
Constraint-based Invariant 
Inference over Predicate 

Abstraction

Sumit Gulwani
Ramarathnam Venkatesan

Microsoft Research, 
Redmond

Saurabh Srivastava

University of Maryland,

College Park



Introduction

• Last decade has seen an engineering revolution in 
SAT solving. 

• Can we bring the technology to program analysis?
– This talk shows how to do that for predicate 

abstraction by using off-the-shelf SAT solvers, e.g. Z3

• We have developed constraint-based techniques:
– Program Verification
– Maximally-weak Precondition Inference
– Inter-procedural Summary Computation
– Inferring the Maximally-general Counterexamples to 

Safety (i.e. finding the best descriptions of bugs).

2



Introduction

• Last decade has seen an engineering revolution in 
SAT solving. 

• Can we bring the technology to program analysis?
– This talk shows how to do that for predicate 

abstraction by using off-the-shelf SAT solvers, e.g. Z3

• We have developed constraint-based techniques:
– Program Verification
– Maximally-weak Precondition Inference
– Inter-procedural Summary Computation
– Inferring the Maximally-general Counterexamples to 

Safety (i.e. finding the best descriptions of bugs).

3



Predicate Abstraction

• Given a fixed finite set of n predicates, associate 
with each predicate pi a boolean indicator bi.

• Sound over-approximation of the invariant at each 
program point represented by a boolean expression 
involving the indicators.

° (exp(b1,…,bn)) = exp[p1/b1, …, pn/bn]

® (Ã) = Æ{exp(b1,…,bn)| Ã ) exp[p1/b1, …, pn/bn]}

Boolean expression

®’ (Ã) = Æi=1…n {bi| Ã ) pi}

®(Ã)  in general, not computable

4



Constraint-based Invariant Inference

• Guess a DNF template: k disjuncts

(…)Ç(…)Ç(…) : k=3

• Task: Fill out each disjunct with a boolean 
monomial (conjunction of indicator literals)

• Approach: Generate boolean constraints over 
indicators using the program semantics and 
directly solve using off-the-shelf solvers.

5



Example: Cut-points

loop (int m) {

assume(m > 0)

x:=0; y:=0;

while (x<m) {

x++; y++;

}

assert(y = m)

}

x:=0; y:=0

x++; y++

x<m

assume(m > 0)

assert(y = m)

I

Invariants at 
cut-points* 

(at loop header)

*Cut-set: Set of cut-points such that each cycle
in CFG passes through at least one cut-point

6



Example: Simple paths and VCs

x:=0; y:=0

x++; y++

assume(m > 0)

assert(y = m)

I

assume(x¸m)assume(x<m)

*

7



Example: Simple paths and VCs

• Verification condition 
induced by each simple 
path (sequence of stmt)

• VC computed using 
standard backwards 
weakest precondition 
operator !:

!(x:=e, Á) = Á [e/x]
!(assume(p), Á) = p)Á

!(assert(p), Á) = p Æ Á

!(¿1;¿2, Á) = !(¿1, !(¿2, Á))

x:=0; y:=0

x++; y++

assume(m > 0)

assert(y = m)

I

assume(x¸m)assume(x<m)

*

8



Example: Simple paths and VCs

!(x:=e, Á) = Á [e/x]
!(assume(p), Á) = p)Á

!(assert(p), Á) = p Æ Á

!(¿1;¿2, Á) = !(¿1, !(¿2, Á)

x:=0; y:=0

x++; y++

assume(m > 0)

assert(y = m)

I

assume(x¸m)assume(x<m)

*

m>0 ) I[y! 0, x! 0]
I Æ x¸m ) y=m
I Æ x<m ) I[y! y+1, x! x+1]

1

1

2
3

2

3

9



Example: Boolean Constraint Generation

m>0 ) I[y! 0, x! 0]1

2

3 I Æ x<m ) I[y! y+1, x! x+1]

Unknown invariant on the RHS;
constrains how strong I can be

Unknown invariant on the LHS;
constrains how weak I can be

Unknown on both sides;
combination of above cases

I Æ x¸m ) y=m

10



Example: Boolean Constraint Generation

m>0 ) I[y! 0, x! 0]1

Unknown invariant on the RHS;
constrains how strong I can be

Unknown invariant on the LHS;
constrains how weak I can be

2 I Æ x¸m ) y=m

x·y,   x¸y,   x<y
x·m, x¸m, x<m
y·m, y¸m, y<m

0·0,   0¸0,   0<0
0·m, 0¸m, 0<m
0·m, 0¸m, 0<m

:
x·y,   x¸y,   x<y
x·m, x¸m, x<m
y·m, y¸m, y<m

: bx¸m Æ : bx<y Æ : by¸m(bx<m) Ç (by·m Æ by¸m) Ç (bx·y Æ by·m)

y·m Æ y¸m
x<m

x·yÆ y·m

1:
2:

3:

Maximally-weak ways of satisfying 
the constraint using the given preds.

(Computed using Predicate Cover)

11



ff: rest

tt: by·x ; by·m ; bx·y

SAT Solver
(fixed point 
computation)

Example: Solving using SAT

: bx¸m Æ : bx<y Æ : by¸m

(bx<m) Ç (by·m Æ by¸m) Ç (bx·y Æ by·m)

(by·m ) (by<m Ç by·x)) Æ :bx<m Æ :by<m

loop (int m) {

assume(m > 0)

x:=0; y:=0;

while (x<m) {

x++; y++;

}

assert(y = m)

}

I: y=x Æ y·m

12

Individual 
local 

computations



13

Program Verification

Maximally-weak Precondition Inference

Inter-procedural Summary Computation



Maximally-weak preconditions

• Instead of the precondition true as in PV,  treat 
precondition as an unknown PRE

• Generate constraints as for PV—now in terms of 
PRE and the unknowns invariant I’s

• Solving these yields a precondition PRE, but not 
necessarily the maximally-weakest

• Iteratively, improve the current precondition T
by adding the following constraint:

T) PRE Æ :(PRE) T)

14



Context-sensitive Inter-procedural 
Analysis

• Compute context-sensitive procedure 
summaries as (Ai, Bi) pre/post pairs in assume-
guarantee style reasoning

• Constraint generation
– Procedure body (guarantee):

– Calls (assume):

15

P(x) { S; return y; }assume(Ai); S; assert(Bi)

v = P(u);assert(Ai[u/x]); assume(Bi[u/x, t/y]); v:=t



Experiments: Overview

• Our benchmarks are academic/small benchmark programs 
that demonstrate the feasibility of the technique 

• We ran our tool in two modes: program verification and 
weakest precondition

• We are able to easily generate disjunctive invariants for 
which specialized techniques have been proposed earlier

• We collected three performance statistics:
– Time for verification condition generation (weakest precondition 

over simple paths)
– Time for boolean constraint generation (includes the predicate 

cover operation)
– Time for SAT solving (fixed point computation)

16



Experiments: Results

• VC generation: 0.23sec

• SAT solving: 0.06sec

• Boolean formula generation:

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000

Ti
m

e
 (i

n
 s

e
co

n
d

s)

Number of clauses in generated formula

• Overall time for invariant 
generation is low

• Predicate cover called on 
small formulas. Our 
unoptimised version 
performs reasonably

17



Related Work

• Constraint-based invariant inference:
– Cousot / Sankarnarayanan et.al.: LIA using mathematical solvers
– Beyer et.al.: LIA+UFS by compiling away UFS to LIA
– Podelski et.al. / Bradley et.al.: Discover ranking functions

We describe a reduction over the very successful domain 
of predicate abstraction

• Application of SAT to program analysis:
– SATURN: bit accurate modeling of loop-free programs with 

complicated data structures
– Bounded model checking etc.

Use SAT for validation; in contrast, we use it for 
inference of invariants that are sound over-
approximations

18



Conclusions

• Constraint-based techniques offer two advantages 
over iterative fixed-point techniques:
– Goal directed (may buy efficiency)
– Do not require widening (may buy precision)

• For predicate abstraction, we have shown how to 
reduce various program analysis problems to 
constraint solving. 

• In addition to program verification, constraint-based 
encoding facilitates easy extensions to inter-
procedural summary computation, maximally-weak 
preconditions, counter-examples to safety.

19



Future Work

• We are exploring extensions to quantifiers and other 
analysis problems as future work.

• We are exploring the scalability of this technique 
along two directions:
– Encodings that yield simpler SAT instances, e.g. exploiting 

symmetry information for the case of disjunctive solutions
– Reducing programmer burden by automatically inferring 

predicate sets and templates

• VS3: Verification and Synthesis using SMT Solvers
http://www.cs.umd.edu/~saurabhs/pacs/

20



21

Questions?



Best Description of Bugs

22

Err (int m) {

error := 0;

while (x<m) {

x++; y++;

if (y¸m)

error:=1; goto L;

}

L: assert(error = 1)

}

Err (int m) {

while (x<m) {

x++; y++;

assert (y<m);

}

}

• Instrument

• Run maximally-weak precondition

x<m Æ y¸ x

(x<m Æ y¸ x) Ç (error=1Æ y¸ x)


