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ABSTRACT

This paper presents a game-model of a gym training system,
where the behavior of the system is specified using languages
developed originally for reactive system design, which drive
a game engine. The approach makes it possible to describe
behaviors of different parts of the system using different re-
active system design languages and tools. It thus provides a
framework for integrating the model behavior to obtain an
executable game-model of the entire system. Among the ad-
vantages of this approach is the ability to use existing anal-
ysis tools to understand the game behavior at design time
and run time, the ability to easily modify the behavior, and
the use of visual languages to allow various stakeholders to
be involved in early stages of building the game. Finally, we
suggest integrating future games and game design methods
into the emerging field of biological modeling, to which re-
active system design has recently been successfully applied.

Categories and Subject Descriptors
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1.6 Simulation and Modeling
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1. INTRODUCTION

Software engineering and scientific modeling use powerful
methods and tools for specifying, simulating and analyzing
complex reactive systems, such as cellular phones, interac-
tive software and automotive systems. Such systems main-
tain an ongoing interaction with their environment, rather
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than merely accepting inputs and producing results upon
termination [20]. Some of the main goals in reactive sys-
tem design are to be able to understand the global system
behavior from descriptions of its interacting parts, to al-
low high-level specification of the rules of behavior by non-
programmers, and to provide efficient tool support for run-
ning and analyzing the constructed programs.

Various languages and tools have been suggested to han-
dle the complexity of reactive systems (see e.g., |3} 28, [17]).
Reactive models can be analyzed and visualized at design
time as well as at run time; visualizing aspects of the sys-
tem at design time may help one follow design principles
and track down design errors in early stages, whereas at
run time visualizing system behavior clarifies the model and
often discloses emergent properties that can be difficult to
predict from the specification.

The underlying principles of modeling reactive systems
have been recently applied to biological modeling (see e.g.,
[4, 5]). In [30], a pancreas model simulates the develop-
ment of an important complex system, with numerous dif-
ferent kinds of objects: cells, molecules, blood vessels, etc.
The project used a game engine for visualization and inter-
action, driven by reactive specifications. The game engine
turned out to be very important in making the model com-
prehensible and useful for the biologists, by presenting a
clear interactive dynamic description of the development of
the pancreas in three dimensions. The work has lead to sev-
eral interesting hypotheses and insights into the biological
system [30], and may help in the long run in the efforts of
building more in silico biological systems.

It seems that the design of games and complex reactive
systems share a common set of challenges: 1) The need to
construct a system from a set of many interacting small
units; 2) The importance of emergent properties, unique
characteristics of the global system behavior that emerge
from the interaction between the small units but are not
always evident from the rules of behavior of each of the
components by its own; 3) The crucial role of visualization
and graphics; and 4) the need to provide strong tool sup-
port that frees the mind and encourages creativity of the
designers, allowing them to focus on the big picture and the
important parts rather than on implementation details.

To describe the principles common to reactive system de-
sign and games, we have designed an intuitive running exam-
ple from everyday activities. It consists of a model, specified
using tools from reactive software engineering, that drives a
game engine, whose mainstream use is for game develop-
ment. The model was fully implemented and various tests
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were performed. We use the term game-model to describe
this kind of project. Our running example (pun intended. . . )
is of a 3-participant gym training system, which includes
a team leader and two team members, running, walking,
jumping, crawling and standing, and if needed also swim-
ming and wading (in the special case of scenarios involving
flooding). The system also includes a moving camera, sub-
viewing abilities, and more.

Here, we discuss the way certain parts of the overall con-
trolling behavior are specified in scenarios via the language
of live sequence charts (LSCs) [9] and the Play-Engine tool,
whereas others, such as the behavior of the participants
themselves, are specified using statecharts |17] in Rhapsody
in an object-oriented fashion [18]. The front-end shows the
animation continuously, and provides the means to interact
with it. Our recently designed scenario inter-dependency
visualization tool (SIV) [21] is used at design time to pro-
vide the specifier with an overview of the specification. For
clarity, the example given here is rather small. However, as
shown in the pancreas model [30], these principles can be
employed to model complex large scale systems and thus,
we believe, also to handle highly complex games.

This paper is supplemented by a web site containing pre-
recorded clips and interactive illustrations of the model. See
http://research.microsoft.com/~yakis/gameModel/.

2. THE MODELING APPROACH

Tools and languages for modeling reactive systems provide
a better understanding of models that may help in efforts
to save resources and development time. In this work we
integrated several of these methods to construct an intuitive
and representative game-model example. The model was
specified using two languages for reactivity. The intra-object
approach employs a state-based specification for the internal
behavior of objects, and the inter-object approach employs
scenario based specification for interactions between the ob-
jects. We used statecharts [17] and live sequence charts
(LSCs) 9] to specify, in a rather natural way, intra- and
inter-object behaviors, respectively. To execute the specifi-
cations, we use two reactive engines, Rhapsody [18] (by I-
Logix; now part of Telelogic, which is, in turn, part of IBM),
which compiles statecharts into an executable program, and
the Play-Engine [19], which is an interpreter for LSCs.

The game-model was analyzed at design time using the
recent SIV tool [21], which visualizes a scenario-based spec-
ification, highlighting many features that are otherwise im-
plicit. Furthermore, the specifications were linked up with
a game engine for run-time analysis. The tools were inte-
grated using a generic platform for reactive animation [12,
22], which smoothly links up the reactive models with the
animated front-end.

Visual languages, such as statecharts and LSCs, provide
a clear behavioral description and we benefit from a nat-
ural way to analyze the model at design time. This is
particularly useful in tracking inconsistencies in the design;
e.g., when merging different specifications into one model.
However, the current approach can be integrated with tra-
ditional methods using other standard programming lan-
guages. Parts of the model may be defined using visual
formalisms, while others could be coded in more general-
purpose languages such as C#, C++ or JAVA. We believe
that when it comes to game design, visual languages may
serve as an intermediate level between the user and the pro-

grammer by providing natural visual means to modify se-
lected parts of the model. Moreover, applying different ap-
proaches for different aspects of the system enables one to
handle the complexity of systems with more ease and results
in a natural means for system analysis at design-time and
at run-time.

2.1 Intra-object Modeling

The intra-object approach for modeling suggests defining
system behavior by specifying the internal behaviors of el-
ements in the model. The behavior of the system emerges
from the behavior of numerous objects that act in concert
as a population.

Here, we use the language of statecharts [17] and the
Rhapsody tool [1] to model using the intra-object approach.
Statecharts are naturally suited for the specification of ob-
jects that have clear internal behavior. Together with object
model diagrams |18|, they provide a graphical representation
of the dynamics of objects using states, transitions, events,
and conditions. The language makes it possible to visual-
ize the behavior of an object in a way that emphasizes the
elements in its life-cycle. Rhapsody is a model-driven devel-
opment environment supporting (among others) statecharts
and object model diagrams (see [18]), and can be viewed
also as a UML tool. It enables object-oriented design, with
full execution of the statechart-rich models, and full code
generation.

Behavior in Statecharts is described using states, and events
that cause transitions between states. States may contain
substates, thus enabling description at multiple levels, and
zooming in and zooming out between levels. States may
also be divided into orthogonal states, thus modeling concur-
rency, allowing the system to reside simultaneously in several
different states. Statecharts are intuitive for users, yet have
mathematically well-defined semantics, and are, therefore,
amenable to execution by computers. They have been im-
plemented in several tools, such as Rhapsody, Rational Rose
and Matlab’s Stateflow.

2.2 Inter-object Modeling

The inter-object approach for modeling suggests defining
a system behavior by specifying scenarios for the interactions
between elements in the model. The behavior of the system
thus emerges from the collection of possible scenarios in the
system.

Here, we use the language of live sequence charts [9] and
the Play-Engine |19] to specify scenarios in the system. LSCs
are scenario-based, and inter-object in nature, and are par-
ticularly suitable for describing behavioral requirements. LSCs
extend classical message sequence charts (MSCs) with log-
ical modalities, depicted as hot and cold elements in the
charts. In particular, LSCs can specify possible, manda-
tory and forbidden scenarios, and can be viewed as speci-
fying multi-modal restrictions over all possible system runs.
The language thus achieves far greater expressive power than
MSCs, and is comparable to that of temporal logic [28].

An LSC typically contains a prechart and a main chart.
The semantics is that if the scenario in the prechart is ex-
ecuted, then the system is to satisfy the scenario given in
the main chart. An LSC can also contain scoped forbidden
elements, listed in a separate area beneath the main chart.
For example, a forbidden condition that becomes true within
its scope causes the requirements to be violated. The Play-
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Engine is the tool built to support LSCs. It enables a system
designer to capture behavioral requirements by ‘playing in’
the behavior of the target system, and to execute the spec-
ified behavior by ‘playing out’. In the play-out phase the
user or an external component executes the application as
if it were the real system [19)].

2.3 Visualization at Design Time

To gain better understanding of the model even before
execution, we may use tools that analyze the specification.
We may, for example generate and view a visualization of the
model. Such tools expose design principles and may help in
understanding the model, as well as pointing out gaps that
need to be addressed.

Here, we employed the SIV tool [21], which is used at de-
sign time to visualize the scenario-based specification as a
whole. While each of the LSCs in the specification is vi-
sual, the ways in which LSCs interact with each other are
implicit, although quite often it is this interaction that is
at the heart of the specification. SIV helps the specifier
in understanding the complete picture; it displays what we
call the inter-dependency graph, in which each LSC is rep-
resented by a vertex, and vertices are connected whenever
the corresponding LLSCs are inter-dependent. Various types
of edges exist, to represent various kinds of dependencies.

Another important feature of SIV is that of community
identification. Using this feature, the specification can be
partitioned into sets of LSCs such that LSCs in the same
set are highly correlated, and LSCs in different sets are less
dependent. This suggests to the user a behavioral parti-
tioning of the specification, which can further clarify the
specification.

2.4 Visualization at Run Time

Visualizing a reactive model at run time requires better
tools than are often used. Reactive systems should be ani-
mated as realistically as possible to disclose the simulation.
Often, animation discloses properties of the system that are
too complicated to be predicted from the specification.

Here, we designed a 3D interactive animated front-end for
the model using 3D Game Studio (3DGS), a three dimen-
sional authoring tool by Conitec (www.3dgamestudio.com),
which supports real-time rendering of 3D animation. Each of
the elements in the model has a corresponding 3D animated
figure in the animated front-end. An animated figure is as-
sociated with actions, which appear as part of its attributes.
At run-time, the model triggers properties of animated fig-
ures to indicate changes in their corresponding objects. The
front-end is fully interactive and allows the user to inter-
act with the animated figures (e.g., changing perspective)
as well as with the specifications (e.g., query details of an
object, or ask for statistics of the history of elements).

3. A TEAM TRAINING GAME-MODEL

To demonstrate our approach, we chose a representative
game-model of a team in training, which employs the afore-
mentioned tools. Prerecorded clips and interactive illustra-

tion of the model can be seen in http://research.microsoft.

com/~yakis/gameModel/.
3.1 Elements of the Game-Model

The game-model describes gym training sessions for a
team of three: a team leader and two team members. The

team leader performs various actions at different speeds, and
the team members follow suit, after a short “comprehension”
delay. Team members, however, are not as fit as the team
leader, and need to rest while performing certain fast ac-
tions. In addition, the team leader reacts to environmental
changes; when a Storm, a Flood, or a Volcano eruption oc-
curs, the team leader performs an appropriate set of actions
to handle the situation.

Three cameras cover the training scene. The main one is
focused on the team leader, and each of the other two covers
a team member. The user instructs the team to perform an
action or assigns it a training task. He or she controls the
cameras’ activity and may query the running simulation.

3.2 Agent Behavior in Statecharts

We use the state-based approach to specify the team’s ac-
tual behavior. The statechart model includes three classes:
the team leader, the team member and the team. We demon-
strate the approach using two team members. However, the
model can be easily extended to handle any number thereof.

The behavior of the team leader is specified by a state-
chart with two orthogonal components (i.e., concurrent sub-
statecharts); see Figure [} The Action and Speed compo-
nents specify the team leader’s current action (e.g., running,
working) and current speed (normal, fast, intensive), re-
spectively. The statechart of a team member is similar, but
has an additional behavioral element: a team member rests
when a fast action is taken. To add this behavior, a super-
state was added to a team member’s Action sub-statechart,
specifying whether the member is in a resting state or an
acting state. Each member moves into resting state after
a predefined time and returns to its pre-resting state after
predefined time. The exercising and resting intervals varies
among the members to simulate differences in fitness condi-
tions.

standing

Figure 1: The team leader’s statechart.

3.3 Training Tasks in LSCs

We used the scenario-based approach to specify training
tasks for the team. The LSC model specifies several training
tasks, which include a set of instructions for the team and for
the environment. Four different tasks have been specified:
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Escape, Flood, Storm and Volcano Eruption, each initiat-
ing a different scenario. Triggering a new task while another
is being executed causes a violation and the new LSC ter-
minates. An instruction message (e.g., jump, swim) triggers
an LSC that forces execution of a specified set of messages.
Triggering a new instruction while another is executing ter-
minates the latter (this is done using forbidden elements).
In addition, LSCs specify camera control and environmental
changes.

For example, assigning a flood task triggers the flood
LSC, which initiates the following scenario (see Figure :
the team participants run until the water level rises, and
then swim until the water level is low enough to walk. When
the flood is over, the team participants stop motion, and
stand, ready for a new task. During task execution, the run
instruction triggers an LSC that instructs the team to run
at an increasing speed. When the swim instruction is taken,
the run LSC terminates.

Flood I ﬁ A n

|Mode|l ITeam] [ Env |

ik Syt i
< @?F?[T_F.'F’.‘?F’Qg }
A 5 5 /
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Watl)
} "% Flood(ON)
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Figure 2: The flood LSC.

3.4 The Animated Front-End

The front-end for the game-model consists of a real-time
3D animation of the training, see Figure [J] Animated ren-
ditions of a team leader and a team member were created
based on the cbabe model of 3DGS .

The team is placed on an outdoor grass field, with some
scattered houses and the team members are positioned be-
hind the leader. Both the leader (bluish uniform and brunette
hair) and the members (grayish uniforms and blond hair)
can stand, walk, run, bend, crawl, swim, wade, jump and
wave. Team members can also fall and rest.

The user can query the model by clicking an animated
figure, and the relevant data (e.g., ID, current action) is
displayed next to it. Environmental changes may occur: a
storm makes the sky darker, a flood displays a layer of water,
and a volcano eruption changes the ground to lava. Each
environmental change is accompanied by matching sound
effects.

The main camera is set in front of the team and is focused

on the team leader. To simplify camera usage, its movement
was restricted to up, down and circular. In addition, the
camera can zoom in and out. Each of the team members is
covered by an additional camera, which is initially disabled,
and is activated by an external event (coming from the user
or an external architectural component).

In addition, the GUI portion of the front-end includes
three panels: Action, Task and Time. Clicking a button
in the Action or Task panels triggers an instruction to the
team (e.g., to jump fast ) or assigns it a task (e.g., to escape),
respectively. The Time panel displays the running duration
of the animation.

Animation Clock : 0 0 46
Simulation Clock: 0 0 50

Figure 3: Snapshots from animated front-end and
the GUI

3.5 Design Time Analysis

In order to visualize the scenario-based specification de-
scribed in we used the SIV tool . This tool visualizes
the specification as a whole, rather than each scenario inde-
pendently, as can be seen in Figure EITop7 which shows the
inter-dependency graph of the scenario-based specification.
In the graph, each LSC is represented by a vertex, and ver-
tices are connected by an edge if the corresponding LSCs are
related. In Figure []Top, only one type of edges are visible,
namely the causal edges. These directed edges represent the
option that at runtime the source LSC will drive the prechart
of the target LSC towards completion; i.e., the source LSC
may cause the target LSC to become active.

The general structure of the specification is evident from
the visualization. The specification consists of four tasks
(Escape, Flood, Storm and Volcano Eruption). Some of the
actions are relevant only to one task — e.g., swimming may
happen only as part of the flood task — while others may
take part in different tasks — e.g., walking that takes part
in flood and escape, or running that takes part in all four
tasks. The partitions in Figure @[Top cluster the LSCs into
highly correlated groups. This results in a clear partitioning
of the behavior into actions relevant to each task, and those
relevant to all tasks.

In Figure[@Bottom, sync edges are added. These are undi-
rected edges representing the fact that at runtime the two
LSCs may be synchronized. In this view, the most evident
property of the specification is the partitioning into “input”
LSCs (WO1-WO4), “task” LSCs (Task1-Task4), action LSCs
(the many inter-connected LSCs in the middle), and “alert”
LSCs.
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Figure 4: The scenario-based specification as visual-
ized by the SIV tool. Top: Causal relations (brown
directed edges) clustered in communities. Bottom:
Causal edges (brown directed edges) and sync edges
(green undirected ones)

3.6 The Game-Model at Run Time

The composed model provides a realistic simulation of the
team training. The user interacts with the model through
front-end, while the state-based and the scenario-based pro-
grams run in the background.

Consider Figure [f] for illustration of two sample runs of
the system. The first concerns a jumping action at medium
speed. When the user sets the speed scroll bar to medium
and clicks the jump button, the front-end notifies (i.e., sends
a message to) the state-based program about the instruction
(arrow 1 in Figure . Accordingly, the team object gener-
ates an inner event to set the statechart of the team leader
to jump at medium speed (i.e., the Action sub-statechart
moves to the Jumping state and the Speed sub-statechart is
set to Medium). After a predefined time interval, the team
object generates another event for the statecharts of each of
the team members. Upon entering the Jumping state, the
state-based program notifies the front-end to animate the
action (arrow 2 in Figure [5). Consequently, the animated
team leader jumps, and the team members follow suit. The
user can change the camera’s position to view the team from
different angles. Camera relocation, however, has no effect
on the running simulation.

As a second example, consider the flood training task spec-
ified by the flood LSC. During its execution, other LSCs
(e.g., run and floodAlert) are activated, and they notify
the other program and the animation. The user assigns a
flood task to the team by clicking on the appropriate but-
ton. Consequently, the front-end notifies the state-based
program and the flood LSC initiates the scenario (arrow 3
in Figure |5)). The first message in the flood LSC is a run-
ning instruction for the team. Consequently, the run LSC
is activated, and it notifies the state-based program to run
at a slow speed (arrow 4 in Figure . Later on, a mes-

sage in the flood LSC instructs the environment to initiate
a flood. The FloodAlert LSC is activated and notifies the
front-end (arrow 5 in Figure . Accordingly, a water layer
is displayed and a corresponding splashing sound is played.
Immediately after this, the swim LSC is activated and it no-
tifies the state-based program. The swim message enables
a forbidden element in the run LSC, causing the run LSC
to exit. Again, the swim LSC notifies state-based program,
which in turn notifies the front-end(arrow 2 in Figure [5).

The flood LSC completes after it instructs the team to
walk, the environment to end the flood, and the team to
stand (i.e., to stop moving). At this point, there are no
more LSCs active, the statecharts are all in the standing
state, and the animated figures are standing, ready for the
next task.

If a fast speed action is assigned to the team, each of the
two team member objects will enter a resting state after
some time. Consequently, the state-based program notifies
the scenario-based program (arrow 6 in Figure [5)) and the
front-end (arrow 2 in Figure . Concurrently, the animated
team member changes its appearance to resting, an LSC is
triggered, and the team member’s camera is activated in the
animation (arrow 5 in Figure [5)).

During a run of the system, the user may query the model
or relocate the camera. When a query is requested, the
front-end notifies the state-based program (arrow 1 in Figure
5), which provides the appropriate information. Changes
in the camera, however, do not interact with the reactive
engines.

State-Based Program

Animated
Front End

Scenario-Based Program

Figure 5: Message transmission between the archi-
tectural components, front-end, state-based specifi-
cations and scenario-based specifications.

4. BIOLOGICAL MODELING

In recent years, the principles described above have guided
several efforts of modeling and understanding biological sys-
tems, which are perhaps the prime example of highly com-
plex and reactive large-scale systems. This work has resulted
in several models that simulate a number of biological sys-
tems; 2D models of subsystems in the immune system, a
3D model of the development of the pancreas and reactive
models for aspects in the development of the C. elegans ne-
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matode. Below, we briefly describe two of them.

The 3D model of the development of the pancreas , a
highly important and complex system, was designed using
a state-based model linked to a game engine. The former
resulting from analyzed scientific data (mainly experimen-
tal results). Statecharts were chosen for this as they are
suitable for describing the intra-object behavior of the bio-
logical objects themselves (e.g., cells and molecules). The
model consists of numerous objects (~10000), which at run
time proliferate differentiate and migrate. At run-time the
3D animated front-end visualizes the simulation, in such a
way that participating objects are represented by a 3D ele-
ment and possess realistic animation attributes (Figure @
Cells, for example, are represented by sphere-like shapes,
changing in size to depict cell growth. A possible extension
to the model is to add LSCs to describe inter-object scenar-
ios, such as the impact of blood vessel growth on the organ’s
development.

In this work, animating the system revealed unexpected
behavioral properties that emerged from the simulations at
run-time. These emergent properties are not explicitly pro-
grammed, but are often a consequence of massively concur-
rent execution of basic elements that act in concert as a
population.

Another effort at biological modeling using the ideas de-
scribed above involved the process of vulval precursor cell
fate determination in the C. elegans nematode (see model in
126]). This project was conducted in the Play-Engine using
the scenario-based approach and the LSC language. The
SIV tool was applied to this model as well, and highlighted
much of the high-level construct of the specification, see .
Many interesting features of the model were evident from
the SIV visualization, such as a control LSC that triggers
the execution of many other LSCs, or a clear identification
of those LSCs that take part in a small process that is quite
independent of the rest of the developmental process.

Figure 6: Biological model of the pancreas. A.
3D animated front-end for the pancreatic develop-
ment. B. The pancreatic structure emerging from
the simulation. C. User interaction: a dynamic
cross-section slicing. D. Mathematical analysis of
model: number of cells as function of time.

S. IMPLEMENTATION

The architecture of our running example includes Rhap-
sody [1] and the Play-Engine . These reactive engines
are linked up to 3D Game Studio as a three-dimensional
animated front-end using a central routing server in a star-
like topology. This architecture can be extended by using
any number of additional components of any related kind
(e.g., Matlab as done in the pancreas model ) In this
work, we used the SIV tool in design time, however the tool
itself supports run time visualization too.

The model was executed on three PC dual Core4 ma-
chines running under Windows XP with 3G RAM memory.
The machine running the animation carried two GForce7300
cards by nVidia employing ATI CrossFire technology.

5.1 The Central Routing Server

The central routing server was implemented as a multi-
threaded executable application (written in C++). Each
thread of this routing server serves as a communication chan-
nel for one architectural component. A TCP socket is initial-
ized upon registration to the server, enabling message trans-
mission. The messages are XML documents of a general
(similar to SOAP) predefined form: the header of the docu-
ments carries the source and destination, while the function
to be generated is coded in the document’s body. The server
analyzes the header of a received message and directs it to
its final destination .

5.2 The State-Based Specification

To enable communication of state-based specifications and
Rhapsody with external components through the central
server, we define sets of incoming and outgoing states. An
incoming state features a set of reactions that can be trig-
gered by external events. Similarly, an event is sent from
the specifications to an external component upon entering
an outgoing state. The destination and the contents of such
a message are encoded inside the appropriate outgoing state
itself.

The communication was implemented as an external li-
brary (written in C++) that extends Rhapsody to support
communication and XML parsing.

5.3 The Scenario-Based Specification

To enable communication of scenario based specifications
and the Play-Engine with external components through the
central server, we defined specially designated sets of incom-
ing and outgoing LSCs. A message received in the scenario-
based specifications triggers an incoming LSC, which initi-
ates a particular scenario. Likewise, a message is sent to an
external component when the system execution triggers an
outgoing LSC.

TCP communication was implemented as a Visual Basic
application as part of the model’s graphic interface.

5.4 The 3D Animated Front-End

The three dimensional authoring tool, 3D Game Studio
(3DGS see [2], supports real-time rendering of 3D anima-
tion. The scripting language of 3DGS, C-Script, enables
control of animation objects. To enable communication, the
front-end contains specially designated sets of incoming and
outgoing C-Script functions. The front-end sends a mes-
sage upon triggering an outgoing function by the user (or
an external component), and a receive message triggers an
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incoming function that generates an animation change. This
is the heart of the link between the animation and the reac-
tive driving engines.

TCP communication was implemented as an external dll,
extending the C-script language to support communication
and XML parsing.

5.5 Scenario Inter-dependency Visualization

The SIV tool visualizes scenario-based specifications by
a force-directed layout [15] of the inter-dependency graph.
The graph itself is generated by an extension of the Play-
Engine tool, and is passed to the SIV tool as a graph-XML
file. SIV can be executed as a stand-alone tool, with an ap-
propriate graph-XML as an input, or it can interact with the
Play-Engine to visualize the currently active Play-Engine
specification. The latter allows one to select an LSC from
SIV to be viewed in the Play-Engine. The SIV tool itself is
written in Java, using the Prefuse toolkit (see www.prefuse.
org). See detailed description of the tool in the SIV website
www.wisdom.weizmann.ac.il/"itais/research/SIV/.

5.6 The Architecture at Run-Time

Each component, when executed, initiates a connection
with the central routing server. The setting of components
in the architecture enables pairwise message transfer be-
tween them. At run-time, message passing drives the simu-
lation in the participating components. For example, mes-
sages from the reactive engines (i.e., Rhapsody and Play-
Engine) drive the animation in the front-end.

In the current implementation we addressed synchroniza-
tion in a rather ad-hoc manner by specifying different clocks
for each component to alert in cases of loss of synchroniza-
tion. There are numerous techniques as to how to deal with
time in a distributed environment, such as doing so using a
centralized clock tick.

6. RELATED WORK

Much simulation work deals with the visualization of re-
active systems by adding certain effects to a reactive system
formalism. These can often depict more than standard kind
of GUIs, but they cannot be considered truly flexible and
realistic animation. Normally, animation specifications are
translated into a reactive formalism (e.g., LOTUS), and the
animation is carried out for the graphical reactive model
itself [27].

An interesting kind of extension to this approach adds
interactivity, by embedding the reactivity in the animation
itself, albeit in a somewhat limited way. Real time inter-
activity of three dimensional figures was implemented as a
hierarchical set of abstractions in the ReActor system of [6].
In later work, Elliot and Hudak defined the Fran system,
in which reactivity is specified using A-calculus based tools,
and is then embedded in an animated 2D-GIF [14]. There
is also a similar embedding in 3D VRML. In further work,
this group adapted the approach to various control system
applications; e.g., in vision and robotics and termed the re-
sult FRP. Work on ‘behavioral animation’ designs reactivity
for an agent and offers the ability to simulate autonomous
agents using state-machines, transition systems (HPTS) and
sensor-based synthetics |11}, [29} [10]. Earlier versions on be-
havioral animation embedded various automata for control-
ling animated entity behavior. Also, reactive Al has been

combined with linear animation components to form learn-
ing behavioral models [16, 7).

Finite state machines (FSMs) are among the most popu-
lar techniques used in games [31]. Statecharts are essentially
extended FSMs, where the features of hierarchy and orthog-
onality can help deal with scalability issues by presenting a
concise visual description thus allowing to overcome some of
the standard difficulties of using FSMs in game design.

7. DISCUSSION

We present how several methods and techniques can act
in concert to provide a clear 3D game-model. We show how
they are integrated in one model, which is visualized and an-
alyzed at design time as well as run time. We deliberately
chose to focus on an intuitive model to emphasize the prin-
ciples behind our work. However, it is possible to employ
these tools and ideas to model large-scale complex systems
with numerous elements and interactions (as was done in
biological modeling). Furthermore, this setup can be eas-
ily strengthened by adding more tools. For example, data
analysis software (e.g., Matlab or Mathematica) can be inte-
grated to provide real-time analysis of the simulation (e.g.,
statistics, graphs; as was done in [22]). This setup helps
to disclose various potential scenarios and emergence in the
model.

As mentioned, these principles served to model complex
biological systems with numerous objects and interactions.
The massive concurrent execution of many instances of ob-
jects with identical specification disclosed new properties
that were not explicitly programmed into the model [30}
13, |8]. These emergent properties arise at run time from the
behavior of a population and thus are rather difficult to be
predicted from the specifications themselves. Analogously,
the term emergent gameplay in game design describes the
creative use of a game (or film-making, see e.g., Machinima
|35 ) in ways unexpected by the game designer’s original
intent [24, |25 [33]. It commonly appears as complex be-
haviors that emerge from the interaction of simple game
mechanisms. In reactive models, as well as in games, when
many connections between different objects and rules are
combined, the likelihood of unpredicted emergent behavior
increases.

Game development is a challenging software engineering
process, thus the quality of the game [32] and the ability to
develop it on time and on budget is crucial and should be
taken into account as part of the design process. Some of
the features of reactive system design have already proven
themselves in other domains to be beneficial in terms of the
quality of the end product.

In the course of developing emergent game play, methods
from other domains have been adopted. For example, neu-
ral networks and cellular automata were used in previous
development of various projects (see, e.g., [34]). We believe
the methods discussed here also have the potential to make
an impact in game design.

The game-model we present here by using modeling tools
from reactive software engineering and game design, empha-
sizes the potential of bridging concepts and tools from both
of these fields to gain innovative benefits. Bringing together
these two communities can lead to a fruitful exchange of
ideas and progress in reactive modeling and game design.
We feel that such a collaboration can be particularly benefi-
cial for biological modeling, which is becoming an important
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approach for integrating the wealth of scientific knowledge
and data into a coherent understanding of the function of a
complex system. Incorporating efforts from both fields may
contribute towards the long-term goal of biological simula-
tors of organs and organisms [23].
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