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Abstract – We presentPluriBus, a system to provide
high-performance Internet access on-board moving vehi-
cles. It seamlessly combines multiple wide-area wireless
paths that individually tend to be lossy and high-delay.
PluriBus employsopportunistic erasure coding, a novel
technique to use spare capacity along any path to mask
losses from end hosts. It sends erasure coded packets
only when there is an opening in a path’s spare capacity,
so that coded packets do not delay or steal capacity from
ordinary data packets. Packets are coded usingEvolu-
tion codes that we have developed to greedily maximize
the expected number of data packets recovered with each
coded packet. We have deployedPluriBus on two buses.
Our experiments show that it reduces the median flow
completion time by a factor of 2.5, compared to an exist-
ing method for spreading traffic across multiple paths.

1. INTRODUCTION
Internet access on-board buses, trains, and ferries is

increasingly common [33, 38, 40, 41]. Public transporta-
tion agencies in over twenty cities in the USA currently
provide such access to boost ridership; many more are
planning for it [32]. Corporations also provide such ac-
cess on the commute vehicles for their employees [37,
39]. For instance, more than one-quarter of Google’s
work force in the Bay Area uses such connected buses [37].
By all accounts, riders greatly value this connectivity. It
enables them to browse the Web, exchange email, and
work on the way to their destinations.

Despite increasing popularity and a unique operating
environment, the research community has paid insuffi-
cient attention to how to best engineer these networks.
This is the focus of our work. It is motivated by our
own experiences of poor performance of these networks
and complaints by other users [34, 35, 36]. Based on
early experiences with its commuter service, Microsoft
IT warns that “there can be lapses in the backhaul cover-
age or system congestion” and suggests “cancel a failed
download and re-try in approximately 5 minutes.”

Figure 1(a) shows the typical way to enable Internet
access on buses today. Riders use WiFi to connect to a
device on the bus (e.g., [12]), which we callVanProxy.
The device provides Internet access using a wide-area
wireless (WWAN) technology such as EVDO or HSDPA.
The key to good performance in this setup is the quality
of connectivity provided by the wireless link.

Our measurements of multiple technologies confirm
earlier findings [27, 13] that WWAN paths offer poor ser-

vice from moving vehicles. They have high delays and
frequently drop packets. Occasionally, they even suffer
blackout periods with very high loss rate. Poor applica-
tion performance in this setting is only to be expected.

We design and deploy a system calledPluriBus, to pro-
vide high-performance connectivity on-board moving ve-
hicles. As shown in Figure 1(b), it uses multiple WWAN
links and bonds them with the help of a proxy on the
wired network, which we callLanProxy. Our approach is
inspired by MAR [27] which showed the potential of us-
ing multiple wireless links using simple bonding mech-
anisms and trace-driven studies. It left open the task of
building high-performance mechanisms.

PluriBus employs two techniques that boost applica-
tion performance. These techniques reduce the path loss
rate and path delay experienced by end hosts. Reducing
these quantities directly improves the completion times
of short TCP transfers that dominate in our environment.

To mask losses from end hosts,PluriBus uses a novel
technique calledopportunistic erasure coding. It is op-
portunistic in when and how many erasure coded pack-
ets are sent as well as what each coded packet carries.
It sends coded packets only during instantaneous open-
ings in a bottleneck link’s available capacity, which we
judge by estimating queue length. This way, coded pack-
ets do not delay or steal bandwidth from data packets and
provide as much protection as available capacity allows.
By contrast, in existing methods the fraction of coded
packets per data packet is independent of load and avail-
able capacity [2, 21]. These methods may either fail
to take full advantage of available additional capacity or
may slow down data packets under high load.

PluriBus encodes packets using a new rateless code called
Evolution codes. These codes maximize the expected
number of data packets recovered with each coded packet,
by explicitly considering what information might already
be available at the receiver. They thus aim for greedy,
partial recovery of a window of packets. In contrast, tra-
ditional erasure codes, such as Reed-Solomon and LT [26,
22], aim for efficient, full recovery. They minimize the
number of packets needed at the receiver to recover all
data. But in our setting, given the burstiness of incoming
traffic and losses, it is hard to guarantee at short time
scales that the required number of packets will be re-
ceived. And when that does not happen, very little data
may be recovered by traditional erasure codes [28].

The second technique, calleddelay-based striping, min-
imizes the average packet delivery delay. We achieve this
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Figure 1: Two architectures for providing connectivity on-board buses. (a) Current practice. (b)PluriBus.

by striping data across available links based on the esti-
mated delivery delay along each link [9]. We estimate
delivery delay by estimating queue length and propaga-
tion delay, and send each packet on the link that offers
the least delivery delay at that time. The striping decision
for each packet is taken independently. In other words,
PluriBus does not use a slower path until the queues on
a faster path increase its delay to match the slower path,
thus minimizing the average delay for data packets.

PluriBus has been deployed on two of Microsoft’s cam-
pus buses for two months. Each bus is equipped with
two WWAN links, one EVDO and one WiMax. We are
currently working with Microsoft IT to putPluriBus in
operational use.

We evaluatePluriBus using our deployment as well as
emulator-based controlled experiments. In our deploy-
ment, it reduces the median flow completion time for a
realistic workload by a factor of 2.5, compared to an ex-
isting method for spreading traffic across multiple links.
We also study the opportunistic erasure coding and delay-
based striping individually and find that they contribute
roughly equally to the overall gain.

This paper makes the following contributions. First,
it develops a transmission strategy that opportunistically
consumes spare capacity. This strategy can be used to
transfer any kinds of low-priority information (e.g., logs)
in a way that does not hurt higher-priority data. Second,
it presents a new rateless code, called Evolution codes.
This code can be used in any setting where fast, par-
tial recovery of data is more important than efficient, full
recovery. Third, it shows that the combination of op-
portunistic erasure coding and delay-based striping, pro-
vides a high-performance method for bonding paths that
have disparate delays, capacities and loss rates. Most
existing works on bonding paths assume identical links,
identical delays, or ignore losses [10, 30, 14, 9].

2. THE VEHICULAR ENVIRONMENT
In this section, we briefly characterize the paths and

workload of our target environment. We show that the
network paths are highly lossy. They also have high de-
lays, a significant portion of which is inside the providers’
network itself. The workload is dominated by short flows
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Figure 2: (a) The CDF of loss rate for paths to the
buses. (b) A chosen hour-long window that shows the
temporal behavior of loss rate for WiMax.

and is highly bursty. These characteristics motivate our
solution, which is presented in the following sections.

2.1 Our Testbed
Our testbed consists of two buses that ply around the

Microsoft campus. We equipped each with a desktop
computer. The buses operate approximately from 7 AM
to 7 PM on weekdays. The on-board computers are equipped
with an 1xEVDO (Rev. A) NIC on the Sprint network
and a WiMax modem (based on the draft standard) on
the Clearwire network.1

2.2 Network Path Characteristics
We characterize path quality by sending packets be-

tween the bus and a computer connected to the wired In-
ternet. Unless otherwise specified, a packet is sent along
each provider in each direction every 100 ms and the
analysis is based on two weeks of data.

2.2.1 Paths are highly lossy
Figure 2(a) shows the CDF of loss rates, averaged over

5 seconds, from the wired host to the buses. The reverse
direction has a similar behavior. For EVDO, 20% of the
intervals have a non-zero loss rate, while for WiMax, this
number is 60%. For both, a significant fraction of the in-
tervals have a very high loss rate. Figure 2(b) shows one
handpicked hour-long window with a particularly bad
loss behavior. These results agree with earlier measure-
ments from moving vehicles in different countries [27,
13]. Such lossy behavior can hurt many applications, es-
pecially those that use TCP.
1We also experimented with an HSDPA card from AT&T. Its
performance is qualitatively similar to the EVDO link.
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Figure 3: The CDF of path RTTs.
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Figure 4: Breakdown of path RTTs.

2.2.2 Paths have high and disparate delays
Figure 3 shows the CDF of round trip time (RTT) for

each provider. The median RTTs for both are rather high
– roughly 40 ms for WiMax and 150 ms for EVDO –
even though the path end points are in the same city.

To uncover where the time is spent, we run traceroute
from the bus to the wide-area host. From this data, we
extract the RTTs to the destination, to the first IP hop, and
to the last hop in the wireless provider’s network. The
last hop is inferred using DNS names of the routers [31].

Figure 4 shows the results for an hour-long window.
Surprisingly, a third of the delay for EVDO and nearly
all of it for WiMax is to the first IP hop. For both, nearly
all of the delay is inside the provider network. As we
shall see later, this observation has implications for how
losses can be masked in this environment.

Additionally, the factor of three difference in the RTT
of the two providers implies that simple packet strip-
ing schemes like round robin will perform poorly. They
will significantly reorder packets and unnecessarily de-
lay packets along the longer path even though a shorter
path exists in the system. Note that sending all the data
on the shorter path is not possible due to capacity con-
straints. Using two links from the same provider would
remove the delay disparity, but it would also reduce re-
liability, as the performance of the links will be highly
correlated [27].

2.3 Workload Characteristics
To get insight into the workload in our target environ-

ment, we collect traffic logs from commuter buses that
carry Microsoft employees to and from work. These
buses have the setup shown in Figure 1(a), with a Sprint-
based EVDO Rev. A NIC in the proxy device. We sniffed

Figure 5: Traffic arriving for the clients from the In-
ternet during 100 seconds

the intra-bus WiFi network on 11 different days to cap-
ture packets that are sent and received by the riders. The
average number of active clients per trip is around four.

The essential characteristics of this workload are sim-
ilar to those in many other environments. Traffic is dom-
inated by short TCP flows, which are especially vulner-
able to packet loss. It is also highly bursty, as illustrated
by the example 100-second period shown in Figure 5.
The average load over the entire measurement period is
quite low, only 86 Kbps. However, short-term load on
the link can be as high as 1.5 Mbps, which is roughly the
saturation load and suggests capacity limitations. Bursti-
ness makes it hard to accurately predict short-term traf-
fic intensity or leftover capacity. As we discuss later, it
also makes it hard to use existing erasure coding methods
because of the difficulty in estimating how much redun-
dancy can be added without overloading the path.

3. OVERVIEW OF PluriBus

Given the poor quality of wide-area wireless paths from
moving vehicles, how can we best improve application
performance? We could urge the carriers to improve the
underlying connectivity. This would require significant
investment towards improving coverage and handoffs. It
is also a long-term proposition and does not help with the
performance and growth of these networks today.

We instead take the approach of building a high-performance
system on top of multiple unreliable links. Multiple links
can help improve system reliability [27] and provide ad-
ditional capacity to handle bursts in the load.

ThePluriBus architecture is shown in Figure 1(b). The
VanProxy is equipped with multiple wireless links. All
packets are relayed through LanProxy, which is located
on the wired Internet. Such relaying allows us to mask
packet losses on the wireless links, which is not possi-
ble if the VanProxy directly communicated with remote
computers. It also allows us to stripe packets across links
in a fine-grained manner. Otherwise, striping must occur
at least at the level of individual connections, which per-
forms poorly (§6.3).

It may seem that relaying via LanProxy will increase
end-to-end latency. However, because of the high delay
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inside wireless carrier networks, any increase should be
small if the LanProxy is deployed within the same city.
Internet path latencies within a city tend to be small [31].
Interestingly, relaying through our deployed LanProxy
actually reduces latency to most destination because of
significant Detour effects [29].

Within the context of this architecture, we can now
concisely state the problem we want to address. We are
given one or more paths between the two proxies. Each
path uses a different WWAN link. Paths are lossy with
time-varying loss rate. Different paths have different ca-
pacities and delays. The incoming data at each proxy is
bursty and arrives at an unknown and time-varying rate.

We assume that the WWAN links are the bottlenecks.
We further assume that the MACs of these links isolates
transmitters such that aggressive usage by one does not
hurt others. 3G and WiMax MACs achieve this by tightly
coordinating medium access at the basestation.

Our goal is to deliver data from one proxy to the other
in a manner that minimizes completion times for interac-
tive traffic such as Web transfers. Per this goal, we aim
to minimize loss and delay experienced by end hosts, the
two factors that impact completion time.

PluriBus uses opportunistic erasure coding to leverage
spare path capacity to mask losses from end hosts, and it
uses delay-based striping to transmit each packet on the
path that currently offers the least delay.

1. Opportunistic erasure coding: We can mask
losses either by retransmitting lost packets based on feed-
back from the other proxy or by proactively sending era-
sure coded packets. The former is slow in our setting
because it takes at least 1.5 times the inter-proxy RTT,
which tends to be high. Additionally, it may not hide
many losses if end hosts detect loss within one end-to-
end RTT (e.g., using TCP), as inter-proxy RTT can be
major portion of the end-to-end RTT.

Erasure coding is thus a better fit for our setting. We
desire two properties from it, which dictate when and
how many coded packets are sent, and what code gen-
erates them. First, coded packets should interfere min-
imally with data packets, while providing as much pro-
tection as possible. Coded packets interfere when data
packets are queued behind them at the bottleneck queue
because this amounts to them stealing valuable capacity
from the data packets.

None of the existing methods, such as Maelstrom [2]
or CORE [21], fulfill our first property. These methods
generate a fixed number of coded packets for a given
set of data packets, and the coded packets are sent re-
gardless of current state of the queue. If this fixed over-
head is low, they do not provide sufficient protection even
though there may be excess capacity in the system. If it
is high, they hurt application throughput by stealing ca-
pacity from data packets. Given the bursty nature of in-

coming traffic, tuning overhead to match spare capacity
at short time scales is difficult.

In PluriBus, we send coded packets opportunistically,
that is, when and only when there is instantaneous spare
capacity in the system. We judge the availability of spare
capacity by estimating the length of the bottleneck queue.
This way, coded packets defer to data packets and delay
them by at most one packet, and they provide as much
protection as the amount of spare capacity allows.

The second property is that the code should not rely
on the receiver getting some minimum number of coded
packets. With bursty incoming traffic and thus available
capacity, such a requirement is hard to meet. Conven-
tional erasure codes, whether rateless (e.g., LT [22]) or
not (e.g., Reed-Solomon [26]), do not have this property.
They are designed to minimize the number of packets
needed at the receiver to fully recover all data packets.
But they recover very little if fewer that this number of
packets are received [28].

For PluriBus, we designEvolutioncodes which maxi-
mize the expected number of data packets recovered us-
ing each coded packet. Thus, instead of aiming for effi-
cient, full recovery, we aim for greedy, partial recovery
based on whatever the receiver manages to get.

Additionally, the set of data packets we encode over
is a moving window because we consider only packets
that arrived at the sending proxy in the last inter-proxy
RTT. For older packets, the end hosts may have already
detected loss and retransmitted. Evolution codes natu-
rally apply to moving windows, which is not the case for
many of the existing codes.

Logically, opportunistic erasure coding uses all spare
capacity along a path, to maximize the level of protec-
tion. In practice, however, path are not always fully used
(§6.2.3) because coded packets are sent only if new data
packets arrived within the last inter-proxy RTT. Never-
theless, we do use the paths aggressively. We discuss the
implications of this behavior in§8.

Finally, observe that our scheme strictly prioritizes data
packets over coded packets because we send coded pack-
ets only when the queue is empty. It is based on a packet-
level view and maximizes the rate at which new data
reaches the receiver; while a data packet delivers one new
data packet at the receiver, coded packets deliver less on
average. If packets have complex dependencies, this pri-
oritization may not be optimal. For example, consider
the case where the utility of a newly arrived data packet
depends on earlier data packets already being at the end
host (e.g., as in MPEG encoding). Here, the right strat-
egy might be to transmit coded packets that try to recover
the earlier packets before the new data packet is transmit-
ted. We choose not to optimize for such dependencies, to
keep our design simple. Also note that since our proxies
multiplex several simultaneous connections, many pack-
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ets would in fact be independent.
2. Delay-based path selection:PluriBus sends each

data packet along the path that is likely to deliver it first [9],
which we judge using estimates of queue length and prop-
agation delay. It continues to send traffic along the fastest
path until queue buildup brings its delay up to the level
of the next fastest path, and so on. This method naturally
generalizes striping mechanisms such as round robin to
the case of paths with different delays and capacities. It
minimizes the average delay experienced by traffic and
also makes it less likely for a later packet to arrive before
a previously sent packet. Variations and mis-estimations
of path delay can still lead to some reordering, which we
handle using a small sequencing buffer.

Observe that our striping minimizes average packet-
level delay, which may not translate to minimum average
completion time. A scheme that prioritizes packets from
short connections over those from long ones may result
in lower average completion times. We choose a striping
mechanism that is independent of connection sizes due
to its simplicity.

To summarize,PluriBus transmits data packets as soon
as they arrive, along the path deemed to have the least
delay. It sends coded packets along a path only when its
estimated queue length is zero. The contents of a coded
packet are determined using Evolution codes.

4. DESIGN OF PluriBus
We now describe our design in more detail. We start

by describing Evolution codes. Next, we describe how
we estimate the queue length along a path. Finally, we
describe how we select the path that has the least delay.

For the purpose of this section, the terms sender and
receiver refer to the two proxies. Identical algorithms
run in each direction.

4.1 Evolution codes
Evolution codes aim for greedy, partial recovery, by

maximizing the expected number of packets that will be
recovered with each coded packet. At any given instant,
the sender encodes over a set of data packetsW that were
sent within the previous RTT. Letr be the fraction of the
W packets (but not which exact packets) that has been
successfully recovered by the receiver. For tractability,
we assume that each packet inW has the same probabil-
ity, equal tor, of being present at the receiver. In prac-
tice, the probabilities of different packets may differ. We
describe later how the sender estimatesr based on past
transmissions of data and coded packets.

Given current values ofW andr, how should the next
packet be coded? To keep encoding and decoding opera-
tions simple, we only create coded packets by XOR-ing
data packets together. Because of the assumption that all
packets have the same probability of being there at the
receiver, the question boils downs to how many packets

should be XOR’d. A simple analysis yields the optimal
number of packets that must be included. It assumes that
coded packets that could not be immediately decoded at
the receiver are discarded, and thus a coded packet can
recover at most one data packet.

Suppose the sender XORsx (1 ≤ x ≤ |W |) data pack-
ets. The probability that this coded packet will yield a
previously missing data packet at the receiver equals the
probability that exactly one out of thex packets is miss-
ing. That is, the expected yieldY (x) of this packet is:

Y (x) = x × (1 − r) × rx−1 (1)

Y (x) is maximized forx = −1
ln(r) . This result can

be intuitively explained. If the number of data packets
already at the receiver is low, the coded packet should
contain few data packets. For instance, if more than half
of the packet are missing, the best strategy is to code only
one packet at a time (i.e., send duplicate packets); cod-
ing even two is likely futile as the chance of both being
absent, and hence of nothing being recovered, is high.
Conversely, if many packets are present at the receiver,
encoding a higher number of packets is the more efficient
way to recover missing data.

Thus, in PluriBus, the sender selectsmax(1, ⌊ −1
ln(r)⌋)

data packets at random to XOR. We round down be-
cause including fewer data packets is safer than including
more. Further, if|W | > 1 and⌊ −1

ln(r)⌋ ≥ |W |, we XOR
only |W |−1 packets. We never XOR allW of packets
because of a subtle corner case that arises when the win-
dow of packets is not changing and more than one data
packet is missing at the receiver, but the sender estimates
that fewer data packets are missing. In this case, XOR-
ing all W packets leads to repeated transmissions of the
same coded packet that cannot recover anything new.

Updating W and r: The sender updates the set of
packetsW and estimate the fractionr as follows.

i) When a new data packet is sent, it is first included
in W and thenr is updated to reflect the probability that
the new packet is received:

r ←
(|W | − 1)× r + (1− p)

|W |

p is a rough estimate of the loss rate of the path along
which the packet is sent. Receivers estimatep using an
exponential averaging of past behavior and periodically
inform the sender of the current estimate. In§6.2.2, we
show thatPluriBus gets a fairly accurate estimate of loss
rate and Evolution codes are robust to small inaccuracies.

ii) When a coded packet, formed by XOR’ingx data
packets, is sent,W does not change, andr is updated to
reflect the probability that the coded packet is received,
and yielded a new packet:

r ←
|W | × r + (1− p)× Y (x)

|W |

whereY (x) is defined in Eq. 1.
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iii) When the receiver returns the highest sequence
number that it has received – this information is embed-
ded in packets flowing in the other direction (§5) – pack-
ets with lower or equal sequence numbers are removed
from W . This step ensures that the sender encodes only
over roughly one round trip of data. We setr to the av-
erage path loss rate observed by the data packets that re-
main inW . This step may underestimate the fraction of
packets at the receiver because it does not account for the
fact that some of the packets inW may have been recov-
ered using previously sent coded packets. We find that
it does not hurt in practice and yields better performance
than leavingr unchanged which tends to overestimate
the fraction of packets currently at the receiver.

We now reveal the rationale for the name “Evolution.”
In this code, the complexity of the coded packets, i.e.,
the number of included data packets, evolves with link
conditions, window of data packets, and past history of
coded packets. The complexity of the coded packets
increases as more coded packets are generated and de-
creases when new data is included in the window.

Note the following regarding Evolution codes. First,
they explicitly consider the impact of loss rate. Exist-
ing codes do not, which is striking given their goal of
combating packet loss. Second, because of their focus
on greedy, partial recovery, Evolution codes are less effi-
cient for full recovery. The receiver needs more pack-
ets to recover all data packets. Our simulations show
that this inefficiency is 15-20%. Third, our decoding
algorithm discards any packets that we cannot immedi-
ately decode. This simplifies implementation but sac-
rifices some performance. Our simulations show that
the penalty is negligible (1-2%) because we send sim-
ple packets before complex packets. We omit both sets
of simulations results due to space constraints.

4.2 Estimating Queue Length
We maintain an estimate of queue length along a path

in terms of thetime required for the bottleneck queue to
fully drain. It is zero initially and is updated after sending
a packet:

Q← max(0, Q− T imeSinceLastUpdate) +
PacketSize

PathCapacity

PathCapacityrefers to the capacity of the path, which
we estimate using a simple method described below. The
capacity of a path is the rate at which packets drain from
queue at the bottleneck link. It is different from through-
put, which refers to the rate at which packets reach the
receiver. The two are equal in the absence of losses.

The WWAN MACs control media usage by individ-
ual transmitters, making it easier to estimate the capacity
of such links compared to CSMA-based WiFi links. As
an example, Figure 6 shows the throughput of WiMax
paths in the downlink and uplink direction for one-hour
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Figure 6: The downlink and uplink throughput of
WiMax paths. The y-axis range of the two graphs
is different.

windows in which we generate traffic at 2 Mbps in each
direction. We see roughly stable peak throughputs of
1500 and 200 Kbps, which correspond to their capacity.
An analysis of incoming sequence numbers confirms that
throughput dips are due to packet losses and not slow-
downs in queue drain rate.

While the behavior above may suggest that we could
simply configure path capacities, we include an estima-
tion component to be robust to variations that may occur
as the vehicle traverses through different regions. We
use the insight behind recent bandwidth measurement
tools [16, 17]: if the sender sends a train of packets faster
than the path capacity, the receive rate corresponds to the
path capacity. Instead of using separate traffic to mea-
sure capacity, we leverage the burstiness of data traffic
and the capacity-filling nature of our coding method to
frequently create packet trains with a rate faster than path
capacity.

We bootstrap the proxies with expected capacity of the
paths. The receiver then watches for changes. It mea-
sures the rate of incoming packets directly and computes
the sending rate using timestamps that the sender embeds
in each packet. The two rates are computed over a fixed
time interval (500 ms in our experiments). The capac-
ity estimate is updated based on intervals in which the
sending rate is higher than the current capacity estimate.
If the receive rate is higher than the current capacity es-
timate for three such consecutive intervals, the capacity
estimate is increased to the average of current estimate
and the median of the three receive rates. If the receive
rate is lower for three consecutive intervals, the capacity
estimate is decreased to the average of the current esti-
mate and the median of the three receive rates. Changes
in capacity estimate are communicated to the sender.

Errors in capacity estimate can lead to errors in the
queue length estimate. In theory, this error can grow un-
boundedly. In practice, we are aided by periods where
little or no data is transmitted on the path, which are
common with current workloads. These periods reset our
estimate to its correct value of zero. While we cannot di-
rectly measure the accuracy of our queue length estimate,
we show in§6.3 that our path delay estimate, which is
based in part on this estimate, is fairly accurate.

4.3 Identifying Minimum Delay Path
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To send data packets,PluriBus needs to estimate the
current delay along the path. A simple method is to use
the running average of one-way delays observed by re-
cent packets, based on feedback from the receiver. How-
ever, we find that this method is quite inaccurate because
of feedback delay and because it cannot capture with pre-
cision short time scale processes such as queue build-up
along the path (§6.3). Capturing such processes is impor-
tant to consistently pick paths with the minimum delay.

Our estimate of path delay is based oni) transmis-
sion time, which primarily depends on path capacity;ii)
queue length; andiii) propagation delay. We described
above how we estimate the first two. Measuring prop-
agation delay requires finely synchronized clocks at the
two ends, which may not be always available. We skirt
this difficulty by observing that we can identify the faster
path even if we only computed the propagation delay
plus a constant that is unknown but same across all paths.
This constant happens to be the current clock skew be-
tween the two proxies.

Let the propagation delay of a path bed and the (un-
known) skew between the two proxy clocks beδ. A
packet that is sent by the sender along the path at local
times will be received by the receiver at local time

r = s + δ + d + QueueLength +
PacketSize

PathCapacity

If the packet is sent when the queue length is zero:

d + δ = r − s−
PacketSize

PathCapacity

We can thus compute propagation delay plus skew using
local timestamps of packets that see an empty queue.

To enable the above estimate, senders embed their times-
tamps in the transmitted packets. The receivers keep a
running exponential average ofr − s − PacketSize

PathCapacity
for

each path, which corresponds to (d + δ). Only packets
that are likely to have sampled an empty queue are used
for computing the average. Packets that get queued at
bottleneck link are likely to arrive roughlyPacketSize

PathCapacity

time units after the previous packet. We use in our es-
timates packets that arrive at least twice that much time
after the previous packet. The running average is period-
ically reported by the receiver to the sender.

It is now straightforward for the sender to compute
the path that is likely deliver the packet first. This path
is the one with the minimum value of PacketSize

PathCapacity
+

QueueLength + (d + δ). This sum is in fact an estimate of
the local time at the receiver when the packet will be de-
livered. We show in§6.3 that despite the approximations
in the computation, our estimates are fairly accurate.

5. IMPLEMENTATION
We now describe our implementation ofPluriBus. When

the VanProxy boots, it uses one of its wide-area inter-
faces to inform the LanProxy of the current IP addresses

of its wireless interfaces. The LanProxy sends configu-
ration information to the VanProxy, including the IP ad-
dress range that should be used for the clients. Clients
use DHCP to get their configuration information from
the VanProxy.

The two proxies essentially create a bridge by tun-
neling packets over the paths between them. When the
VanProxy receives an IP packet from a client for a re-
mote computer, it encapsulates this packet and a custom
header (described below) into a UDP packet.2 It sends
the encapsulated packet to the LanProxy which decap-
sulates and relays the original IP packet to the remote
computer.

In the reverse direction, packets from the remote com-
puter for a vehicular client reach the LanProxy. The
packet’s destination IP address is used by the LanProxy
to determine the target VanProxy. (The LanProxy may
be serving multiple VanProxies.) After encapsulation,
the packet is relayed to the VanProxy which decapsulates
and sends it to the client.

PluriBus uses multiple sequence number spaces. One
space is used for data packets that arrive at the proxy to
be sent to the other proxy. These data-level sequence
numbers let the receiver uniquely identify data packets
and their relative order. There is also a path-level se-
quence number space for packets transmitted along a path.
This space helps the receiver estimate various path prop-
erties, such as loss rate.

EachPluriBus proxy caches incoming data packets for
a brief window of time so that it can decode coded pack-
ets. It also has a sequencing buffer to order received data
packets. When a decoded or received data packet has
a sequence number higher than one plus the highest se-
quence number relayed, it is stored in this buffer. It is
relayed as soon as the missing data packets are received
or decoded or when a threshold amount of time, set to
50 ms in our experiments, elapses.

PluriBus packets have a header with five fields: mes-
sage type, timestamp (in milliseconds), data- and path-
level sequence numbers, and the highest data-level se-
quence number received by the sender. The message
type is a 1-byte field that differentiates data, coded, and
control packets. Other fields are two bytes each. Coded
packets also contain a 4-byte bitmap that encodes which
data packets are contained in it, relative to the data-level
sequence number. Control packets are used by the prox-
ies to exchange configuration information, report on wide-
area address changes at the the VanProxy, and properties
of incoming paths.

The PluriBus header and the encapsulation lowers the

2We do not use the lower-overhead IP-in-IP encapsulation be-
cause such packets are filtered by our wireless providers. In
fact, our UDP packets have to masquerade as DNS responses
to get past the firewalls.
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effective link MTU by 41 bytes. To minimize the chances
of fragmentation, we inform the clients of the lower MTU
via the Interface MTU option of DHCP. Some clients in-
form their wide area peers of their MTU during TCP con-
nection establishment, via the MSS option of the SYN
packet. For other clients, we are experimenting with
modifying the MSS option of TCP SYNs as they traverse
the VanProxy. With these changes, only large UDP pack-
ets destined for the clients will be fragmented; such pack-
ets constitute a miniscule fraction in our traces. VPNs
face a similar fragmentation issue.

6. EVALUATION
Along with studying the overall performance ofPluriBus

(§6.1), we study in detail the behavior of opportunistic
erasure coding (§6.2) and of delay-based striping (§6.3).

Our primary experimental platform is the deployment
on buses that operate regularly on Microsoft campus (§2.1).
This platform offers a real environment in which we can
study the performance ofPluriBus and competing poli-
cies. Here, we do not control anything (e.g., path loss
and delay, and their variation) except the workload. To
isolate individual factors, we complement this platform
with controlled experiments using a network emulator.
To avoid confusion, our result graphs clearly indicate the
experimental platform upon which they are based.

Workload: For the experiments presented in this pa-
per, we generate realistic, synthetic workloads from the
traces described in§2.3. We first process the traces to
obtain distributions of connection sizes and inter-arrival
times, where a connection is the standard 5-tuple. The
synthetic workload is based on these distributions of con-
nection sizes and inter-arrival times [11]. The average
demand of this workload is 86 Kbps but it is highly bursty.

To study the performance ofPluriBus as a function of
load, we synthesize scale versions of the workload by
scaling the inter-arrival times. To scale by a factor of
two, we draw inter-arrival times from a distribution in
which all inter-arrival times are half of the original val-
ues, while retaining the same connection size distribu-
tion. Our workload synthesis method does not capture
many details, but we believe it captures to a first order
the characteristics that are important for our evaluation.
As per the metrics that we use below, the performance of
a synthetic workload scaled by a factor of 1 is similar to
an exact replay of connection size and arrival times.

To verify if our conclusions apply broadly, we also
considered other workloads. These include controlled
workloads composed of a fixed number of TCP connec-
tions and those generated by Surge [4], a synthetic Web
workload generator. The results are qualitatively similar
to those below. We omit details due to lack of space.

Performance measure: We use connection comple-
tion time as the primary measure of performance. This is
of direct interest to interactive traffic such as short Web
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Figure 7: Performance of various systems for a work-
load based on our traces. [Deployment]

transfers that dominates in our environment. We use
the median as the representative measure and the inter-
quartile range (25-75%) to capture the observed spread.

Baseline for performance comparison:Connection-
level striping is the state-of-the-art when multiple uplinks
are used in a vehicular setting [27]. All packets of a con-
nection traverse the same path, and no special loss recov-
ery (beyond end-host TCP) is performed. Of the several
possible connection-level striping policies, we use a pol-
icy calledMinConnPath. It maps a new connection to the
path with the minimum number of active connections.
Active connections are expired when they no packet is
received for them for 30 seconds.

MinConnPathperforms better than other connection-
level policies that we also experimented with. Round
robin does worse because it does not consider current
path load while mapping new connections. Mapping new
connections to links that currently carry less load in terms
of bytes per second performs worse as well. Lower load
on a link can stem from its poor performance – because
the traffic is responsive – and this policy ends up map-
ping more connections to the poorer link.

6.1 Overall performance

Figure 7 shows the performance of various means of
transferring data to and from the bus. For each method,
the graph shows the median and the inter-quartile range
of the connection completion times. These results are
based on our deployment on-board buses. Each method
ran for at least two days during which time it complete
tens of thousands of connections.

The first two bars show the performance of the system
when only one of the wireless uplinks is used directly,
as is the norm today. The median completion time of
EVDO is 500 ms and of WiMax is 700 ms. WiMax offers
lower performance because of its higher loss rate, even
though it has a much lower round trip time. The observed
average loss rate in this experiment is 5% for WiMax and
under 1% for EVDO. The higher loss rate of WiMax also
explains its larger inter-quartile spread. The completion
time increases significantly for connections that happen
to suffer a loss.
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as a function of load. [Deployment]

The third bar shows the performance when both links
are employed simultaneously usingMinConnPath. We
see thatMinConnPathreduces the median completion
time to 400 ms, by spreading load across both paths. We
find that it sends roughly equal amount of data along each
path on average. The spread in completion time is lower
because a smaller fraction of connections suffer losses
compared to the WiMax-only case and queues (due to
bursts) build less often due to additional capacity.

The fourth bar shows the performance ofPluriBus. We
see thatPluriBus performs significantly better thanMin-
ConnPath. Its median completion time is 150 ms, which
represents a reduction factor of 2.5 overMinConnPath.
We also find thatPluriBus reduces the loss rate seen by
end hosts to almost zero. This loss rate is roughly 2%
with MinConnPath.

The better performance ofPluriBus stems from the com-
bination of opportunistic erasure coding and per-packet
delay-based striping. To tease apart their individual con-
tributions, we added opportunistic erasure coding toMin-
ConnPath. The fifth bar in Figure 7 shows that the me-
dian completion time ofMinConnPath + Codingis 250 ms.
Thus, the addition of coding improves performance by a
factor of 1.6 (400/250). The median completion time of
PluriBus is even lower. This difference, which amounts to
an improvement factor of 1.6 (250/150) can be attributed
to the delay-based striping ofPluriBus.

We now study the performance ofPluriBus under higher
load. Figure 8 plots the median and inter-quartile range
for flow completion time as a function of the scaling fac-
tor used for the synthetic workload. Each data point is
based on at least two days of data. We see that the per-
formance advantage ofPluriBus persists even when the
workload is scaled by a factor of eight. Even at such high
load levels, there is ample instantaneous spare capacity
for PluriBus to mask losses and improve performance.

Figure 8 also shows that the performance ofPluriBus

with a scaling factor of eight matches that ofMinCon-
nPathwith a scaling factor of one. This implies that if
the desired median completion time is 400 ms,PluriBus

can support eight times as much load for the same two
WWAN links.

Having studied the performance ofPluriBus as a whole,
we focus next on studying in more detail the effective-
ness of its individual components.

6.2 Opportunistic erasure coding
We start with opportunistic erasure coding. We com-

pare it to other potential methods for masking packet
loss, evaluate the inaccuracy of loss rate estimation in
vehicular environments and its performance impact, and
quantify the impact of aggressive coding.

6.2.1 Benefit relative to other methods
The erasure coding method used inPluriBus can be

thought of as two separate mechanisms. The first mech-
anism, opportunistic transmission, controlswhencoded
packets are sent. It sends coded packets only when spare
capacity is available. The second mechanism, Evolution
coding, controlswhatcoded packets are sent. It stresses
partial recovery by explicitly considering information al-
ready present at the receiver. To better understand the
contribution of these two mechanisms, we compare our
method to two alternative methods for erasure coding.

The first method is based on fixed overhead codes such
as Reed-Solomon, for which the fraction of coded to
data packets is independent of prevailing workload and
available capacity. This method has neither opportunis-
tic transmissions nor a code meant for partial recovery.

To implement a fixed-overhead code withK% redun-
dancy, we send a coded packet after every100

K
-th pure

packet. Each coded packet codes over packets in the cur-
rent unacknowledged window since the last coded packet.
Thus, whenK = 100, every other packet is coded and
carries the previously sent pure packet (i.e. every packet
is simply sent twice); whenK = 10, every11th packet
is the XOR of previous 10 pure packets that still remain
in the unacknowledged window. This method is a simple
version of fixed-overhead codes and is similar to(K, 1)
Maelstrom code [2].

The second method is based on rateless codes, such as
LT, that can be adapted for opportunistic transmissions
because of they can generate on-demand as many coded
packets as needed. The coded packets generated by this
method are not based on what might be already present
at the receiver.

Our adaptation of rateless codes sends coded packets
opportunistically, likePluriBus. The degree distribution
of coded packet is decided based on the current size of
the unacknowledged window. We use the Robust Soliton
degree distribution, which is what LT codes use. This
distribution uses two input parameters,c andd, which we
set to the commonly used values of 0.9 and 0.1. Because
of small window sizes that dominate our environment,
other values yield similar results.

In addition to erasure coding, we also consider a sys-
tem that retransmits lost packets based on receiver feed-
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Figure 9: Performance of different loss protection
methods relative to the coding method ofPluriBus.
[Emulation]

back. This is the simplest loss recovery method and study-
ing it shows the value of erasure coding inPluriBus.

To evaluate these alternate methods, we perform con-
trolled experiments using the network emulator. We con-
figure only one link between VanProxy and LanProxy, to
exclude the impact of striping. The link has a one-way
delay of 75 ms and capacity of 1.5 Mbps. The loss rate on
the link is varied from 1% to 70%. We show results from
using the Bernoulli loss model, in which each packet has
the same loss probability. We omit result using more so-
phisticated loss models such as Gilbert-Elliot that induce
more bursty losses; they are qualitatively consistent with
those below.

Figure 9 shows the results as a function of the loss rate.
For each method, we plot its median completion time di-
vided by the median completion ofPluriBus. K% redun-
dancy curves correspond to fixed-overhead schemes. All
y-values in this graph are greater than one because all
other methods performs worse thanPluriBus.

We draw several conclusions from this graph. First,
as expected, some form of loss protection significantly
boosts performance. For instance, at 10% loss rate the
relative completion time without any loss protection is at
least twice that of any method of loss protection.

Second,PluriBus does better than retransmission-based
loss recovery. As mentioned earlier, this is because its
erasure coding is able to recover faster from losses, which
improves performance and also makes it less likely to
conflict with recovery efforts of the end hosts.

Third, PluriBus outperforms fixed-overhead method, at
both levels of redundancy and at all loss rates. This is
surprising at least at some data points. For example,
at 10% channel loss rate, 100% redundancy sends each
packet twice and recovers most channel losses. Its per-
formance is nevertheless poor. The problem is that the
workload is bursty, and adding a fixed overhead with-
out regard to instantaneous load results queue buildup.
On the other hand, by using opportunistic transmissions,
PluriBus avoids these slowdowns, even though it sends
more coded packets on average.
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Figure 10: Accuracy of loss rate estimates inPluriBus.
[Deployment]

Fourth,PluriBus performs better than the combination
of opportunistic transmissions and LT coding by about
10-50% In this case, the advantage ofPluriBus lies in it
using Evolution codes to guide the complexity of coded
packets based on an estimate of what is present at the re-
ceiver. LT do not account for information at the receiver
and thus sometimes either send an overly complex coded
packet (i.e. too many packets XOR’d together) that are
less likely to be decodable or send very simple coded
packets that are less likely to include new information.

Collectively, these results also indicate that opportunis-
tic transmissions are more valuable than Evolution cod-
ing. The performance differences between Evolution and
LT coding (with opportunistic transmissions) are smaller
compared to those between settings with and without op-
portunistic transmissions. This is result of the fact that
window sizes over which coding is done is usually small
in this environment. In separate experiments, we find
that the relative advantage of Evolution codes increases
as window sizes increase.

6.2.2 Accuracy of loss rate estimate
Evolution codes take loss rate into account while gen-

erating coded packets. Given the dynamics of the ve-
hicular environment, loss rate maybe hard to estimate.
Figure 10 shows that we manage to get a pretty accurate
estimate of loss rate in our deployment. It plots the dif-
ference in the loss rate for the next twenty packets minus
the current running average of the loss rate that we use
to predict future loss rate. Over 90% of the time, our
estimate is within±10%.

Despite the accuracy of loss rates estimates in our de-
ployment, it is important to understand the performance
impact of any inaccuracies. To study this, we use the
same emulator setup as above but force the proxies to
use an inaccurate value of loss rate.

Figure 11 shows the results, when we program the
proxies to use loss rate offsets of±0.1 and±0.2 off of
the actual loss rate on the emulated link. Positive offsets
represent overestimation of the loss rate and negative off-
sets represent underestimation. In the graph, thex-axis
corresponds to the actual loss rate and individual bars
correspond to different offsets. There is no bar for the
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Figure 11: Impact of inaccuracy in loss rate estimate
in PluriBus. [Emulation]

case of actual loss rate of 0.1 and an offset of -0.2. The
y-axis plots the median completion time relative to the
case where we do not program a loss rate offset.

We see that for low actual loss rates, inaccuracies in
loss rate estimates have little impact on performance. At
higher loss rates, which are uncommon in our environ-
ment, there is some performance degradation with un-
derestimation. This degradation is only about 20% if the
underestimation is by 0.2.

Interestingly, at high loss rates, performance improves
if loss rates are overestimated. This stems from our strat-
egy of greedily maximizing the expected yield of each
coded packet, ignoring possible optimizations over groups
of coded packets. We do this for simplicity and also be-
cause we do not know at the time of transmission if more
can be sent. The greedy strategy, however, can generate
coded packets that are sometimes too complex to be de-
codable at the other end. At high loss rates, groups of
simpler packets can outperform groups of coded packets
generated byPluriBus. In the experiment, overestimat-
ing loss rate helps because it leads to generating simpler
packets. We are currently investigating means for ex-
tending Evolution codes to optimize over small groups
of coded packets.

6.2.3 Impact of aggressive coding
A potential negative side-effect of our strategy to ag-

gressively send coded packets is slowdown for data traf-
fic in environments where the loss rate is low. However,
we find that this does not occur because of our strategy of
sending a coded packet only when the queue is estimated
to be empty.

For this experiment, we consider a setting with no un-
derlying loss because then coding brings no benefit and
can only create overhead. Since losses are common in
our deployment, we use emulation. We configure the em-
ulated link between the two proxies to have zero loss rate,
150 ms round trip delay, and 1.5 Mbps capacity. We use
scaled versions of our traces as workload and compare
the performance of traffic with and without coding.

Figure 12(a) shows the results by plotting the median
and inter-quartile flow completion time as a function of
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Figure 12: (a) Impact of coding on flow completion
time. The lines connect the median and the error bars
show the inter-quartile range. [Emulation] (b) Per-
centage of coded packets sent as a function of work-
load intensity. [Deployment]

the scaling factor. We see that any slowdown with coding
is minimal even at high load levels. Thus, our coding
methodology does not hurt application performance in
non-lossy environments and, as we have shown before,
significantly boosts performance in lossy environments.

Finally, we study how much additional traffic is gen-
erated by our coding methodology. This factor might be
of concern where wireless access is priced based on us-
age. In our own deployment, access fixed-priced, which
is more common.

Figure 12(b) shows the results for experiments using
our deployment. As expected, the fraction of coded pack-
ets declines as the workload intensifies because there are
fewer opportunities to send coded packets. We can also
see that whilePluriBus logically fills the pipe, the actual
amount of data sent is much lower because it codes over
only data packets that arrive in the last RTT. At the scal-
ing factor of 1, the average data traffic load is 86 Kbps.
Given that roughly two-thirds of all packets are coded,
the total load generated byPluriBus is roughly 258 Kbps,
which is much lower than the combined capacity of our
two links.

6.3 Delay-based path selection
We now study in detail the behavior of delay-based

path selection ofPluriBus, without the use of coding.

6.3.1 Benefit of fine-grained striping
We first quantify the advantage of fine-grained, delay-

based packet striping used byPluriBus by comparing it
with MinConnPath. The workload consists of two simul-
taneous (but not synchronized) TCP flows. Each flow
downloads 10 KB of data. A new flow starts when one
terminates. This workload represents a particularly good
case forMinConnPathbecause it is more likely to gen-
erate an even distribution. Even spreads are harder to
achieve in realistic workloads because individual flows
have different sizes. Any advantage ofPluriBus in this
two-TCP workload stems from its ability to stripe data at
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Figure 13: Comparison of delay-based striping and
MinConnPath. (a) As a function of delay difference,
in environments without loss. [Emulation] (b) In a
lossy environment, without coding. [Deployment]

the level of individual packets based on the current delay
estimate of each link.

We configure the emulator with two links between the
VanProxy and LanProxy. Each link has a capacity of
1.5 Mbps. The round trip propagation delay of one link
is fixed to 150 ms and that of the other is varied from
150 ms down to 50 ms. Neither link has any inherent
loss, and we configure our system to not using any cod-
ing. This allows us to isolate the impact of striping strate-
gies.

Figure 13(a) shows the median and inter-quartile flow
completion times for the two policies as a function of
the difference in the emulated link RTTs.We see that as
the difference in RTT increases the relative performance
advantage of delay-based striping increases. In the ex-
treme, when the difference in the RTT is 100 ms, which
roughly corresponds to the difference in our deployment,
delay-based striping halves the flow completion time.

Interestingly, even when the two links have equal de-
lays andMinConnPathshould lead to almost perfect dis-
tribution of connections across them, delay-based strip-
ing does slightly better. It does that by exploiting the
short-term differences in the queue lengths along the two
paths, which arise when the two TCP flows have different
window sizes. Further experimentation shows that this
advantage of delay-based striping becomes more promi-
nent as transfer sizes increase because that creates bigger
differences in the queues lengths.

These results show that delay-based striping outper-
formsMinConnPathin absence of losses. What happens
when losses are present and no coding is used to mask
them? In such a situation, the delay-based striping sig-
nificantly underperformsthe MinConnPathpolicy. Fig-
ure 13(b) shows this using our deployment and unscaled
workload. The first bar, forMinConnPath, is same as
that in Figure 7. The second bar is for delay-based strip-
ing with coding disabled. We see that it performs worse
thanMinConnPath, because the two links in our deploy-
ment have different loss rates.MinConnPathstripes at
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connection level; the connections that are mapped to the
EVDO link suffer few losses and perform well. Delay-
based striping, on the other hand, stripes at packet-level;
many connections suffers from the frequent losses on the
WiMax link.

These results imply that loss recovery is important for
packet-level striping ofPluriBus to be effective. A corol-
lary is that if the load is so high that there is no spare ca-
pacity to send coded packets,PluriBus will do worse that
MinConnPathif the paths have different loss rates. In our
present deployment there is ample spare capacity even if
we scale the workload eight-fold. We are currently in-
vestigating extensions by whichPluriBus will gracefully
switch to connection-level striping if there is not enough
spare capacity to mask losses.

6.3.2 Accuracy of path delay estimate
Various factors in a real deployment, including esti-

mates of path capacity, queue length, and propagation
delay, impact the delay estimate ofPluriBus. For good
performance, the accuracy of this estimate is important.
We evaluate accuracy by comparing the estimated deliv-
ery time at the sender to the actual delivery time at the
receiver. This comparison is possible even with unsyn-
chronized clocks because our estimate of propagation de-
lay already includes the clock skew.

Figure 14 shows the error in our delay estimate for the
deployment-based experiments of§6.1. It includes all
load scaling factors. The curve labeledPluriBus shows
that our estimate is highly accurate, with 80% of the
packets arriving within 10 ms of the predicted time. This
is encouraging, especially considering the inherent vari-
ability in the delay of wide-area wireless path (Figure 3).

One downside of any inaccuracy in the delay estimate
is that packets might get reordered. Reordering trans-
lates to additional delay as the packet will be put in the
sequencing buffer for the previous packet to arrive. We
find that fewer than 5% of the packets arrive at the other
end before a previously sent packet. 95% of such packets
wait for less than 10 ms.

Finally, the curve marked “Exp. avg.” shows the error
if we were to estimate path delay simply as an exponen-
tial average of observed delays, rather than the detailed
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accounting that we conduct based on estimated capacity
and queue length. We see that it tends to significantly
underestimate path delay. We also observe (but omit de-
tailed result) that this translates to significant reordering
and performance degradation to a level that is belowMin-
ConnPathin many scenarios.

7. RELATED WORK
Many systems bond multiple links or paths into a sin-

gle higher-performance communication channel. Our work
differs primarily in its context and the generality of the
problem tackled – we bond multiple paths with disparate
delays, capacities, and loss rates. While it is difficult to
list all previous works, we note that most existing works
assume identical links (e.g., multiple ISDN lines) [10],
identical delays [30], or ignore losses [14, 9, 27, 25].

A few systems stripe data between end hosts across
arbitrary paths by using TCP or a protocol inspired by it
along each path [15, 23]. This provides automatic loss
recovery and capacity estimation for each path. These
mechanisms work well in an end-to-end setting but not
in our in-network proxy setup because loss recovery in
them is based on receiver feedback. If applied to our
case, such an approach would be futile at hiding losses
from users’ TCP because of the high delay of paths be-
tween the two proxies (§6.2).

MAR [27] and Horde [25] are closest toPluriBus. Both
combine multiple wide-area wireless links to improve
Internet connectivity on vehicles. MAR uses a simple
connection-level striping policy but leaves open the task
of building more sophisticated algorithms. We build on
their insights to develop a packet-level striping algorithm
and show that it significantly outperforms connection-
level striping. Horde [25] specifies a QoS API and stripes
data as per policy. It requires that applications be re-
written to use the API, while we support existing appli-
cations. Neither MAR nor Horde focus on loss recovery.

Delay-based path selection across wireless links was
originally proposed in [9]. However, the authors did not
build a system around the algorithm, nor did they con-
sider the impact of loss. We show that loss recovery is
important for delay-based striping to be effective.

There has also been much work on improving TCP
performance over paths involving wireless links, which
can be divided into three classes. The first class relies on
access to end hosts (e.g., [5]). It cannot be applied to our
setting because we do not have access to either vehicu-
lar clients or their remote peers. The second class relies
on access to wireless provider’s infrastructure, such as
basestations, for instance, to quickly react to losses [1, 7,
8]. We cannot use this approach either.

The third class uses in-network proxies. The canon-
ical approach here is Split TCP [20] which uses one or
more proxies to break end-to-end TCP connections into

multiple segments, each running its own TCP connec-
tion. This approach works well if lossy segments have a
low round trip delay so that lost data can be quickly re-
covered, without incurring end-to-end delay. In our set-
ting, because we do not have access to wireless carriers’
networks, we can only split the TCP connections at the
VanProxy and the LanProxy. While this segment tends to
be very lossy, it is also responsible for the majority of the
end-to-end delay. As a result, Split TCP does not offer
any advantage over an end-to-end TCP connection and
performs worse thanPluriBus (which has faster, erasure
coding based loss recovery). We have verified both these
behaviors by implementing Split TCP but omit detailed
results to due to space constraints.

In the WiFi context, ViFi [3] improves the underlying
connectivity from moving vehicles. In contrast, we fo-
cus on wide-area wireless technologies and assume that
the underlying connectivity is outside of our control. We
then develop mechanisms that enable good application
performance on top of these links. Systems such as MORE [6]
and COPE [19] use coding to reduce packet losses. These
systems target the very different setting of multi-hop wire-
less networks and rely on the ability of WiFi nodes to
overhear nearby transmissions.

Evolution codes are inspired by Growth codes [18]
that were designed to preserve data in large sensor net-
works with failing sensors. Many of their design assump-
tions are specific to their target domain. For example,
they assume that the receiver starts out with no informa-
tion and also assume that multiple senders are attempting
to communicate with a single receiver.

8. DISCUSSION
An unconventional aspect of our design is that we ag-

gressively use spare capacity, without worrying about ef-
ficiency. In a recent position paper [24], we discussed
broadly the value of such an approach and argued that it
can be useful only if the overhead of aggressive resource
usage can be controlled.PluriBus is a practical instanti-
ation of this approach for the vehicular setting. It mini-
mizes overhead by using opportunistic transmissions for
coded packets.

Its aggressive addition of redundancy is based on a
selfish perspective. Bus operators typically subscribe to
a fixed-price, unlimited usage plans. Our design strives
to maximize user performance given that it does not cost
more to send more.

In the long-term, however, a natural concern is that
PluriBus will lead to higher prices if it increases providers’
operational cost. However, there are two reasons why
we believe that an exorbitant increase in operational cost
would not occur. First, the traffic generated by users on
buses may represent a small fraction of the total traffic
that the provider carries. Second, even thoughPluriBus

logically fills the pipe, in practice it is not constantly
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transmitting because it encodes only over data in the last
round trip time. As we showed earlier, for realistic work-
loadsPluriBus increases usage by a factor of 2. Finally,
we expect that the bus operators would be willing to pay
extra for better performance. The cost of wireless access
is a small fraction of their operational budget and amor-
tizes over many users.

Another concern is that overly active transmitters may
hurt the performance of the other users of the wide-area
wireless technology. We believe that the MACs of these
technologies and the two reasons mentioned above pro-
vide sufficient protection against such concerns.

9. CONCLUSIONS
We designed and deployedPluriBus, a system to pro-

vide high-performance Internet connectivity on-board mov-
ing vehicles. It seamlessly combines multiple, hetero-
geneous wide-area wireless paths into a single, reliable
communication path. The key novel technique inPluriBus

is opportunistic erasure coding. Coded packets are sent
only when there is instantaneous spare capacity along
a path. Packets are coded using Evolution codes that
greedily maximize the expected yield of each coded packet
by explicitly taking into account what might already be
present at the receiver. Our evaluation shows thatPluriBus

reduces the median flow completion time by a factor of
2.5 for realistic workloads.
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