

Noisy Add.

3. HLA LD and covariation only (MLC). We use the Noisy Add

model (where both HLA-allele attributes and attributes

representing other codons are predictors) with no correction

for phylogenetic structure (l set to infinity). This model is

similar to a second model in Moore et al., who suggested

adding other codons as covariates to their logistic regression

model [6]. Bhattacharya et al. later suggested that this

approach could implicitly correct for some of the effects of

the phylogeny [7]. As we shall see, it does when considering

HLA-codon associations, but does not when considering

codon-codon associations.

4. Phylogeny only (MP). We use the univariate model where only

HLA-allele attributes are predictors. This model is the second

method described in [7] and fully evaluated in [21].

5. Phylogeny and HLA LD (MPL). We use the Noisy Add model

where only HLA-allele attributes are predictors. Matthews et

al. [11] used this approach with the Decision Tree leaf

distribution. Also, this model is similar to the approach

described in [8,10], wherein the univariate model in [7] is

followed by an ad hoc post processing step that identifies HLAs

in LD that are most likely to be responsible for immune

pressure.

6. HLA LD, covariation, and phylogeny (MPLC). We use the

Noisy Add model.

Ability to identify direct HLA-codon associations.
Because the primary purpose of previous studies has been to find

HLA-mediated adaptations in the HIV genome, we first looked at

Figure 7. Noisy Add represents real data better than Decision Tree. Synthetic data were generated according to the Decision Tree model fit
to real data (A) and the Noisy Add model fit to real data (B). On both datasets, the Noisy Add model performs at least as well as the Decision Tree
model. In contrast, the Decision Tree model does poorly when applied to data generated from the Noisy Add model.
doi:10.1371/journal.pcbi.1000225.g007
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the ability of these models to recover HLA-codon associations,

ignoring codon-codon associations. Figure 8A shows the precision-

recall (PR) curves for the six methods when run on synthetic data

from the HOMER cohort. These curves indicate that all three

sources of confounding play a significant role, and failure to

account for any one of them leads to a dramatic drop in power.

Although confounding due to both phylogeny and HLA linkage

disequilibrium have been previously recognized [6–8,10,11], these

curves demonstrate the significant confounding effect of codon

covariation. As we have discussed, this observation can be

explained by the failure of the univariate model to distinguish

between direct and one-hop associations. Although both associ-

ations may be considered HLA associations, there are practical

implications to distinguishing a direct association, which is likely to

be the primary (e.g., most common, rapidly selected or necessary)

escape mutation in an HLA-restricted epitope, and an indirect

association, which may (e.g.) compensate for fitness costs

introduced the primary escape mutation or provide further escape

in the context of the primary escape mutation.

It is interesting to note that accounting for phylogeny and

linkage disequilibrium (MPL) does not appear to increase power

over accounting for linkage disequilibrium alone (ML) or even

baseline (MFET), and accounting for all three confounders (MPLC)

has only a modest (but significant, p = 0.009) increase in power

over accounting only for linkage disequilibrium and codon

covariation (MLC). One reason may be the relative homogeneity

of the HOMER cohort (97% clade B), which limits the amount of

power that can be gleaned from the phylogeny. It is important to

note, however, that any unaccounted for structure in the data will

lead to an increased bias in the LRT and thus the q statistic [21].

This effect is seen here in the poor q-value calibration of the

phylogeny-naı̈ve models shown in Figure 8B. Only the models that

account for at least phylogeny and LD (MPLC and MPL) have

calibrated q-values. In contrast, the models that do not account for

phylogeny or linkage disequilibrium grossly exaggerate signifi-

cance.

Ability to identify codon covariation. The fact that codon

covariation significantly confounds HLA-codon association statis-

tics suggests that many of the codons are strongly influenced by

polymorphisms at other positions. Indeed, prediction of covarying

amino acids has a rich literature, with most methods unable to

scale beyond pairs of covarying amino acids or to statistically

account for the shared phylogeny [22,37]. We therefore measured

the ability of MFET, MP, MLC and MPLC to recover codon-

codon associations in addition to HLA-codon associations.

The full Noisy Add model (MPLC) achieves roughly the same

power as it did for HLA-codon associations (<70% recall at 20%

q-value; Figure 8C). In contrast, failure to account for phylogenetic

confounding (MLC) significantly reduced power (p,0.0001),

despite the relative homogeneity of the data. Furthermore,

accounting only for phylogeny (MP), as many codon-covariation

models have proposed [12,20,22–31], performed even worse,

reflecting a tendency to pick up indirect associations. At high

precision (.70%), accounting for only phylogeny improved

performance relative to baseline, though at lower precision

Fisher’s exact test outperformed the more error-prone LRT-based

MP. In addition, the phylogeny-only (MP) and the phylogeny-

naı̈ve (MLC, andMFET) models were extremely poorly calibrated

(Figure 8D), indicating that q-values produced by these models are

misleading. In the following section, where we consider multi-

clade data, we shall see a more dramatic example of this failure.

Thus, these experiments demonstrate the importance of account-

Figure 8. Performance on data generated from the 97% clade B HOMER cohort. Precision-recall (A) and calibration curves (B) of the models
with respect to HLA-codon associations; precision-recall (C) and calibration curves (D) of the models with respect to both HLA-codon and codon-codon
associations. Better precision-recall curves are ones that tend toward the upper right of the plot. Curves with perfect calibration follow the diagonal.
doi:10.1371/journal.pcbi.1000225.g008
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ing for both phylogeny and multivariate covariation when

inferring correlated evolution among codons, even in relatively

homogeneous cohorts.

Results on multi-clade synthetic data. Comparing recent

large cohort studies [8–11] to previous smaller studies [6,7,21]

suggests that more associations can be detected by increasing

sample size, a result directly confirmed by Rousseau et al. [10].

Although substantially increasing the size of existing cohorts may

not be feasible, existing cohorts can potentially be merged

together. One problem with this approach is that different

cohorts typically consist of populations sampled from different

geographical areas that differ substantially in HIV subtype

distributions and ethnic composition (and thus HLA allele

distribution), and the traditional approach of stratifying by clade

and/or demographics defeats the purpose of increasing sample

size. By correcting for the phylogenetic structure of the sequences,

however, we can attempt to exploit the larger sample size of the

combined data. At the same time, we can examine the similarities

and differences among associations in different clades. To do so,

we combined the HOMER and Durban cohorts, yielding a

mixed-clade group of 1144 individuals, with a roughly equal mix

of clades B and C (Figure 9).

As in the previous experiments, we fit the full Noisy Add model

to this combined dataset and then generated synthetic data from

the resulting model. We then attempted to learn back the

associations using the full dataset and then, for comparison, by

stratifying the data and running the Noisy Add model separately

for each clade. As indicated by the PR and calibration curves

(Figure 10), the Noisy Add model successfully accounted for the

heterogeneity in the data, as it remained calibrated and

successfully recovered 80% of HLA-codon associations and 75%

of all associations at 20% FDR. Importantly, the model

demonstrated higher power on the combined dataset than on

the stratified data (p,0.0005 for both HLA-codon associations

only and all associations), indicating that there is shared

information at both the HLA-codon and codon-codon levels and

that power can be increased by merging datasets from disparate

cohorts as long as all three sources of confounding are accounted

for.

We then applied the remaining five models to this mixed-clade

dataset, observing the founder effects demonstrated by Bhatta-

charya et al. [7]. In particular, using either Fisher’s exact test

(MFET) or accounting for LD alone (ML), as proposed by Moore

et al. [6], results in strikingly poor PR curves (Figure 10A) with

calibration plots that indicate it is impossible to achieve greater

than 10% precision (Figure 10B). These results are due to the

founder effects demonstrated in [7] that arise from the fact that

both HLA allele and HIV clade frequencies differ between human

populations in different geographical areas. In contrast, using

phylogeny alone (MP) to account for founder effects, as proposed

by Bhattacharya et al. [7], greatly increases power in the PR curve,

though calibration is still poor. In this case, accounting for LD in

addition to phylogeny (MPL), as proposed by Brumme et al. [8],

only moderately increases power, though it corrects the problem

with calibration. Similar to the results for single clade data,

accounting for LD and codon covariation (MLC) yielded further

improvements in both power and calibration, though we note the

peculiar nature of the PR curve, which indicates that the most

significant associations are spurious. This peculiarity is even more

pronounced when looking at both HLA-codon and codon-codon

associations (Figure 10C). Inspection of the strongest spurious

associations indicates that they are founder effects that serve as

clade markers—meaning the strongest associations simply identify

a sequence as clade B or clade C. Once these markers are

accounted for in the model, the performance of the model begins

to improve (where the right-hand-side of the curve increases with

recall). In contrast, failure to account for any confounding (MFET)

results in a strikingly poor PR curve.

Given the prominent structure of the multiclade data, a natural

solution is to stratify the data by clade, running the phylogeny-

naı̈ve model (MLC) separately on each clade. Although stratifying

the data removes the strongest founder effects, the overall

performance is not significantly different from MLC without

stratification (p = 0.34 for HLA-codon associations and p = 0.09 for

all associations). Nevertheless, it is interesting to note that, in the

HLA-codon case, after the founder effects are incorporated into

the model, the non-stratified version of MLC appears to perform

better than the stratified version, reinforcing the observation that

there are common sites of escape in the two cohorts. Unfortu-

nately, it is impossible to distinguish founder effects from true

signal, limiting the practical value of this approach.

In contrast, accounting for phylogeny with the full model

(MPLC) significantly outperformed both the stratified and non-

stratified versions of the phylogeny-naı̈ve model (MLC) on both

types of associations (p,0.0001 in both cases) and did not suffer

from founder effects. Finally, it is striking that for codon

coevolution, it is better to account only for protein-wide codon

covariation than to use a sophisticated phylogenetic-correction

algorithm that is limited to pairwise associations, especially if the

data can be stratified by gross tree topology (in this case, HIV

clades), although accounting for both phylogeny and codon

covariation is clearly a more powerful approach.

Noisy Add can distinguish among specific leaf

distributions. As discussed in Methods, the Noisy Add and

univariate models incorporate a model of selection pressure for

each predictor attribute that can take one of four forms: escape,

reversion, attraction or repulsion. Furthermore, although escape

and reversion (attraction and repulsion) are negative (positive)

correlations, each process is distinct. So far, we have assumed that

the primary purpose of these studies is to uncover associations at a

codon level, and so ignored the specific leaf distribution learned.

Nevertheless, the leaf distribution may be informative. To

determine how well the model can recover the true leaf

distribution, we compared the leaf distribution of the model

instance used to generate the synthetic data with that learned from

the synthetic data. On the three synthetic datasets we have

Figure 9. Tree built from the combined HOMER (red) and
Durban (blue) cohorts [109]. In the text, ‘‘clade B’’ refers to the
predominately red subtree and ‘‘clade C’’ refers to the predominantly
blue subtree.
doi:10.1371/journal.pcbi.1000225.g009
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discussed (synthetic data generated by Decision Tree and Noisy

Add leaf distributions on the HOMER cohort, and synthetic data

generated with Noisy Add leaf distributions on the combined

HOMER and Durban cohorts), the Noisy Add model recovered

the correct leaf distribution in 85–90% of cases where it recovered

the correct predictor-target pair. It should be noted, however, that

the forward selection scheme used by Noisy Add makes it unlikely

that both complementary processes (escape/reversion or

attraction/repulsion) will be recovered, even if both processes

are present. Thus, when we find (e.g.) an escape association, it does

not preclude the presence of a reversion association.

There is great utility in being able to distinguish between escape

and reversion processes. Escape is an indication of CTL pressure,

whereas reversion in the absence of the allele is as indication of

replicative cost to the escape variant that leads to active reversion

(as opposed to passive drift) in the absence of CTL-mediated

selection pressure. Consistent with these interpretations, Matthews

et al. [11] recently showed that reversion associations but not

escape associations correlate with reduced plasma viral load in

chronic infection. More generally, of course, the biological

interpretation of these distribution forms will vary across domains

of application.

Statistical power as a function of sample and effect

sizes. Previous studies have differed widely in their results, in

part because they employed different methods, and in part because

they used different sample sizes (473 [6], 96 [7], <550 [8], 181

[21], 261–452 [10], and 262–666 [11]), which affects the power to

detect associations. Not surprisingly, the larger studies found more

associations, which suggests even larger studies may be beneficial.

It is important to note, however, that the adverse effects of

violating model assumptions increases with sample size, as

assumption violations lead to deviation from (and statistical

rejection of) the null distribution (see, for example, [58]).

To measure the effects of sample size on the power of the six

methods in consideration, we created additional synthetic datasets

of size 143, 286, and 572 by randomly selecting 12.5%, 25% and

50% of the individuals from the mixed-clade synthetic dataset.

Figure 11 shows the dramatic increase in power that the full Noisy

Add model (MPLC) experiences as a function of N. Here, power is

defined to be the ability to detect associations at 80% precision

regardless of the model’s reported q-value. In the range tested, the

Noisy Add model has an approximately linear increase in the

power to detect associations (HLA-codon and codon-codon

associations combined) as the sample size increases. In contrast,

increasing sample size for the other models has a limited effect. In

particular, failure to account for codon covariation leads to a flat

power curve for all models that do not account for codon

covariation. The model that accounts for codon covariation and

HLA allele LD but not phylogeny (MLC) does experience a linear

increase in power to detect HLA-codon associations (but not

codon-codon associations), though the power is less than that of

the phylogenetically-corrected model (MPLC) at all sample sizes.

Only the full model (MPLC) experiences any increase in power to

detect codon-codon associations. Thus, simply increasing the

cohort size will not lead to an increase in power if improper

models are used. Rather, model calibration is likely to be

negatively impacted as large numbers of spurious (yet non-null)

associations are detected. Similar trends were seen on the

HOMER (clade B only) cohort (data not shown).

Statistical power is a function of sample size and effect size. In

the results just described, the planted associations came from those

detected at 20% q-value on real data at N = 1144. If we instead

Figure 10. Performance on data generated from the mixed-clade B/C dataset. Precision-recall (A) and calibration curves (B) of the models
with respect to HLA-codon associations; precision-recall (C) and calibration curves (D) of the models with respect to both HLA-codon and codon-
codon associations. ‘‘PLC Strat’’ and ‘‘LC Strat’’ refer to running MPLC and MLC , respectively, on data stratified by clade. The curves reflect the
combined results from the two strata.
doi:10.1371/journal.pcbi.1000225.g010
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plant associations detected at 20% on real data at (e.g.) N = 572,

those associations will presumably be stronger and hence the

measured power should be greater. To demonstrate this

supposition, we ran Noisy Add on a random subsample of the

mixed clade cohort, and then generated new synthetic datasets

based on these associations. The dashed blue lines (labeled ‘‘PLC

Half’’) in Figure 11A and 11B show the increased power to detect

planted associations originally found at N = 572 compared to

planted associations originally found at N = 1144. Thus, if

associations of the strength detected by Brumme et al. [8]

(N<550) are desired, then N = 1150 will provide sufficient power

to recover 90% of the associations. If, however, more subtle effects

are sought, then larger cohorts are necessary. It is our opinion that

only post hoc analyses of larger cohorts will determine the

minimum relevant effect size. Furthermore, it should be noted

that, whereas power can be increased by combining data from

multiple cohorts, if only associations for a single cohort are of

interest, then greater power will clearly be achieved from a single-

clade cohort of size N than from a multi-clade cohort of size N.

Nevertheless, the power increase from combining cohorts of

different clades will prove useful in situations where single-clade

cohorts cannot be expanded in practice.

Phylogenetic Dependency Network for Gag p17 and p24
Having established the Noisy Add model’s ability to reliably

recover associations in mixed clade datasets, we now turn to an

analysis of the actual associations that were recovered on the

mixed clade B/C data. The Noisy Add model found 149 HLA-

codon associations and 1386 codon-codon associations at q#0.2,

representing 100 distinct HLA-codon pairs and 716 distinct

codon-codon pairs. To explore these dense networks we developed

a dependency-network viewer, PhyloDv, designed for intra-protein

networks. PhyloDv draws the protein as a circle, with the N-

terminus at the ‘‘3 o’clock’’ position and the protein extending

counter-clockwise around the circle. Codon-codon associations are

drawn as headless arcs (or edges) within the circle, whereas HLA-

codon associations are drawn as external edges. Edge color reflects

the strength of the association. Figure 12 shows the full Gag

dependency network at 20% q-value. The program, which

includes interactive detailed views of each codon to explore the

specific associations, is available upon request. The individual

associations are available as Table S1.

The dense PDN reveals broad patterns of codon covariation

and HLA-mediated substitutions. For example, pairs of codons are

more likely to covary within a subprotein (N = 528) than between

subproteins (N = 188; p,10231), and a disproportionate number

of p17 codons (24%) are associated with HLA alleles than are p24

codons (13%; p = 0.009). Not surprisingly, a disproportionate

number of covarying codons were within 10 positions of each

other (162/716; p,10255). (We compute p-values by using Fisher’s

exact test to estimate the significance of a contingency table that

compares observed associations against null codon pairs, which we

define to be the set of all codon pairs that were not called

significant by the PDN but which did pass the minimum count

pre-processing filter.)

Interestingly, of the 62 codons that are associated with at least

one HLA allele, 59 (95%) predict substitutions at other codons.

Furthermore, on average, each HLA-associated codon predicts

substitutions at 7.0 other codons on average (range 0–25). These

two observations highlight the complexity of HLA-mediated

escape. Also of note is that, of the 181 codons that covary with

at least one other codon, 60 (33%) have an association with at least

one HLA allele, suggesting that HLA-mediated selection pressure

will confound codon coevolution when unaccounted for.

Among the 68 HLA-codon associations with escape/reversion

leaf distributions, 33 represent escape/reversion from a residue

that is consensus in both clades B and C, 7 represent escape/

reversion from clade B consensus only, and 11 represent escape

from consensus C only, where we define clade B consensus based

on the HOMER cohort and clade C consensus based on the

Durban cohort. Interestingly, of the 11 clade C susceptible

associations, 5 had predicted resistant forms matching clade B

consensus (A*29 F79Y, A*68 F79Y, B*35 D260E, A*11 F301Y,

B*44 D312E), and 2 of the 3 clade B susceptible associations had a

predicted resistant form matching clade C consensus (A*01 Y79F,

A*31 R91K). In all, there were 21 HLA-codon associations for

which the predicted resistant form was clade B or C consensus

(Table 1). These associations may represent instances in support of

the ‘‘HLA footprinting’’ hypothesis, which states that the current

circulating viral sequences are a reflection of escape from

prominent HLA alleles in different human subpopulations

[6,59]. Indeed, 17 of these 21 associations involved common

HLA alleles that are found in at least 10% of individuals in at least

one of the two cohorts (Table 1). Four of these 21 associations lie

Figure 11. Power to detect both HLA-codon and codon-codon associations (A) or just HLA-codon associations (B) in the mixed-
clade cohort at 80% precision. The ‘‘PLC Half’’ curve plots the power of MPLC on synthetic data generated using only associations that were
identified from a cohort one half the size of the full cohort. The curves show how power is affected by the strengths of the planted associations.
doi:10.1371/journal.pcbi.1000225.g011

Phylogenetic Dependency Networks for HIV Gag

PLoS Computational Biology | www.ploscompbiol.org 14 November 2008 | Volume 4 | Issue 11 | e1000225



in optimal epitopes, which is reasonable given that such responses

are less likely to be identified using overlapping peptide scanning

technologies that seek to maximize consensus sequence coverage.

In three of those four optimal epitopes, the predicted susceptible

form matches the optimal epitope. B*07-associated S357G is the

one exception, where G is both clade B and C consensus and is

also the amino acid in the optimal epitope sequence. This

association may represent an instance where the so-called optimal

epitope was actually a partially escaped form. It is interesting to

note however that B*07 is a very common allele in both the

HOMER and Durban cohorts and, in one recent study, all studied

optimal B*07 epitopes in Gag, Pol and Nef were found to contain

at least one association predicting that the optimal epitope actually

contained an escape polymorphism [60].

As noted in the synthetic results, Noisy Add can distinguish with

85% accuracy the difference between reversion and escape leaf

distributions (though it cannot discern whether both are present).

On the current dataset, 5 HLA-codon associations were identified

as primarily reversion: B*14 K302, B*15 K26, B*57 T242, B*58

G55, and B*81 L184. These associations most likely have a

corresponding escape association that we are not detecting, but

these associations are nonetheless notable in that there is a strong

statistical pull towards the ‘‘susceptible’’ form in the absence of the

associated allele, which may suggest that fitness costs are associated

with the resistant form [4,11,46]. Indeed, in the case of T242, the

resistant form N242 is known to reduce in vitro fitness [39,46].

Known escape pathways are predicted by the PDN. In

some cases, CTL escape requires a set of secondary substitutions

that may stabilize protein structure, compensate for lost protein

function, or facilitate further escape [38–40,61–66]. To date,

however, the identification of such complex pathways has been

largely limited to studies of single immunodominant epitopes

restricted by HLA alleles that are known to be protective against

infection. The PDN systematically predicts potential escape

pathways across all epitopes and HLA restrictions. Here, we

assess the quality of these predictions by checking to see whether

well-studied escape pathways are found in our PDN.

The first HIV escape pathway that was described in detail is

escape from the B*27-restricted KK10 epitope in p24 Gag 263–

272 [61,67]. In the mid 1990s, it was demonstrated that the

R264K/G mutations abrogated B*27 recognition of the KK10

epitope [67,68]. Here, we find that B*27 is strongly correlated with

escape from R264 (Noisy Add q = 0.01), with the result being

evenly distributed between K (q = 0.08) and G (q = 0.11). Kelleher

Figure 12. Gag phylogenetic dependency network for combined HOMER and Contract cohorts. Gag p17 and p24 are drawn
counterclockwise, with the N-terminus of p17 at the 3 o’clock position. Arcs indicate association between codons (inside the circle) or between HLA
alleles and codons (outside the circle). Colors indicate q-values of the most significant association between the two attributes.
doi:10.1371/journal.pcbi.1000225.g012
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et al. later reported that the R264K but not R264G mutation was

typically preceded by L268M. Accordingly, in the PDN, we find

that L268M predicts R264K (q,0.001) but not R264G, and that

L268M is itself predicted by B*27 (q = 0.001). Kelleher et al. also

reported that the R264G was associated with E260D, and

Schneidewind et al. [41] confirmed that E260D compensates for

R264G but not for R264K. We find the same association in the

PDN. (Note that, although E is clade B consensus and D is clade C

consensus, every individual in both cohorts with G264 has D260).

Recently, Schneidewind et al. demonstrated that S173A

compensates for the loss of replicative capacity incurred by

R264K [38]; this R264K substitution (but not R264G) is strongly

associated with S173A in our model (q,0.001). In addition, we

note that R264K is strongly associated with substitution I267V

(q,0.001) within the KK10 epitope and with L215M (q = 0.01).

Residue 264 is within 3 angstroms of both codons 215 and 173 in

folded p24 [69], which may explain the compensatory relationship

between codons 173 and 264 [38] and predicts a similar

relationship between codons 264 and 215.

Finally, although it is not known if there are any determinants

that predict whether KK10 escape occurs via the R264K or

R264G pathway [41], we find several associations that predict one

pathway or the other. Most strikingly, of the 7 individuals with

R264G, 4 have Q136R (q = 0.0001), a substitution which also

strongly predicts the D260E substitution of the R264G pathway

(q,0.001). In addition, A146P is associated with maintaining wild

type L268 (not the R264K pathway) whereas A163X predicts

I267V (R264K pathway). Both A146P [52] and A163X [40] are

B*57-mediated escape substitutions (see below), though no

individuals in the cohorts are both B*57 and B*27 positive,

making interpretation difficult.

The B*57 and B*5801 alleles have been strongly associated with

effective HIV control [70–73], an effect that may be due in part to

successful targeting of Gag epitopes [44] and the high cost to viral

load of CTL escape from some epitopes targeted by these alleles

[39,74]. Recently, the details of escape from the B*57-restricted

TW10 epitope in Gag codons 240–249 have been described

[3,39,74]. TW10 escape begins with a T242N escape mutation,

which partially abrogates B*57 binding, but also elicits a

measurable fitness cost to the virus in part by disrupting

cyclophilin A (cypA) interactions [74]. The fitness costs of this

mutation may be partially restored by compensatory substitutions

H219Q, I223V and M228I [39]. This escape pattern is captured

by the dependency network, which finds a direct HLA-codon

association between B*57 and 242 (q,0.001). The T242N

substitution predicts (q,0.001) further escape at G248A (position

9 of the TW10 epitope) and a single compensatory mutation at

codon E210D (q = 0.01) in the CypA binding loop, whereas the

G248A substitution predicts compensatory substitutions V218A

(q = 0.02) and M228V (q = 0.08), and G248T predicts H219Q

(q = 0.07) and M228I (q,0.001), of the CypA binding loop.

Although 228 is (in at least some structural models) in direct

contact with 248 (3 angstroms) [69], the other associations are

more distant (10–20 angstroms). Nevertheless, the CypA substitu-

tions have been shown to compensate for the 242 and 248

mutations [39], underscoring the fact that compensatory muta-

tions may be of a more functional nature and not strictly due to

protein structural constraints.

Table 1. HLA-codon associations in which clade B and/or clade C is the predicted resistant form.

Consensus HLA Freq (%)

HLA Pos Susc Res B C B C Optimal

A*01 76 R K K K 23.5 9.9

A*01 79 Y F Y F 23.5 9.9

A*11 93 X E E E 12.3 0.3

A*11 301 F Y Y F 12.3 0.3

A*24 30 K R R M 19.2 5.4 KYKLKHIVW

A*29 79 F Y Y F 8.4 15.5

A*30 67 X A S A 5.2 34.1

A*31 91 R K R K 8.0 0.9

A*68 79 F Y Y F 9.3 24.2

A*74 109 X N N N 0.3 9.9

B*07 357 S G G G 23.1 9.9 GPGHKARVL

B*14 147 X I I I 6.5 5.5

B*15 28 X K K H 18.8 34.8

B*15 147 X I I I 18.8 34.8

B*35 260 D E E D 16.9 3.6 PPIPVGDIY/NPVPVGNIY

B*42 30 X R R M 0.4 22.4

B*44 312 D E E D 19.5 14.9 AEQASQDVKNW

B*57 54 A S S S 6.4 9.5

B*81 163 X A A A 0.1 11.8

C*06 146 P A A A 13.7 28.3

C*06 242 N T T T 13.7 28.3

Bold lines match optimal epitopes. X indicates no significant association.
doi:10.1371/journal.pcbi.1000225.t001
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Previous studies have reported alternative escape pathways in

the A*02-restricted SLYNTVATL epitope (Gag positions 77–85)

at epitope positions 3, 6, and 8 (though the Y79F escape at epitope

position 3 is clade C consensus) [65]. Although the model finds

associations with three HLA alleles that restrict known epitopes

that overlap this region (A*01, A*11, A*29), no correlations were

observed with A*02. The lack of signal may be due to several

factors that will each dilute the signal: multiple escape pathways

that occur in different sites, dilution from the overlapping epitopes

for which there is a stronger signal, and evidence that a lack of

fitness cost will lead to low rates of reversion [65], which, coupled

with the high rate of A*02 in the population (40.5% in the

combined cohort), suggests that many non-A*02 individuals will

have escape variants.

Codon covariation reflects three-dimensional protein

structure. In the first study of its kind, Poon and Chao [35]

reported that 70% of artificially induced, fitness-reducing

mutations selected for partially restoring compensatory

mutations in the DNA Bacteriophage wX174. No studies have

systematically explored this phenomenon for immune escape in

HIV Gag or other viruses, but the case studies of B*27 KK10 and

B*57 TW10 make it clear that compensation happens in response

to at least some CTL escape mutations. Poon and Chao further

reported that compensatory mutations tended to cluster in linear

and/or three-dimensional space, though many exceptions were

noted. Indeed, the KK10 and TW10 case studies reveal two

patterns of compensation: distal compensation in the case of TW10,

where compensatory mutations are distal in three-dimensional

space but alter functional dependencies, and proximal compensation in

the case of KK10, where codon pairs in a compensatory pathway

are in close proximity and are likely required to maintain

structural fidelity. Although the PDN predicted both known

pathways, only the latter form of compensation can be easily and

independently verified computationally by computing distances

between covarying codon pairs.

To determine the proportion of covarying codon pairs that are

in direct contact, we computed codon-codon distances against the

p17 trimer crystal structure [75] and the p24 and p17p24

polyprotein NMR structures [69]. The distances were computed

as the minimum distance between any reported atoms for each

codon in a single PDB model, taken over all models and all three

structures. The distances for the p17 trimer crystal structure

tended to be farther than for the p24 and p17p24 NMR structures

as hydrogen atoms, which tend to be on the periphery of amino

acid molecules, are not mapped in crystal structures. To compute

the significance of the results, we also computed three-dimensional

distances among null codon pairs, which we defined to be all codon

pairs for which no significant direct associations were found even

though both codons exhibited enough variability to pass our

minimum count filter.

Among the 424 significant (q#0.2) linearly distal codon pairs (.10

codons apart) that could be mapped to at least one structure, 37

(8.7%; p,10211, Fisher’s exact test against null codon pairs) were

within 5 Å of each other and 113 (26.7%; p,10220) were within

10 Å. Even among linearly proximal codon pairs (2–10 codons

apart), covarying pairs were more likely (75/121; 62%) than non-

covarying pairs (1075/2417; 44%) to be within 5 Å in the three-

dimensional structure (p = 0.0001).

To further validate the ability of the model to distinguish direct

associations within a chain of interactions, we computed pairwise

distances among all linearly distal one-hop associations, excluding

instances where a direct association was also inferred. The median

distance between direct association codon pairs (15.9 Å) was

significantly smaller than the median distance between one-hop

codon pairs (19.2 Å, p,0.0001). The direct codon-codon

associations were also significantly closer than those of MLC

(median 18.4 Å, p = 0.003; 5.3%,5 Å, p = 0.04), which doesn’t

account for phylogeny, and MP (median 21.8 Å, p,10212;

3.2%,5 Å, p,1025), which computes pairwise, phylogenetically-

corrected associations. Fisher’s exact test (median 22.1 Å) was

indistinguishable from the null codon pairs (median 22.9 Å,

p = 0.63).

The complete set of distances is reported as Table S2. It should

be noted that long range distances do not preclude a compensa-

tory relationship, as long range effects are common [35] and both

p17 and p24 form complexes, suggesting that some structural

compensations may exist at the interface between two instances of

the same protein. Nevertheless, those codon pairs for which we

observe both strong dependencies and colocalization in the three-

dimensional structure are strong candidates for further study with

regards to compensation.

Codon covariation reflects correlated epitope

targeting. The epitopes targeted by CTL are not a simple

function of the individual’s HLA repertoire. Rather, specific

patterns of epitope targeting are often observed. For example,

epitope targeting by CTL often follows patterns of

immunodominance [76], wherein initially only one or a few

epitopes (the dominant epitopes) are strongly targeted by the T-cell

response. However, a shift in immunodominance patterns occurs

over the course of infection, as the T-cell response broadens to

target additional epitopes [77,78]. Given that patterns of

immunodominance appear to be largely consistent at the

population level in at least some cases [3,60,79,80], the

sequential selection of escape mutations restricted by the same

HLA allele that results from sequential targeting of HLA-restricted

epitopes over the course of infection may also be reflected as

patterns of codon covariation. In the case where escape is

sequential, escape in subdominant epitopes may be better

predicted by escape in dominant epitopes than by the presence

of the restricting HLA allele. To use the immunodominant B*57

allele as an example, the earliest and most frequently targeted

B*57-restricted epitope is TW10 [70]. TW10, however, is not the

only B*57-restricted Gag epitope. Other epitopes exist in codons

162–172 (KF11) [40], 147–155 (IW9) [52], and 308–316 (QW9)

[51]. Recent results indicate that TW10 tends to escape most

rapidly, followed by IW9 then KF11 [60] (QW9 was not studied).

On the combined Durban-HOMER dataset, the dependency

network predicts direct HLA-codon associations between B*57

and codons in TW10, IW9, KF11 and positions 54–62, which

we’ll refer to as putative pSG9 epitope, as well as striking codon

covariation. For example, the antigen-processing escape A146P

[52] (one codon upstream of the IW9 epitope) is predicted by both

the presence of B*57 and the presence of the T242N TW10 escape

mutation, suggesting that escape in IW9 often occurs in the

context of escape in TW10 (but not always, as indicated by the

direct B*57-146 association). Similarly, A163G KF11 escape is

predicted by escape substitutions T242N (TW10) and I147M

(IW9), and lack of escape at 310 (QW9), reflecting previous reports

of the targeting order of Gag B*57-restricted epitopes [40,60,70],

whereas pSG8 escape is correlated with escape at TW10, IW9 and

QW9.

It is important to note that the order in which direct escape

associations arise cannot be inferred from the PDN. Rather the

presence of arcs between epitopes suggests that targeting of

epitopes restricted by the same allele is somehow correlated.

Immunodominance is one biological mechanism that may induce

such CTL-mediated codon covariation. Another may be the overall

strength of the CTL response and/or the strength of the CTL
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response to epitopes targeted by a given allele. In the most

extreme example, epitopes are either targeted or not depending

on the strength of the immune system. Individuals who are

targeting the epitopes will tend to select for escape mutations in

all the epitopes, whereas individuals who have weakened immune

systems may not target any of the epitopes (or will target with less

strength). In this scenario, escape from epitope A implies that the

immune system is active, thus increasing the likelihood of escape

from epitope B, and vice versa. In a less extreme example,

suppose that some individuals with a given allele mount a

response to epitopes restricted by that allele, whereas other

individuals do not. This situation will lead to codon-codon

dependencies among associations in epitopes restricted by the

allele. In addition, several studies have noted the accumulation of

multiple or alternative escape substitutions within the same

epitope [8,10,21,38,40,41,46,65,81,82]. We would therefore

expect to see codon-codon dependencies within the same epitope

as well.

To determine how much of the observed codon covariation

may be CTL-mediated, we looked at covariation in the PDN with

regard to known, optimally defined epitopes. Among linearly

proximal codon pairs, both co-evolving codons were within the

same HLA-restricted optimal epitope 138 of 162 times (85.2%,

compared to 72.0% of null codon pairs; p = 0.0002). 213 of 554

(38.4%; p = 0.003) linearly distal codons pairs occurred within

different optimally-defined epitopes restricted by the same HLA

allele (compared to 32.3% of null codon pairs). If we also include

predicted epitopes, defined here as the region 65 codons from a

direct HLA-codon association, then 304 (54.8%; p,10217) linearly

distal codon pairs are in known or predicted epitopes restricted by

the same HLA allele (compared to 36.6% of null codon pairs). We

thus conclude that a majority of codon covariation in Gag p17/

p24 is attributable to CTL-mediated selection pressures, though

the specific mechanism of CTL-mediated covariation cannot be

identified from this study.

Direct HLA-codon associations map to known

epitopes. The observation that a majority of codon-codon

associations occur within or proximal to epitopes restricted by the

same HLA allele suggests that CTL escape is driving much of the

observed HIV codon variation. Indeed, Brumme et al. [60]

recently showed that at least 36% of observed Gag substitutions in

acutely infected individuals are due to HLA-associated

polymorphisms (possibly including indirect associations), a

proportion that may increase once the full PDN is considered. It

may therefore be surprising that there are only 100 direct HLA-

codon associations. The synthetic studies showed that the Noisy

Add model can successfully recover the primary escape mutations

and is not prone to hallucinating indirect associations, indicating

that we can assume the direct–indirect distinction with some

confidence. Thus, there appears to be a dense network of

correlated escape among epitopes, with a relatively sparse set of

primary escape mutations that are most rapidly and/or most

frequently selected for. Teasing apart the underlying causality and

accuracy of this network requires a large number of longitudinal

samples and laborious experimental data. Nevertheless, the

accuracy of the PDN can be approximately tested by evaluating

which associations lie in optimal epitopes. Specifically, if the PDN

is accurate, then direct associations are more likely to lie in or near

epitopes than are one-hop associations (HRB in the HRARB

chain, where HRB is not directly inferred by the algorithm). Thus,

we categorized every direct and one-hop association based on

whether or not it was within three codons of an optimally-defined

epitope, using a strict matching criterion that required that an

optimal epitope exactly matched the consensus sequence among

either clade B or clade C HIV sequences that had the predicted

susceptible amino acid and the codon in question.

Figure 13 shows the number of in-epitope associations found as

a function of the q-value rank of the association. To prevent

double counting, only the most significant association per HLA-

epitope pair was considered (see Methods). The plots suggest that

direct associations may be more likely than one-hop associations to

lie in epitopes, although the difference is not statistically

significant. Given that most codon-codon covariations are between

epitopes restricted by the same allele, it should not be surprising

that many one-hop associations lie in epitopes. We thus

additionally plotted only those one-hop associations that did not

lie in an optimal epitope that was already predicted by a direct

association (Figure 13, clean one-hop). Only four such associations

were found with q#0.4 (p,0.0001 compared to direct associations

with a permutation test), indicating that most of the one-hop

epitopes were epitopes that additionally had direct associations. It

is therefore not surprising that MPL, which fails to account for

codon-codon covariation, identified escape mutations within

almost as many optimal epitopes as the full model MPLC

(Figure 13).

We further compared the HLA-codon associations of the other

three models to the optimal epitopes. OnlyML andMFET, which

fail to account for both phylogeny and codon covariation and are

thus quite prone to founder effects [7], performed significantly

worse than the other models (p,0.0001). The models that roughly

account for clade differences, either through codon covariation

(MLC) or phylogeny (MP), performed slightly worse than the full

model, though these differences were not significant.

Discussion

This study presents the first approach to simultaneously account

for viral phylogeny, codon covariation, and HLA linkage

disequilibrium in population-based association studies. It is also

the first large scale multiclade analysis of HLA-mediated escape in

HIV-1, as well as the first approach that simultaneously accounts

Figure 13. Number of associations in optimal epitopes as a
function of q-value rank.
doi:10.1371/journal.pcbi.1000225.g013
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for HLA linkage disequilibrium, HIV ancestral relationships, and

codon covariation. The large number of direct HLA-codon

associations confirms a substantial role of the HLA-restricted

CTL response in driving HIV evolution, and supports the

observation that patterns of HIV evolution are broadly predictable

based on host immunogenetic profiles [6–10,83]. Moreover,

results demonstrate that escape and reversion mutations often

arise in the context of a complex set of correlated substitutions that

reflect both compensatory mutations and dependencies among

epitopes. On the whole, the phylogenetic dependency network

predicts that a major proportion of p17 (41%) and p24 (20%)

codons are under selective pressure from at least one HLA allele, a

result that confirms a dominant role of T-cell responses in driving

viral evolution [3,5,83].

This study also represents a significant step forward by

providing a statistical approach that can help differentiate direct

(HRA) HLA escape polymorphisms from indirect or, more

specifically, one-hop (HRB) escape polymorphisms in situations

where the true interaction is the chain HRARB. Although the

direct–indirect distinction can arise under several mechanisms, the

explicit statistical interpretation is as follows: a direct HLA-

polymorphism HRA association means the HLA allele H is a

strong predictor of the polymorphism A, whereas an indirect HLA-

polymorphism association HRARB means the polymorphism B is

better predicted by the polymorphism A than by the HLA allele H.

Although B is in a sense HLA-associated, the distinction of direct

versus indirect associations may have important biological

implications. For example, many of the indirect associations

identified by the dependency network for the B*57-restricted

TW10 and B*27-restricted KK10 epitopes are consistent with

known compensatory mutations associated with escape in these

epitopes [38,39]. In addition to these described pathways, the

dependency network reports a number of covarying amino acids.

Many of these are in close physical contact, and thus likely

candidates for compensatory pathways that can be tested via in

vitro replication capacity assays, although distal covarying codons

may also exhibit compensatory relationships [32–36]. Under-

standing the specifics of compensatory-based covariation has

important implications for T-cell-based vaccine design, as escapes

that require multiple compensatory mutations may take longer to

arise due to chance and the compensatory mutations may not

completely recover lost fitness [3,38,39,41].

Compensation is not the only potential causal mechanism of

codon covariation. Other mechanisms include those associated

with CTL-mediated covariation. Indeed, the PDN indicates that

up to 50% of the observed codon-codon covariation occurs

between epitopes restricted by the same HLA allele, suggesting

much of the observed codon covariation in HIV is CTL-mediated.

Two possible mechanisms of CTL-mediated covariation include

inter-patient variability in the immune system’s ability to target

epitopes and consistent patterns of epitope targeting due to

immunodominance. Distinguishing between these two mecha-

nisms may have direct relevance to vaccine design, but will require

comparing the results of the PDN to clinical response data that can

measure epitope targeting and longitudinal samples that can

identify order of escape. Although it is well known that the order in

which the epitopes of some HLA alleles are targeted is broadly

consistent [60,80,84], identifying new patterns may yield new

vaccine candidates. Specifically, it is possible that HLA alleles that

are currently considered non-protective target ineffective domi-

nant epitopes during acute infection. Redefining the immunodo-

minance hierarchy via immunogen exposure may thus increase

the effectiveness of these alleles upon subsequent HIV challenge

[85].

A major challenge to vaccine design is global HIV diversity

[15,16]. Although there is accumulating evidence that suggests

that patterns of escape appear to be broadly predictable [5,6,8–

10,86], these studies have been limited to relatively small sample

sizes or cohorts consisting predominantly of a single clade.

Although a comparison of the Durban and British Columbia

results showed instances of both consistency and divergence of

associated escape in the two clades [10], these studies were run

separately, did not account for codon covariation, and used

different methods for determining associations. Thus, the extent to

which escape pathways are shared across clades was largely

unknown. Our results, which reflect data equally distributed

between clade B and clade C sequences and are evaluated by

taking HLA LD, viral lineage and codon covariation into account,

confirm the existence of common escape pathways. This similarity

suggests that a broadly reactive vaccine may be possible, though

more work to further characterize inter-clade similarities and

differences will be necessary.

Despite the broad similarities seen between clades B and C, we

noted several intriguing examples where the resistant form of an

epitope matched the consensus sequence for one of the clades.

Such examples support the HLA footprinting hypothesis [6,59],

which proposes that consensus sequences of circulating strains in a

population are a result of consistent escape (and lack of reversion)

from the most common HLA alleles in that population, an

hypothesis that is especially well founded in cases where the

consensus polymorphisms are different in different populations.

For example, 53% of individuals in the British Columbia cohort

[9] have A*01, whereas only 24% of the Durban cohort [10,44]

have A*01, and F79 (clade B consensus) is the resistant form of the

association. Furthermore, alleles A*29 and A*68 have higher

frequencies in the South African cohort, and Y79 (clade C

consensus) is the resistant form of their associations. Thus, at

codon 79, there appears to be broad selection pressure for

evolutionary fixation of F in the South African cohort and fixation

of Y in the British Columbian cohort. Our analyses identified a

total of 21 codons (four with independent experimental support

[51]) where the predicted escape matched clade B or C consensus,

adding support to the hypothesis that CTL pressure serves a

broad, population-level role in shaping HIV evolution, and may

even serve a key role in clade differentiation [6].

We have focused this study on the highly immunogenic Gag

p17 and p24 proteins, which are believed to serve a key role in

effective control of HIV [44,87–89]. Moving forward, it will be

important to extend such studies to full length genomes, where

patterns of covariation may reflect cites of protein-protein

interaction [22,90,91] and may further reveal broad patterns of

immunodominance. Furthermore, as the number and diversity of

large cohorts of HIV-infected, HLA-typed, individuals continue to

grow [6,9,10,44,86], it will be important to combine datasets in

order to increase statistical power and further detail the similarities

and differences among clades that may inform broad-coverage

immunogen design.

One limitation of our two-clade study is that, because the HLA

data in the HOMER cohort had only 2-digit resolution, we

truncated the HLA data in the Durban cohort to 2 digit types as

well. Although closely related HLA alleles often target the same or

similar epitopes [51], making 2-digit resolution an appropriate

choice for some allele-epitope pairs, important differences do exist.

An example is the distinction between the B*5801 allele that is

associated with effective viral control, and B*5802 which is

associated with poor viral control [73,92]. In cases where the

prevalence of four-digit resolution types differs substantially

between cohorts (as is the case with B*58) and the four-digit types
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target different epitopes, truncation to two-digit types before

combining cohorts will lead to confounding in which the two-digit

types from one cohort will tend to lead to escape whereas the two-

digit types from another cohort do not. In principle, a better

approach would be to include both 2-digit and 4-digit HLA alleles

(or any other grouping of alleles) as predictor attributes in our

model. For example, if all B*57 alleles select for the same escape

mutation, then B*57 would be chosen by the model as a stronger

predictor than B*5701, whereas escape mutations selected only by

B*5701 would lead to the 4-digit allele being chosen. Of course,

these facts should encourage researchers to perform high

resolution typing on individuals in their cohorts. In addition,

Listgarten et al. [93] have developed a statistical approach for

inferring high resolution HLA alleles from low resolution

haplotypes. Although incorporating the uncertainly of those

predictions into the PDN is beyond the scope of this paper, the

ability to infer high resolution HLA data will allow for more

effective evaluation of large, multi-cohort studies.

The comparative method has long been used to generate

hypotheses regarding traits and the environment [12–14]. Because

(quasi-) species share a common history, the inherent population

structure (in this case, the phylogeny) must be accounted for [18],

and numerous methods that do so have been proposed (e.g.,

[12,13,94] and references therein). Our study on HLA immune

escape mutations suggests, however, that simply accounting for

population structure is not enough, as HLA linkage disequilibrium

(structure among environmental predictors) and codon covariation

(structure among target traits) are at least as important as

phylogeny in both increasing statistical power and avoiding false

positives.

This issue is relevant to applications beyond those studied here.

Specifically, whenever chains of interactions are common, pairwise

methods will tend to identify direct as well as indirect correlations.

This effect was most dramatically seen in the synthetic codon-

covariation tests, in which using a logistic regression-like approach

(which accounts for chains) dramatically outperformed the

phylogenetic pairwise approach. Although many phylogeny-aware

comparative methods have been developed for codon-covariation

[22], the problem of chains of interactions has only recently been

addressed [37,95]. The PDN provides an efficient framework in

which chains of interactions can be identified in the context of

both the phylogeny and confounding from external sources of

selection pressure (here, HLA-mediated CTL response).

The first approach to identifying chains of interactions in a

phylogenetic context was recently provided by Poon et al. [37].

They employed a directed acyclic graphical (DAG) model rather than a

dependency network. In a DAG model, arcs from predictor to

target attributes form a directed acyclic graph and local

distributions take the same form as in a PDN. (A DAG model is

often referred to as a Bayesian network, although the latter name is

misleading as non-Bayesian procedures can be used to construct

DAG models.) When learning the distributions in the DAG model,

Poon et al. took phylogeny into account, although in a way

different from our approach. In particular, when learning the

distribution of an attribute given its parents in the DAG model,

they imputed for each individual the value of the attribute

corresponding to the ancestor of that individual in the phylogeny.

These imputed values were then treated as observed data and fed

to a standard DAG model structure learning algorithm.

The PDN provides an alternative approach that leverages the

strengths of dependency networks. The most apparent difference is

that dependency networks allow cycles, resulting in a network that

is easier for the non-expert to interpret than is the DAG model

[43]. In addition, Poon et al. used unrestricted local distributions

in contrast to our use of Noisy Add. The use of Noisy Add, where

the number of parameters is linear in the number of parents rather

than exponential, results in a substantial increase in power. Finally,

because the PDN is concerned only with local probabilities, only

the target variable is conditioned on the phylogeny, allowing the

PDN to efficiently model associations with attributes, such as HLA

alleles, that are not expected to follow the phylogeny, as well as

attributes, such as other codons, that are expected to follow the

same phylogeny [21]. The result is an efficient method that can

simultaneously incorporate a diverse range of selection pressure

attributes.

One drawback of a dependency network relative to a DAG

model is that the local distributions among the target attributes

overlap and yet are learned independently. (For example, the local

distribution for A given B and the local distribution for B given A

are closely related, yet are learned independently.) This indepen-

dent learning leads to a decrease in statistical efficiency. In

practice, however, this decrease is typically minimal [43]. Another

drawback of a dependency network is that the presence of cycles

make inference of the joint distribution cumbersome, requiring an

inefficient modified Gibbs sampling procedure to estimate the joint

likelihood [43]. One possible solution is to modify the method for

constructing a PDN to yield a DAG model. In particular, we can

choose a random ordering for the attributes, and then build a

PDN wherein the allowed predictors of a target attribute are only

those that precede the target attribute in the ordering. The

resulting collection of local probability distributions defines a DAG

model (where acyclicity is guaranteed by the ordering constraint).

The resulting model can be improved substantially by applying the

above procedure to a dozen or so random orderings, and then

choosing the best model according to some criterion (e.g., a

Bayesian criterion or cross validation) [96]. The resulting DAG is a

generative model that can be used to perform inference on the

joint distribution.

The purpose of conditioning each target attribute on

phylogeny is to account for population structure that renders

some sequences naturally more similar to each other. In the case

of comparative genomics across (quasi-) species, a phylogeny is a

reasonable model of the population structure. Even among

individuals of the same species, a phylogeny may be a good

representation of the structure, insofar as the structure reflects a

hierarchical clustering of the individuals that may be due to a

number of genetic and environmental factors [21,97,98]. It may

prove useful, however, to extend the spirit of the PDN to non-

phylogenetic models of population structure. For example, in

genome wide association studies (GWAS), a number of recent

approaches have been described that use models of population

structure that are richer than a hierarchical cluster [99–105].

Most of these methods focus on pairwise comparisons, though

methods for more complex interactions also exist (see e.g. [106–

108]). Dependency networks that use appropriate models of

background structure coupled with Noisy Add and forward

selection may allow simultaneous correction for population

structure and interacting complex traits.

Conclusion
We have introduced phylogenetic dependency networks for

modeling multiple sources of selection pressure on evolutionary

traits, and have applied this approach to the characterization of

patterns of immune escape in HIV. In so doing, we have identified

broad patterns of covariation and CTL adaptation, the verification

of which should broadly inform vaccine design. Although the

specific distributions described here may not be suited for all

applications, dependency networks that are conditioned on
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appropriate models of population structure are widely applicable,

and represent a powerful tool for efficiently combining multiple

effects in population-based analyses. The programs used in this

paper are available at http://www.codeplex.com/MSCompBio.
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