Constraint-based Invariant Inference over Predicate Abstraction

Saurabh Srivastava

University of Maryland,
College Park

Sumit Gulwani Ramarathnam Venkatesan

> Microsoft Research, Redmond

Introduction

- Last decade has seen an engineering revolution in SAT solving.
- Can we bring the technology to program analysis?
 - This talk shows how to do that for predicate abstraction by using off-the-shelf SAT solvers, e.g. Z3
- · We have developed constraint-based techniques:
 - Program Verification
 - Maximally-weak Precondition Inference
 - Inter-procedural Summary Computation
 - Inferring the Maximally-general Counterexamples to Safety (i.e. finding the best descriptions of bugs).

Introduction

- Last decade has seen an engineering revolution in SAT solving.
- Can we bring the technology to program analysis?
 - This talk shows how to do that for predicate abstraction by using off-the-shelf SAT solvers, e.g. Z3
- · We have developed constraint-based techniques:
 - Program Verification
 - Maximally-weak Precondition Inference
 - Inter-procedural Summary Computation
 - Inferring the Maximally-general Counterexamples to Safety (i.e. finding the best descriptions of bugs).

Predicate Abstraction

- Given a fixed finite set of n predicates, associate with each predicate p_i a boolean indicator b_i.
- Sound over-approximation of the invariant at each program point represented by a boolean expression involving the indicators.

Boolean expression
$$\gamma \left(\exp(b_1, ..., b_n) \right) = \exp[p_1/b_1, ..., p_n/b_n]$$

$$\alpha \left(\psi \right) = \Lambda \left\{ \exp(b_1, ..., b_n) \middle| \ \psi \Rightarrow \exp[p_1/b_1, ..., p_n/b_n] \right\}$$

$$\alpha(\psi) \text{ in general, not computable}$$

$$\alpha' \left(\psi \right) = \Lambda_{i=1...n} \left\{ b_i \middle| \ \psi \Rightarrow p_i \right\}$$

Constraint-based Invariant Inference

• Guess a DNF template: k disjuncts $(...)\lor(...)\lor(...)$: k=3

- Task: Fill out each disjunct with a boolean monomial (conjunction of indicator literals)
- Approach: Generate boolean constraints over indicators using the program semantics and directly solve using off-the-shelf solvers.

Example: Cut-points

```
loop (int m) {
    assume(m > 0)
    x:=0; y:=0;

while (x<m) {
    x++; y++;
}

assert(y = m)
}</pre>
```


*Cut-set: Set of cut-points such that each cycle in CFG passes through at least one cut-point

Example: Simple paths and VCs

Example: Simple paths and VCs

- Verification condition induced by each simple path (sequence of stmt)
- VC computed using standard backwards weakest precondition operator ω :

$$\omega(x:=e, \phi) = \phi [e/x]$$

$$\omega(assume(p), \phi) = p \Rightarrow \phi$$

$$\omega(assert(p), \phi) = p \land \phi$$

$$\omega(\tau_1; \tau_2, \phi) = \omega(\tau_1, \omega(\tau_2, \phi))$$

Example: Simple paths and VCs

- 1 m>0 \Rightarrow I[y \rightarrow 0, x \rightarrow 0]
- $\mathbf{I} \wedge \mathbf{x} \geq \mathbf{m} \Rightarrow \mathbf{y} = \mathbf{m}$
- $\mathbf{I} \wedge \mathbf{x} < \mathbf{m} \Rightarrow \mathbf{I}[\mathbf{y} \rightarrow \mathbf{y+1}, \mathbf{x} \rightarrow \mathbf{x+1}]$

$$\omega(x:=e, \phi) = \phi [e/x]$$

$$\omega(assume(p), \phi) = p \Rightarrow \phi$$

$$\omega(assert(p), \phi) = p \land \phi$$

$$\omega(\tau_1; \tau_2, \phi) = \omega(\tau_1, \omega(\tau_2, \phi))$$

Example: Boolean Constraint Generation

Unknown invariant on the LHS: Unknown invariant on the RHS: constrains how strong I can be constrains how weak I can be $m>0 \Rightarrow I[y\rightarrow 0, x\rightarrow 0]$ $\mathbf{I} \wedge \mathbf{x} \geq \mathbf{m} \Rightarrow \mathbf{y} = \mathbf{m}$ $I \land x < m \Rightarrow I[y \rightarrow y+1, x \rightarrow x+1]$

Unknown on both sides;

combination of above cases

Example: Boolean Constraint Generation

Unknown invariant on the LHS; constrains how weak I can be

Unknown invariant on the RHS; constrains how strong I can be

1 m>0
$$\Rightarrow$$
 I[y \rightarrow 0, x \rightarrow 0]

1:
$$y \le m \land y \ge m$$

3:
$$x < y \land y < m$$

$$x \le y$$
, $x \ge y$, $x < y$
 $x \le m$, $x \ge m$, $x < m$
 $y \le m$, $y \ge m$, $y < m$

$$0 \le 0$$
, $0 \ge 0$, $0 < 0$
 $0 \le m$, $0 \ge m$, $0 < m$
 $0 \le m$, $0 \ge m$, $0 < m$

$$\neg \neg \begin{pmatrix} x < y \\ x \ge m \\ y \ge m \end{pmatrix}$$

$$(b_{x < m}) \lor (b_{y \le m} \land b_{y \ge m}) \lor (b_{x \le y} \land b_{y \le m})$$

$$\neg \ b_{x \geq m} \wedge \neg \ b_{x < y} \wedge \neg \ b_{y \geq m}$$

Example: Solving using SAT

```
Individual
            \neg\,b_{x>m}\,\wedge\,\neg\,b_{x< y}\,\wedge\,\neg\,b_{y>m}
                                                                                computations
(b_{x < m}) \lor (b_{y \le m} \land b_{y \ge m}) \lor (b_{x < y} \land b_{y < m}) \circ O
(b_{y \le m} \Rightarrow (b_{y < m} \lor b_{y \le x})) \land \neg b_{x < m} \land \neg b_{y < m}
                                                                                                   loop (int m) {
                                     SAT Solver
                                     (fixed point computation)
                                                                                                      assume(m > 0)
                                                                                                      x:=0; y:=0;

ightarrow I: y=x \wedge y<m
                                                                                                      while (x<m) {
                  tt: b_{v \le x}; b_{v \le m}; b_{x \le v}
                                                                                                          X++; y++;
                  ff: rest
                                                                                                      assert(y = m)
                                                                                                                          12
```

- ✓ Program Verification
- ➤ Maximally-weak Precondition Inference
- ➤ Inter-procedural Summary Computation

Maximally-weak preconditions

- Instead of the precondition true as in PV, treat precondition as an unknown PRE
- Generate constraints as for PV—now in terms of PRE and the unknowns invariant I's
- Solving these yields a precondition PRE, but not necessarily the maximally-weakest
- Iteratively, improve the current precondition T by adding the following constraint:

$$T \Rightarrow PRE \land \neg (PRE \Rightarrow T)$$

Context-sensitive Inter-procedural Analysis

- Compute context-sensitive procedure summaries as (A_i, B_i) pre/post pairs in assumeguarantee style reasoning
- · Constraint generation
 - Procedure body (guarantee):

```
assume(A_i); S; assert(B_i)  P(x) \{ S; return y; \}
```

- Calls (assume):

```
assert(A<sub>i</sub>[u/x]); assume(B<sub>i</sub>[u/x, t/y]); v:=t v = P(u);
```

Experiments: Overview

- Our benchmarks are academic/small benchmark programs that demonstrate the feasibility of the technique
- We ran our tool in two modes: program verification and weakest precondition
- We are able to easily generate disjunctive invariants for which specialized techniques have been proposed earlier
- We collected three performance statistics:
 - Time for verification condition generation (weakest precondition over simple paths)
 - Time for boolean constraint generation (includes the predicate cover operation)
 - Time for SAT solving (fixed point computation)

Experiments: Results

- VC generation: 0.23sec
- SAT solving: 0.06sec
- Boolean formula generation:

- Overall time for invariant generation is low
- Predicate cover called on small formulas. Our unoptimised version performs reasonably

Related Work

- Constraint-based invariant inference:
 - Cousot / Sankarnarayanan et.al.: LIA using mathematical solvers
 - Beyer et.al.: LIA+UFS by compiling away UFS to LIA
 - Podelski et.al. / Bradley et.al.: Discover ranking functions

We describe a reduction over the very successful domain of predicate abstraction

- Application of SAT to program analysis:
 - SATURN: bit accurate modeling of loop-free programs with complicated data structures
 - Bounded model checking etc.

Use SAT for validation; in contrast, we use it for inference of invariants that are sound overapproximations

Conclusions

- Constraint-based techniques offer two advantages over iterative fixed-point techniques:
 - Goal directed (may buy efficiency)
 - Do not require widening (may buy precision)
- For predicate abstraction, we have shown how to reduce various program analysis problems to constraint solving.
- In addition to program verification, constraint-based encoding facilitates easy extensions to interprocedural summary computation, maximally-weak preconditions, counter-examples to safety.

Future Work

- We are exploring extensions to quantifiers and other analysis problems as future work.
- We are exploring the scalability of this technique along two directions:
 - Encodings that yield simpler SAT instances, e.g. exploiting symmetry information for the case of disjunctive solutions
 - Reducing programmer burden by automatically inferring predicate sets and templates
- VS³: Verification and Synthesis using SMT Solvers http://www.cs.umd.edu/~saurabhs/pacs/

Questions?

Best Description of Bugs

Instrument

```
x < m \land y \ge x
Err (int m) {
 while (x < m) {
    x++; y++;
    assert (y < m);
 }
}
```

· Run maximally-weak precondition