Constraint-based Invariant
Inference over Predicate
Abstraction

Sumit Gulwani

Saurabh Srivastava Ramarathnam Venkatesan

University of Maryland, Microsoft Research,
College Park Redmond

P Microsoft
JM Research

Introduction

* Last decade has seen an engineering revolution in
SAT solving.

« Can we bring the technology to program analysis?

— This talk shows how to do that for predicate
abstraction by using of f-the-shelf SAT solvers, e.g. Z3

« We have developed constraint-based techniques:
— Program Verification
— Maximally-weak Precondition Inference
— Inter-procedural Summary Computation

— Inferring the Maximally-general Counterexamples to
Safety (i.e. finding the best descriptions of bugs).

Introduction

* Last decade has seen an engineering revolution in
SAT solving.

« Can we bring the technology to program analysis?

— This talk shows how to do that for predicate
abstraction by using of f-the-shelf SAT solvers, e.g. Z3

« We have developed constraint-based techniques:
— Program Verification
— Maximally-weak Precondition Inference
— Inter-procedural Summary Computation

— Inferring the Maximally-general Counterexamples to
Safety (i.e. finding the best descriptions of bugs).

Predicate Abstraction

« Givena fixed finite set of n predicates, associate
with each predicate p; a boolean indicator b;.

» Sound over- 1E)proxima’rion of the invariant at each
program point represented by a boolean expression
involving the indicators.

Boolean expression

Y (eXp(bl,...,bn)) = exp[pl/bll e pn/bn]
a (v) = A{exp(by,....b,)| ¥ = exp[pi/b, ..., pu/bnl}

a() ingeneral, not computable

o' (¥) = Nizp_n {bil ¥ = p}

Constraint-based Invariant Inference

 Guess a DNF template: k disjuncts
VIV k=3

 Task: Fill out each disjunct with a boolean
monomial (conjunction of indicator literals)

« Approach: Generate boolean constraints over
indicators using the program semantics and
directly solve using of f-the-shelf solvers.

Example: Cut-points

assume(m > 0)
loop (int m) { l
assume(m > 0) { x:=0: y:=0] Invariants at

x:=0; y:=0; cut-points™®
I / (at loop header)

while (x<m) {
X++; Y++;

}

assert(y = m)

assert(y = m)

}

{ X++; y++

*Cut-set: Set of cut-points such that each cycle

in CFG passes through at least one cut-point
6

Example: Simple paths and VCs

assume(m > 0)

|

[x:=0; y:=0]

o

/\
assume(x<m) assume(x>m)
b |

[X++; y++] assert(y = m)

Example: Simple paths and VCs

« Verification condition
assume(m > 0) induced by each simple

! D path (sequence of stmt)

[x:=0; y:=0

I * VC computed using
, standard backwards
weakest precondition

operator w:
assume(x<m) § assume(x>m)
: | wix:=e, ¢) = ¢ [e/x]
X++; y++] assert(y = m) w(assume(p)’ ¢) _ p$¢

M wlassert(p),) =p A ¢

,,f W(Tl;Tzl §b) = w(Tll W(Tzr Qb))

Example: Simple paths and VCs

assume(m > 0)

1 1| m>0 = I[y— 0, x— 0]
- x=0;y:=0] ! 2| I AX>m = y=m
I 3| I A x<m = I[y— y+1, x— x+1]

<>\

assume(x>m)

| w(x:=e, ¢) = ¢ [e/x]

assertly =m) w(assume(p), @) = p=-¢

w(assert(p),) =p A\ ¢
W(Ty; Ty @) = w(Ty, W(T,, @)

Example: Boolean Constraint Generation

Unknown invariant on the LHS; Unknown invariant on the RHS;
constrains how weak I can be constrains how strong I can be

11 m>0 = I[y— 0, x— 0]
2| LA X>mM = y=m
3| LA x<m = I[y— y+1, x— x+1]

7

Unknown on both sides;
combination of above cases

10

Example: Boolean Constraint Generation

Unknown invariant on the LHS; Unknown invariant on the RHS;
constrains how weak I can be constrains how strong I can be
2l LA X>mM = y=m 11 m>0 = I[y— 0, x— 0]
| X<y, X>Y, X<y 0<0, 020, 0<0
;' y=m Ay=m x<m, X>m, X<m 0<m, 0=m,0<m
: X<m i -
< > 0<m, 0>m, O<m
3: ng/\ ygm ysm,y=m,y<m
X<y
Maximally-weak ways of satisfying — | x>m

the constraint using the given preds.

>
(Computed using Predicate Cover) y=m

(bx<m) V (bygm N byzm) V (bXSy N bVSm) bx>m N\ — bx<y/\ 1 b

11

Example: Solving using SAT

4 R
—“bom A b A b,

(byem) V (bycy Abys)V (byey Aby)o

Individual
local
computations

K(bygm = (by<m \% bygx)) A _'bx<m A _'by<mj

SAT Solver loop (int m) {
(fixed point assume(m > 0)
computation) x:=0: y:=0:

\’ /’ I y=Xx Ay<m while (x<m) {

tt:b,,; b b
= X++; Y++;
ff: rest)

y<m s Qx<y

assert(y = m)

12

v’ Program Verification
» Maximally-weak Precondition Inference
» Inter-procedural Summary Computation

13

Maximally-weak preconditions

Instead of the precondition true as in PV, freat
precondition as an unknown PRE

Generate constraints as for PV—now in terms of
PRE and the unknowns invariant I's

Solving these yields a precondition PRE, but not
necessarily the maximally-weakest

Iteratively, improve the current precondition T
by adding the tollowing constraint:

T= PRE A -(PRE= T)

Context-sensitive Inter-procedural
Analysis

« Compute context-sensitive procedure
summaries as (A;, B;) pre/post pairs in assume-
guarantee style reasoning

* Constraint generation
— Procedure body (guarantee):

assume(A.); S; assert(B;) P(x){ S: returny; }

— Calls (assume):

assert(A;[u/x]); assume(B;[u/x, 1/y]); vi=t v = P(u);

15

Experiments: Overview

Our benchmarks are academic/small benchmark programs
that demonstrate the feasibility of the technique

We ran our tool in two modes: program verification and
weakest precondition

We are able to easily generate disjunctive invariants for
which specialized techniques have been proposed earlier

We collected three performance statistics:

— Time for verification condition generation (weakest precondition
over simple paths)

— Time for boolean constraint generation (includes the predicate
cover operation)

— Time for SAT solving (fixed point computation)

16

Experiments: Results

» VC generation: 0.23sec
* SAT solving: 0.06sec
 Boolean formula generation:

Time (in seconds)

16
14

B e
o N

o N B~ O

¢ ¢

& o
0

2000 4000 6000 8000

Number of clauses in generated formula

Overall time for invariant
generationis low

Predicate cover called on
small formulas. Our
unoptimised version
performs reasonably

17

Related Work

Constraint-based invariant inference:

— Cousot / Sankarnarayanan et.al.: LIA using mathematical solvers
— Beyeret.al.: LTA+UFS by compiling away UFS to LTA

— Podelski et.al. / Bradley et.al.: Discover ranking functions

We describe a reduction over the very successful domain
of predicate abstraction

Application of SAT to program analysis:

— SATURN: bit accurate modeling of loop-free programs with
complicated data structures

— Bounded model checking etc.
Use SAT for validation; in contrast, we use it for

inference of invariants that are sound over-
approximations

18

Conclusions

* Constraint-based techniques offer two advantages
over iterative fixed-point techniques:
— Goal directed (may buy efficiency)
— Do not require widening (may buy precision)

* For predicate abstraction, we have shown how to
reduce various program analysis problems to
constraint solving.

« Inaddition to program verification, constraint-based
encoding facilitates easy extensions to inter-
procedural summary computation, maximally-weak
preconditions, counter-examples to safety.

19

Future Work

« We are exploring extensions to quantifiers and other
analysis problems as future work.

* Weare exploring the scalability of this technique
along two directions:

— Encodings that yield simpler SAT instances, e.g. exploiting
symmetry information for the case of disjunctive solutions

— Reducing programmer burden by automatically inferring
predicate sets and templates

+ VS3: Verification and Synthesis using SMT Solvers
http://www.cs.umd.edu/~saurabhs/pacs/

Questions?

Best Description of Bugs

* Instrument X<M A y> X

Err (int m) {
while (x<m) {
X++; Y++;
assert (y<m);
}
}

(x<xm A y> x) V (error=1A y> x)

 Run maximally-weak precondition

22

