
MPIWiz: Subgroup Reproducible Replay of MPI Applications

Ruini Xue†, Xuezheng Liu‡, Ming Wu‡, Zhengyu Guo‡, Wenguang Chen†

Weimin Zheng†, Zheng Zhang‡, Geoffrey M. Voelker¶

†Tsinghua University ‡Microsoft Research Asia¶University of California, San Diego

ABSTRACT
Message Passing Interface (MPI) is a widely used standard for
managing coarse-grained concurrency on distributed computers. De-
bugging parallel MPI applications, however, has always been a par-
ticularly challenging task due to their high degree of concurrent
execution and non-deterministic behavior. Deterministicreplay is
a potentially powerful technique for addressing these challenges,
with existing MPI replay tools adopting either data-replayor order-
replay approaches. Unfortunately, each approach has its tradeoffs.
Data-replay generates substantial log sizes by recording every com-
munication message. Order-replay generates small logs, but re-
quires all processes to be replayed together. We believe that these
drawbacks are the primary reasons that inhibit the wide adoption
of deterministic replay as the critical enabler of cyclic debugging
of MPI applications.

This paper describessubgroup reproducible replay(SRR), a hy-
brid deterministic replay method that provides the benefitsof both
data-replay and order-replay while balancing their trade-offs. SRR
divides all processes into disjoint groups. It records the contents of
messages crossing group boundaries as in data-replay, but records
just message orderings for communication within a group as in
order-replay. In this way, SRR can exploit the communication lo-
cality of traffic patterns in MPI applications. During replay, de-
velopers can then replay each group individually. SRR reduces
recording overhead by not recording intra-group communication,
and at the same time reduces replay overhead by limiting the size
of each replay group. Exposing these tradeoffs gives the user the
necessary control for making deterministic replay practical for MPI
applications.

We have implemented a prototype, MPIWiz, to demonstrate and
evaluate SRR. MPIWiz employs a replay framework that allows
transparent binary instrumentation of both library and system calls.
As a result, MPIWiz replays MPI applications with no source code
modification and relinking, and handles non-determinism inboth
MPI and OS system calls. Our preliminary results show that MPI-
Wiz can reduce recording overhead by over a factor of four relative
to data-replay, yet without requiring the entire application to be re-
played as in order-replay. Recording increases execution time by
27% while the application can be replayed in just 53% of its base
execution time.

1. INTRODUCTION
Software bugs remain a key factor impacting the reliabilityof

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

high-performance computing (HPC) applications. A recent study
of more than 20 HPC systems, for instance, found that software
bugs accounted for 24% of system failures [32]. Debugging HPC
applications has always been a particularly challenging task [13]
due to their high degree of concurrent execution, distributed com-
munication across multiple nodes in contemporary cluster environ-
ments, and non-deterministic behavior [5]. These characteristics
conspire to make subtle bugs difficult to reproduce and debug.

Deterministic replay is a potentially powerful technique for de-
bugging HPC applications. When an application executes, the re-
play tool records application inputs, such as messages, during the
recording phase. Then when developers want to track debug the
application, in the replay phase they can replay the faulty pro-
cesses to any state of a recorded execution and investigate how
these processes reached that state. Replay tools for HPC appli-
cations typically fall into two categories [22].Data-replay tools
record all incoming messages to each process during programexe-
cution, and provide the recorded messages to processes during re-
play and debugging. With this approach, developers can replay
just faulty processes rather than having to replay the entire par-
allel application. In contrast,order-replay tools only record the
outcome of non-deterministic events in inter-process communica-
tion during program execution — for instance,MPI_Recv with
MPI_ANY_SOURCE for MPI applications — and lets sending pro-
cesses reproduce the actual message contents during replay. Since
order-replay only records the ordering of non-deterministic events,
it records far less data than data-replay.

Despite their benefits, however, existing replay approaches for
HPC applications impose substantial overhead either at recording
or replay time. These overheads, unfortunately, limit their current
utility. With data-replay, the system must record the contents of
all inter-process communication to make every process replayable.
As a result, the replay log size scales directly with the amount of
inter-process communication, and becomes prohibitively large for
even moderate-scale applications. The NPB kernel LU with 64
processes in our experiments, for example, logs data at the rate of
nearly 14 GB per minute. While order-replay dramatically reduces
recording overhead, it imposes overhead during the replay phase.
All processes must be replayed together, even if the developer only
needs to investigate just a few processes. This requirementis im-
practical when an application has a large number of processes but a
developer only has limited resources for debugging, a common sit-
uation in HPC settings. In general, these two approaches represent
different trade-offs between introducing overhead in the recording
vs. replay phases, and it remains a challenge to find a balancebe-
tween them and make deterministic replay applicable for large HPC
applications.

In this paper we propose a hybrid approach calledsubgroup re-
producible replay(SRR) that provides the benefits of both data-
replay and order-replay while balancing their trade-offs.SRR di-
vides all processes into disjointreplay groups. During the record-
ing phase, SRR records the contents of messages crossing group

1

boundaries as in data-replay, but records just message orderings
for communication within a group as in order-replay. Duringre-
play, developers can replay each group independently of theothers.
SRR reproduces messages from outside the group directly from the
logs, and reproduces messages from within the group throughdi-
rect execution. It uses the recorded outcome of non-deterministic
events to make the replay deterministic with the original execution.
SRR therefore reduces recording overhead by not recording intra-
group communication, and at the same time constrains the replay
overhead by limiting the size of each replay group.

SRR is able to dramatically reduce recording overhead because
it exploits communication locality within HPC applications [8, 39,
18, 15]. Developers often structure communication patterns such
that processes typically exchange messages within a group to avoid
global synchronization and therefore improve overall application
performance. By design, such intra-group messages are the domi-
nant form of communication in an application. By making replay
groups consistent with these communication patterns, mostmes-
sages therefore become internal to a replay group and SRR avoids
having to record them.

As a result, the size of the replay group is the critical parameter
that fundamentally determines the overhead of the SRR approach.
We therefore developed a graph partitioning algorithm to discover
the communication locality of a running application, and automat-
ically determine the appropriate group size that best captures this
locality. With SRR, though, developers are still free to choose a
group size according to their needs. In fact, for an application with
n processes, group sizes of 1 andn make SRR behave exactly like
traditional data-replay and order-replay approaches, respectively.

We have implemented a prototype of SRR for MPI applications
called MPIWiz. MPIWiz uses a flexible library-based replay frame-
work called R2 [11] that employs binary instrumentation to trans-
parently make any MPI application replayable without recompila-
tion. We apply MPIWiz to several common MPI applications to
demonstrate its benefits compared to data-replay and order-replay
approaches alone. The extent of these benefits of SRR depends
upon the communication patterns of applications. For example, for
an application (NPB kernel CG) with good communication locality,
MPIWiz only generates 22% of the data-replay log size. Even for
applications that have no communication locality (e.g., NPB kernel
FT, which uses all-to-all communication), MPIWiz is still able to
reduce log size by about 13%. Across a suite of applications,the
average recording and replay overheads of MPIWiz naturallyfall
in between that of data-replay and order-replay.

Furthermore, by building on the R2 framework, MPIWiz pro-
vides two additional practical features not found in existing MPI
replay tools. First, in addition to non-determinism in communica-
tion, MPIWiz also captures non-determinism in operating system
calls (e.g.,gettimeofday, random) invoked by MPI applica-
tions. All of the applications in the NPB benchmarks, for exam-
ple, use non-deterministic system calls (MPI_Wtime), and cap-
turing the full extent of non-determinism is necessary for their ac-
curate replay. Second, MPIWiz guarantees that the memory foot-
prints of the replayed processes areidentical to those of the pro-
cesses in recording execution — all application memory locations
at user-level have the same values during both the record andreplay
phases. Ensuring identical memory values further aids developers
in debugging applications by removing inconsistencies between de-
ployment and debugging environments as a source of uncertainty.

The rest of the paper is organized as follows: Section 2 presents
related work. Section 3 discusses the design of SRR. Section4 de-
scribes our approach for determining replay groups, and Section 5
describes the MPIWiz replay framework. Section 6 details how

MPIWiz deals with the various sources of non-determinism inMPI
applications. We evaluate SRR relative to data-replay and order-
replay in Section 7. Finally, Section 8 summarizes our work and
concludes.

2. RELATED WORK
Deterministic replay is just one of many approaches that have

been proposed for debugging MPI applications. This sectiondis-
cusses how subgroup reproducible replay relates to existing replay
approaches, and places it in the larger context of MPI debugging
approaches.

Replay-based debug tools adopt either data-replay [25, 4, 2] or
order-replay [5, 21, 20] approaches to debug MPI applications.
Each approach has tradeoffs. Data-replay tools generate massive
logs, while order-replay tools require all processes to be replayed
together. Both of them are impractical for large-scale applications.
SRR is a balance between data-replay and order-replay. It only
requires replaying a group of processes, and users can adjust the
number of processes in the group to match the resources of their
debugging environment. Further, by exploiting locality inthe com-
munication patterns of an application, SRR can substantially re-
duce the size of logs generated during the recording phase. As
a result, SRR makes it possible to debug large-scale applications
with limited resources in the development environment.

Most MPI replay systems are implemented via the MPI profiling
interface. While convenient, unfortunately this approachdoes not
handle non-deterministic system calls, thereby making it difficult
to guarantee a completely faithful replay. We have implemented
SRR in MPIWiz on a general record and replay platform [11], en-
abling MPIWiz to capture all forms of non-determinism in MPIap-
plications. Other MPI replay systems are implemented by changing
the source code of the MPI distribution, which limits its portabil-
ity. MPIWiz employs binary instrumentation to transparently re-
play applications without the need to recompile or relink, and does
not depend on the MPI distribution.

More generally, deterministic replay is just one of many ap-
proaches that have been proposed for debugging MPI applications.
MPI-CHECK [24] uses static analysis to check the source codeat
compile time against the programming rules specified by the MPI
standard. Although useful for identifying some classes of errors,
static analysis also suffers from false negatives since many param-
eters are not known until the application executes. Parallel de-
buggers operate similarly as sequential debuggers [36, 31,30, 28,
4], but can be difficult to use effectively when there are hundreds
of processes. Automatic checking tools address the drawbacks of
manual checking in parallel debuggers [38, 12, 19, 7, 37]. These
tools use similar rules as static analysis, but they verify the rules
at runtime rather than compile time. IMC records communication
during execution and checks the trace to identify predefineder-
rors [6]. Several recent efforts have also explored the use of model
checking to verify MPI applications [23, 29, 33, 35, 34] to verify
MPI codes. Though it is difficult for these tools to handle bugs due
to non-determinism, they are helpful in application understanding
and deterministic bug tracking. We view SRR as complementary
to these efforts, and it can be used in conjunction with all ofthem.

3. DESIGN OVERVIEW
This section presents an overview of our design of subgroup re-

producible replay. We first explain how SRR divides all processes
into the replay groups and exploits communication localityto re-
duce recording overhead. Then we describe SRR record and replay
for an MPI application.

2

0 7 14 21 28 35 42 49 56 63
0

7

14

21

28

35

42

49

56

63

Receiver Rank

S
en

de
r

R
an

k

0

1

2

3

4

5

x 10
8

(a) CG

0 7 14 21 28 35 42 49 56 63
0

7

14

21

28

35

42

49

56

63

Receiver Rank

S
en

de
r

R
an

k

0

0.5

1

1.5

2

x 10
7

(b) MG

0 7 14 21 28 35 42 49 56 63
0

7

14

21

28

35

42

49

56

63

Receiver Rank

S
en

de
r

R
an

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
8

(c) LU

Figure 1: Communication traffic in CG, MG and LU (CLASS=C, NPROCS=64). The cell at(i, j) represents the communication volume (in
bytes) between processi andj using shades of gray. With replay groups in sets of 8 sequentially numbered processes, intra-group messages
account for about 77%, 55% and 50% of application communication traffic, respectively.

3.1 Communication Locality
The key inspiration underlying SRR is that HPC applications

typically exhibit strong communication locality. A numberof stud-
ies have shown that HPC applications, by design, have structured
communication patterns where processes predominantly exchange
messages within a group [8, 39, 18, 15]. Such communication pat-
terns increase parallel application performance by improving their
scalability. For example, Figure 1 shows the communicationpat-
terns of three widely-used MPI benchmarks — CG, MG and LU
from the NAS Parallel Benchmarks (NPB) [1]) — generated froma
trace-driven simulation using SIM-MPI [27]. In the figure, the gray
level of a cell at theith row andjth column represents the commu-
nication volume between two processesi andj. The figure shows
distinct group patterns, where processes can be divided into small
groups (e.g., a group of size eight for CG) in which intra-group
communication comprises the majority of overall communication
traffic. By organizing application processes into appropriate replay
groups, SRR can dramatically reduce recording overhead andlimit
the resources required during replay.

Based on these observations, a desirable assignment of processes
into replay groups should satisfy two conditions. First, each group
should have a moderate size so that replay requires only moderate
hardware resources, i.e., MPIWiz can replay a group of processes
reasonably fast with fewer computing resources than required for
the entire application. MPIWiz allows developers to specify an
upper-bound of the group size, and ensures this bound when parti-
tioning processes. By this means developers have the freedom to
choose different trade-offs between recording and replay overhead.
Second, given the constraint on group size, the processes assigned
to each group should reduce inter-group communication as much
as possible. In Figure 1a, for example, it is much more effective
to assign processes to replay groups in sets of eight sequentially
ranked processes rather than eight randomly selected processes.
We will describe how MPIWiz satisfies the two conditions in Sec-
tion 4, and Section 7.3 experimentally quantifies the tradeoff of
recording overhead and replay group size, and the benefits ofmak-
ing informed group membership assignments.

3.2 SRR Record
During the recording phase, SRR records only the contents of

incoming inter-group messages, and records the order of messages
only if an operation is non-deterministic (for any message,no mat-

ter whether the message is intra-group or not). Table 1 outlines the
recording and replay mechanism for different operations.

In the spirit of order-replay, since the replay phase executes the
processes within a replay group, SRR does not have to record any
data corresponding to intra-group deterministic MPI communica-
tion operations. Replay naturally reproduces message order and
contents. For non-deterministic intra-group communication, SRR
records the order of the messages but does not record their con-
tents; execution during replay will faithfully reproduce the contents
of messages as long as it preserves the original ordering. Messages
sent out of the replay group do not affect the replay of the group,
and can be safely ignored.

In the spirit of data-replay, SRR records the full contents of inter-
group messages received from outside the replay group, as well as
their order if the receive operation is non-deterministic.Since only
processes within a group execute during the replay phase, messages
from outside the group have to be recorded during the recording
phase so that they can be faithfully emulated during replay.

Collective communication involves messages sent among a set
of processes. As a result, during the recording phase MPIWiz
needs to determine the process membership of a collective com-
munication to determine what information to record, if any.A
collective communication specifies the set of processes involved
in the operation, albeit indirectly. To determine whether the cur-
rent process is involved, MPIWiz uses two steps. First, it deter-
mines the MPI group associated with the collective communica-
tion’s communicator viaMPI_Comm_group. It then translates
its global rank (the rank inMPI_COMM_WORLD) into the context
of this MPI group viaMPI_Group_translate_ranks. If the
result isMPI_UNDEFINED, then the process is not in the group,
otherwise it is participating in the collective communication. Since
the process membership of the collective communication cannot be
recalculated during the replay phase, MPIWiz records this informa-
tion during the record phase.

Finally, when non-deterministic system calls are used directly by
the application, MPIWiz always records their results in thelog.

3.3 SRR Replay
In the replay phase, SRR replays all of the processes of only

one replay group. The replayed processes generate intra-group
messages directly, and the contents of incoming inter-group mes-
sages are emulated using the recorded logs. Since the message or-
ders of non-deterministic operations have been recorded, SRR can

3

Table 1: Summary of record and replay mechanisms for the MPI API and system calls.
Category API Example Record&Replay mechanism
Point-to-Point Communication MPI_Send,

MPI_Recv
During recording, log inter-group communication, ignore intra-group communication. During
replay, emulate inter-group communication using the log, and reproduce intra-group communica-
tion. For non-blocking operations, log the request type (send or receive) and buffer information.
(Section 3.2 & Section 3.3)

Collective Communication MPI_Bcast,
MPI_Gather

Record members involved, handle message contents as with point-to-point communication. Re-
place with point-to-point communication during replay. (Section 3.2 & Section 3.3)

MPI Environment API MPI_Init,
MPI_Comm_rank

Record parameters and return value. Emulate them using the log during replay. (Section 3.2 &
Section 3.3)

Non-determinism in MPI MPI_ANY_SOURCE,
MPI_ANY_TAG

Wildcard receives. Record the real values for source and tagfields. Replace them with real
values during replay. (Section 6.1.2)

MPI_Waitany,
MPI_Testsome

Record returned request indices, and handle correspondingmessages buffer according to point-
to-point communication. During replay, check the request type and handle corresponding mes-
sage buffer according to point-to-point communication. (Section 6.1.3)

MPI_Probe Record the parameters and returned value. Emulate them using the log during replay. (Sec-
tion 6.1.3)

Non-determinism in OS GetTickCount Record the outcome according to the semantics of the routine. Emulate them using the log during
replay. (Section 6.2)

/* MPI_Bcast() replay code */
load MPI_Bcast rank_list from log
if (I am root) { /* for data sender */

foreach rank in rank_list:
if (rank is in replay group)

send message to rank
} else { /* for data receiver */

if (root is in group)
recv message from root

else
load message from log

}

Figure 2: Pseudo code forMPI_Bcast during replay.

guarantee a deterministic replay by enforcing this order inreplay,
as follows. For non-deterministic point-to-point operations, SRR
replaces the parameters introducing non-determinism (e.g., wild-
cards) with their real values. For collective operations, SRR replays
them using multiple point-to-point operations because some of the
participants might be outside of the group. For instance, Figure 2
illustrates how it replaysMPI_Bcast. If the replayed process is
the broadcast root, it generates messages to only those processes
in the replay group (the others do not execute during replay). If
the replayed process is a recipient, it receives the messageas with
point-to-point communication replay if the root is in the group, oth-
erwise, the recipient loads the message from the log.

A key difference between SRR and order-relay is how SRR de-
livers intra-group messages. In order-replay, the messageis deliv-
ered to the receiver by the sender through the same channel asin the
recording phase, e.g., through a socket. However, in SRR replay,
the original MPI initialization routine which constructs the MPI
parallel computing environment cannot execute identically as in
the recording phase because only the processes in the replaygroup
execute. To address this problem, SRR replay skips the construc-
tion of the full computing environment (similar to data-replay), and
as a result does not establish the communication channels among
the replayed processes as during the recording phase. As a result,
normal MPI communication functions (e.g.,MPI_Send) cannot
deliver the message in SRR replay. Therefore, SRR needs to emu-
late the communication channels and deliver messages itself. The
emulated communication channels also enable SRR to controlthe
order of message delivery, a necessary condition for reproducing
non-determinism in MPI message orders. In our current imple-
mentation of MPIWiz, we use a dedicated replayer process as a
message relay, i.e., the wrapper ofMPI_Send sends messages to

the replayer, andMPI_Recv receives messages from the replayer.

4. REPLAY GROUPS
The size and membership of replay groups are key parameters

that determine the overhead and performance of SRR. A straight-
forward way to determine these parameters is to utilize expert knowl-
edge and manually specify them. This approach is reasonablewhen
the developer knows much about the communication flow of the
MPI application and the communication pattern presents good lo-
cality.

In general, though, it is more practical to have MPIWiz auto-
matically determine replay groups. First, we need to find outthe
group size constraint. Then, for a given group size, we determine
an efficient membership of all processes to replay groups. Finally,
we search in a range of group sizes below a bound provided by the
user to find one that provides a near-optimal result, i.e., results in
the smallest inter-group communication volume.

For the group size constraint, in practice we imagine users set-
ting it to a small multiple (1−−4) of the number of processor cores
in their debugging environment both to limit the replay execution
time overhead, as well as to fit the working set of the replayedpro-
cesses within memory constraints. As with data-replay, a goal of
SRR is to enable users to debug MPI applications on a single ma-
chine. To keep the execution time of replay reasonable, the group
size should reflect the resources available in the debuggingenvi-
ronment. Having the group size reflect the number of processors
minimizes replay execution overhead. With the advent of multi-
core architectures, we believe this rule of thumb matches hardware
trends well.

After setting the group size constraint, we formalize the group
membership problem as ak-way graph partitioning problem. We
represent the communication pattern of an application witha graph,
in which each vertex represents a process and the weight of each
edge is the aggregate message traffic between the two correspond-
ing processes of the two vertices. This communication graphcan
be obtained, for example, by profiling the execution of the applica-
tion (e.g., with a tool like SIM-MPI [27] as in Figure 1). Our goal is
to partition this graph intok partitions with roughly equal numbers
of vertices, and where the sum of the weights of edges crossing the
partition boundary is minimized.

Although MPIWiz can handle replay groups of different sizes,
we argue that partitioning the process graph into nearly equal sizes
is desirable for the following reasons. First, the replay group size

4

1 8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

6 12
Max Group Size

In
te

r−
gr

ou
p

C
om

m
. R

at
io

Figure 3: The ratio of inter-group message size relative to to-
tal communication volume vs. group size for CG (NPROCS=64,
CLASS=C). If the group size upper bound is set toS = 12, MPI-
Wiz would choose the best group size in the range[6, 12].

constraint should be applied to the largest partition, otherwise MPI-
Wiz cannot replay that partition with reasonable overhead.On the
other hand, if the total size of two partitions is still smaller than
the specified upper bound, they should be merged together. Then
the inter-group communication between them becomes intra-group
communication and does not need to be recorded. Therefore, the
merging of the two partitions will certainly not increase the record-
ing overhead, but more than likely will decrease it. Creating nearly
equal-sized groups tends to generate a balanced result which is
more efficient than the original unbalanced one.

Although this kind of graph partitioning problem is NP-complete,
many algorithms have been proposed to find reasonably good par-
titioning using heuristic methods [9, 3, 26]. MPIWiz employs a
multilevelk-way partitioning algorithm MLkP [16] to partition the
process communication graph. We chose this algorithm sinceit
can generate a high-quality partitioning in linear time complexity
proportional to the number of edges (Section 7.3 shows the effec-
tiveness of MLkP). LetS be the upper bound of the partition size,
n be the number of vertices in the communication graph, andk the
number of partitions. Because the result of MLkP is nearly bal-
anced, MPIWiz can limit the size of a partition to be lower than S
by guaranteeing thatn/k < S.

Given an upper boundS of the partition size, the largest value
of k that satisfies this upper bound may still not produce the min-
imal amount of inter-group communication traffic. The reason is
that a group size of eight exactly matches the natural group com-
munication boundaries in the application (Figure 1). Slightly larger
groups will include processes that place them outside of their nat-
ural communication group, causing substantially more inter-group
communication that MPIWiz needs to record in the log. For exam-
ple, Figure 3 shows the inter-group communication traffic for the
NPB benchmark CG, as collected by SIM-MPI [27], for a range
of replay group sizes. In general, the inter-group communication
volume decreases with larger group sizes, but there still exist some
local optimal points (e.g., at 4, 8, 16, etc.).

The next step is to automatically discover a local optimum near
the upper boundS on replay group size. We do so by applying
MLkP iteratively across a range of values ofk to discover the value
that generates the optimal result. For each group size, MLkPiden-
tifies the replay group and we use SIM-MPI to collect the aggregate
inter-group communication volume. Fortunately, the number of it-
erations is reasonably small — we show that MPIWiz only needs
to search for group sizes in the rangeS/2 < n/k < S. Figure 3
shows the results of this process whenS = 12.

Let s be the replay group size of one local optimal point. The

Table 2: Group sizes grow slower as applications scale.
Proc. # 16 32 64 128 256

Group Size
CG 4 8 8 16 16
MG 4 8 8 16 16

group size2s should also be a local optimal point since, in this case,
groups with size2s can be formed by merging pairs of groups with
sizes. These merging operations do not increase the inter-group
communication volume while maintaining its local optimum at the
same time. Then givenS as the group size upper bound, if there
is no local optimal point with group size less thanS, MPIWiz can
find the optimal partitioning result when group size equals to S. If
there are local optimal points with group size less thanS, let s be
the local optimal group size which is less than and nearest toS.
Then we must have2s > S since2s is also a local optimal point,
which we can rewrite ass > S/2. Hence, sinces by definition is
less thanS, we haveS/2 < s < S. Therefore, by searching in the
group size range fromS/2 to S, MPIWiz can find a global optimal
group size satisfying the constraint.

A final observation is that, in scalable MPI applications, the size
of a communication group does not scale as quickly as the overall
application size. As the application scales up, the number of groups
increases accordingly, while the number of processes within each
group increases more slowly. Table 2 shows that the group size
grows more slowly as applications scale to larger numbers ofpro-
cesses for two NPB applications. As a result, even with applica-
tions using a large number of processes, MPIWiz can replay the
application using relatively small replay groups. In addition, since
group size grows slower than application size, the larger the ap-
plication, the more SRR will reduce recording overhead relative to
data-replay.

5. REPLAY FRAMEWORK
Deterministic replay requires that all MPI routines are both re-

playable and deterministic. In this section we describe ourap-
proach for making MPI routines replayable, and in Section 6 we
describe the techniques we use to ensure that all MPI and system
routines are deterministic.

MPIWiz takes advantage of a replay platform called R2 that
we previously developed for multi-threaded, distributed applica-
tions [11]. R2 uses binary instrumentation to transparently inter-
pose wrappers on API routines for both runtime environmentsas
well as system calls. For the MPI library, MPIWiz transparently in-
terposes a wrapper routine around each MPI routine in the library
interface.

Under MPIWiz, when applications call into the MPI library they
instead invoke the wrapper. The wrapper implements the record
and replay functionality, and invokes the actual MPI library routine
when necessary. For example, when an application callsMPI_Recv,
it will instead call a wrapper for the function. During the record
phase, the wrapper will callMPI_Recv, record the contents of the
received message to the log if appropriate, and then return to the
application. During the replay phase, the wrapper may emulate
MPI_Recv by returning the contents of the message from the log
rather than invoking the routine.

Implementing the recording and replay functionality for the en-
tire MPI API can be tedious because it requires wrapping nearly
300 API functions. Thanks to R2, which provides a flexible code
generation mechanism, we only need to write several generalcode
templates as annotations on API parameters instead of manually
programming recording and replay wrapper functions for every API
routine. MPIWiz currently supports 191 of the most commonly-

5

int
[reproducible]
MPI_Recv (

[out, bsize("GetSize(datatype, count)"), force] void* buf,
[in] int count,
[in] MPI_Datatype datatype,
[in] int src,
[in] int tag,
[in] MPI_Comm comm,
[out, opt(MPI_STATUS_IGNORE)] MPI_Status* status
);

Figure 4: The annotation ofMPI_Recv. reproducible means
this function may be reproduced if it is called by a process ina
replay group.in means the parameter is not modified, and no log-
ging is needed, whileout indicates the parameter is changed by the
routine and it is recorded automatically by generated code.bsize
indicates how to obtain the length of the buffer, andforce means
the length itself should be saved since the length can not be calcu-
lated during replay.opt means the parameter can be null or some
special values, in which cases it does not need to be saved.

used MPI functions (MPI-2.0 has 284 functions in total). Func-
tions not supported include remote memory access, MPI I/O, and
dynamic process creation. Expanding the set of supported func-
tions with further annotations is ongoing work.

For example, Figure 4 shows the signature ofMPI_Recv. To
generate its wrapper functions, we only need to annotate itsinput
and output parameters as shown in the figure. The generator inR2
will then parse the annotations and generate code that logs input
parameters during the recording phase and returns output parame-
ters during the replay phase. Compared with the manual approach,
automatic code generation is more convenient and avoids many po-
tential errors in manual programming. Compared with previous
MPI replay tools, which use customized MPI libraries ratherthan
binary instrumentation, this approach has the benefit that it is trans-
parently applicable to different MPI distributions.

6. HANDLING NON-DETERMINISM
Roughly speaking, for a replay tool everything that cannot be

deterministically reproduced during the replay phase needs to be
logged during the recording phase. This section describes our ap-
proach for handling non-determinism in both the MPI API and in
system calls.

6.1 Non-determinisms in MPI API
MPIWiz needs to accomodate three sources of non-determinism

in the MPI API: inter-group messages, the use of wildcard param-
eters when receiving messages, and the use of wait, test, andprobe
operations.

6.1.1 Inter-group Message Content
During the recording phase, when a process receives a message

MPIWiz needs to determine whether or not the message came from
a sender outside the replay group. At initialization time, MPIWiz
reads the membership of replay groups from a configuration file
which stores the ranks of processes in each group. When a process
receives a message MPIWiz checks the membership of the sender
process, and records the received message if it is from a different
replay group than the current process.

MPIWiz retrieves the message from the receiving buffer, typi-
cally provided as parameters to MPI routines. In addition toplain
buffers, MPI allows applications to specify derived data types for
which the sender can transmit a data trunk which is later split and
placed into non-contiguous positions of the receiving buffer at the

receiver. Currently, MPIWiz records the entire buffer usedwith de-
rived data types. In such cases, recording the entire receive buffer
ensures the correctness of replay, but it may be inefficient because
only a subset of the buffer may actually be used. A more efficient
solution is for MPIWiz to process the definitions of these data types
and record only the transmitted data. Our experience with MPI ap-
plications suggests that the use of derived data types is uncommon,
however, so we have left optimizing derived data types for future
work.

6.1.2 Wildcard Receives
Another source of non-determinism is the order of messages re-

ceived using wildcard parameters. For a receive operation,an appli-
cation typically specifies the source, the communicator, and a con-
ventional tag. However, both the source and the tag can be specified
using wildcards, e.g.,MPI_ANY_SOURCEand tagMPI_ANY_TAG.
A wildcard as the source (or tag) identifier allows a message from
any process to be accepted. When wildcards are used to receive
messages, the arrival order of messages is non-deterministic. Dif-
ferent orders may change the application’s behavior because the
execution after the receive operation may depend on the order of
messages.

Since MPIWiz handles messages from inside and outside of the
replay group differently, it needs to determine the actual message
origin when the source is set toMPI_ANY_SOURCE. Typically,
MPIWiz can retrieve the actual source from the status parameter.
Unfortunately, the MPI standard allows applications to ignore the
status parameter by setting it to a special value (MPI_STATUS_IG
NORE orMPI_STATUSES_IGNORE). To successfully record such
receive operations, we transparently replace the special status value
provided by the application with an allocated private variable pro-
vided by the MPIWiz runtime to ensure the MPI routine returns
the necessary information. After retrieving the actual source of the
message, MPIWiz records it and restores the special status value as
provided by the application. MPIWiz performs similar stepsduring
replay. This method makes use of MPI’s functionality, and does not
change the application’s control flow and semantics.

Non-blocking receive operations can also use these wildcard tags,
and therefore also need special treatment to determine the source
process of a message. Non-blocking operations return immedi-
ately without waiting until messages are received or delivered (e.g.,
MPI_Irecv/MPI_Isend). Instead, an application uses test op-
erations (e.g.,MPI_Wait/MPI_Test) to check for the arrival
of messages or to check if a send operation has finished. Non-
blocking receive operations return MPI request objects, which can
subsequently be used as handles by test operations. A test opera-
tion returns a status parameter for the related request. Again, the
status can be ignored according to MPI standard. We adopt the
same techniques described above to determine the actual sources
of the non-blocking receive operations, and record and replay them
accordingly.

6.1.3 Waits, Tests and Probes
The MPI routinesMPI_Waitsome, MPI_Waitany, MPI_Te

stsome andMPI_Testany can also introduce non-determinism.
These procedures operate on a set of requests posted by previous
non-blocking operations, and return if any or some of the requests
have completed in blocking or non-blocking manners for waits and
tests, respectively.

To address the non-determinism introduced by wait and test op-
erations, MPIWiz maintains a table tracking the requests posted
by non-blocking operations and their corresponding bufferinfor-
mation. To help illustrate how MPIWiz handles such operations,

6

MPI_Request requests[2];
MPI_Irecv(buf1, cnt1, type1, src1, tag1, com1, requests[0]);
MPI_Irecv(buf2, cnt2, type2, src2, tag2, com2, requests[1]);
...
/* wait until either buf1 or buf2 is ready */
MPI_Waitany(2, requests, index, status);

Figure 5: An example of non-determinism caused byMPI
_Waitany. WhenMPI_Waitany returns, eitherbuf1 or buf2
is ready, depending on the actual execution.

Figure 5 illustrates the use ofMPI_Waitany. During the record
phase,MPI_Irecv just inserts the request and buffer information
into the table. AfterMPI_Waitany returns, it records the index
of the returned request and the status structure. Since the receive
buffer contains the message at this point, MPIWiz uses this infor-
mation to index into the table and decide whether it needs to record
the message contents based on the message source.

During the replay phaseMPI_Irecv also only inserts the re-
quest and buffer information into the table, and the buffer con-
tents are backfilled byMPI_Waitany. If the request is bound
to a send operation, the process is similar. Indeed, all other wait
and test functions (MPI_Wait, MPI_Waitall, MPI_Test and
MPI_Testall) are handled in the same way.

BlockingMPI_Probe and non-blockingMPI_Iprobeare anal-
ogous toMPI_Wait andMPI_Test, respectively. Both of them
can also acceptMPI_ANY_SOURCEandMPI_ANY_TAGas source
and tag parameters. The difference between probes and the wait
and test operations is that, after a successful probe, the correspond-
ing message is not copied to the application buffer. Therefore, un-
like waits and tests, it is impossible to handle the message at the
time of probe operation. A common programming convention is
to invoke a receive operation after a probe. Therefore, MPIWiz-
records and replays probe operations as normal operations without
special treatment. Instead, it is the responsibility of thesubsequent
receive operation to properly handle the message. During replay,
MPIWiz loads the return value of the probe operation from thelog.
Doing so directs the application to follow the same execution path
as during the replay phase, and the corresponding receive operation
takes over.

6.2 System Calls
Some applications may directly call some system calls provided

by the operating system, or indirectly through the MPI runtime.
These system calls can depend on the execution environment,and
therefore are non-deterministic when the replay environment dif-
fers from the recording environment. For example, random number
generators will produce inconsistent numbers, andgettimeofday
(on whichMPI_Wtime depends) returns different values at differ-
ent times. These system calls fall into a wide range of categories,
including I/O operations (e.g., reading a file), callback functions of
signals and interrupts, etc., and must be carefully dealt with so that
they can be replayed deterministically. Further, ideally the mem-
ory footprints of each process should also be identical for both the
record and replay phases. Having identical memory footprints is
very useful when debugging memory-related bugs like bufferover-
flow. To make both system calls and memory footprints determin-
istic across the record and replay phases, MPIWiz relies upon the
functionality implemented in the R2 framework.

7. EVALUATION
In this section, we evaluate MPIWiz using NPB benchmarks and

real-world applications with a variety of communication patterns to

Table 3: Application characteristics:All-to-All: all-to-all commu-
nication pattern;Locality: group communication locality;M/S:
master/slave pattern;Non-determ. MPIand Non-determ. Sys:
whether non-deterministic MPI and operating system calls are
used, respectively;Coll. Operation: whether collective operations
are used.

Communication Patterns
Locality All-to-All M/S

Operations CG MG LU FT GE ASP PU
Non-determ. MPI

√ √ √ √ √

Non-determ. Sys
√ √ √ √ √

Coll. Operation
√ √ √ √ √ √

demonstrate the benefits SRR provides over data-replay and order-
replay approaches alone. All of the applications also use some form
of non-deterministic operations, and we demonstrate that MPIWiz
is able to correctly handle such cases.

This sections answers the following questions:

• What is the record and replay overhead and performance of
MPIWiz compared to data-replay and order-replay alone?

• What is the sensitivity of the record log size to replay group
size and membership?

We start by describing our methodology.

7.1 Methodology and Applications
We conducted our experiments on a cluster of eight nodes to-

talling 64 cores. Each node is equipped with two Quad-Core In-
tel Xeon 2.33 GHz CPUs, 8 GB RAM, and a 140 GB hard disk.
We run MPI applications within the MPICH2-1.0.7 environment
on Windows Server 2003 Enterprise Edition SP1. All machinesare
connected through a switched 1Gbps Ethernet LAN. Each process
writes its log to local disk without compression.

We evaluate MPIWiz using the following set of applications with
64 processes:

• CG, MG, LU, FT: NAS Parallel Benchmarks (NPB) kernels
version 2.4 compiled in Class C [1].

• GE [14]: A message passing implementation of Gaussian
Elimination.

• ASP [17]: A parallel application that solves the all-pairs-
shortest-path problem with the Floyd-Warshall algorithm.

• probe-unexp (PU) [10]: A test program that validates the
correctness of non-deterministic MPI probe operations, and
stress-tests communication primitives using many messages
and a range of messages sizes.

Table 3 summarizes the characteristics of the applicationswe
use in terms of their communication patterns and their use ofnon-
deterministic operations.

The applications fall into three distinctive communication pat-
terns. (1) CG, MG and LU have communication locality as illus-
trated in Figure 1, and every eight successively ranked processes
form a natural replay group. (2) For FT, GE and ASP, commu-
nication is uniformly distributed across all processes. This all-
to-all style has no communication locality, and representsa less-
than-ideal case for SRRin terms of reducing recording overhead.
Though these applications do not benefit as much as CG and MG
from SRR, our experiments show that SRR remains helpful even
when no communication locality exists. As with the previousappli-
cations, we place eight processes with successive ranks in areplay
group (Section 7.3 shows that results are insensitive to theparticu-
lar replay group membership). (3) PU uses a master/slave pattern:

7

the master sends messages to slaves, and slaves only communicate
with the master. Since replay groups are disjoint, the master can
only be in one group. Consequently, we organize the master (rank
0) and a slave (rank 1) as one replay group, and each other slave as
its own independent replay group. Since nearly every process is in
its own replay group (as the case for traditional data-replay), this
pattern represents a worst-case for SRR.

The applications also use different forms of non-determinism,
as described in Section 6.1. In terms of non-deterministic MPI
communication operations, MG, LU, GE and PU use receive op-
erations with theMPI_ANY_SOURCE source wildcard; PU also
uses probe operations with the wildcardMPI_ANY_TAG message
type. In terms of non-deterministic system calls, GE uses the Win-
dows system callGetTickCount directly, and all NPB kernels
call MPI_Wtime. The prevalence of non-deterministic operations
in these common applications show that handling non-determinism
in both communication and system is important for any replaytool.

Finally, the table also shows that all applications except PU use
collective communication operations, which MPIWiz handles us-
ing the techniques described in Section 3.2 and Section 3.3.

7.2 Record and Replay Overhead
This section presents the record and replay overhead of MPI-

Wiz compared to data-replay and order-replay in terms of execu-
tion time (for both record and replay phases) and record log size.
MPIWiz implements data-replay by considering each processin its
own replay group, and order-replay by including all processes in
one replay group.

7.2.1 Execution Time
Figure 6 compares the execution time of MPIWiz for the vari-

ous record and replay scenarios relative to the baseline execution
time of the original application. It shows the execution time of
both the record and replay phases for data-replay and SRR with re-
play groups of eight processes, and the execution time of therecord
phase for order-replay.1

The execution times of the record phases of all approaches are
slower than the baseline due to the overhead of capturing logs.
Since SRR is a balance between data-replay and order-replay, its
execution performance falls roughly halfway between thosetwo
approaches.

The execution times of the replay phases of data-replay and SRR
are faster than the baseline because messages in both cases are
taken from the log. As expected, the replay time of SRR is slower
than data-replay. Data-replay emulates all communicationby read-
ing from the log without the need to wait and synchronize, while
SRR needs to reproduce and exchange intra-group messages. Also,
since the current implementation of MPIWiz uses a relay process
for all communication — in particular, to simplify the handling
of collective communication — this level of indirection adds addi-
tional overhead during replay.

Recall from Section 4 that we expect users to constrain replay
group sizes to fit within the computing resources of their debugging
environments, which is typically limited in HPC environments. The
replay execution times in Figure 6 show the benefits of having
enough processor cores to replay all processes in the replaygroup

1MPIWiz currently replays all processes on a single node for ease
of implementation and debugging. Since it is misleading to mea-
sure the execution time of order-replay for all 64 processeson a sin-
gle node, we do not report replay execution time for order-replay.
Since order-replay restarts all processes and executes allcomputa-
tion and communication as with normal execution, its replayexe-
cution time is nearly the same as the base execution time [25].

1 2 4 8

2

4

6

8

10

12

Processor Number

S
R

R
 R

ep
la

y
S

pe
ed

CG
FT

Figure 7: SRR replay speed relative to data-replay for different
number of processors.

(eight cores in that experiment). What is the impact on replay ex-
ecution time if a user has fewer processor resources than thesize
of a replay group? Figure 7 answers this question for the CG and
FT applications with a replay group size of eight. When thereare
sufficient processors (eight), replay execution time is faster than
data-replay. With fewer processors, the replay time correspond-
ingly increases. Note that, with fewer processors, not onlydoes re-
play have to execute the replayed processes, but it also has to handle
all intra-group communication operations as well. Increased replay
execution time may be acceptable for debugging; if not, users can
always decrease the size of the replay group at the cost of increas-
ing the size of the log. We view this flexibility as an important
feature of SRR.

7.2.2 Log Size
Figure 8 compares the size of the logs generated during the record

phase of MPIWiz for data-replay, order-replay, and SRR. Since
order-replay only needs to record ordering information about non-
deterministic operations, as expected its log sizes are negligible
compared to data-replay and SRR. However, since the goal of SRR
is to retain the replay execution benefits of data-replay (replay only
a subset of the original application processes), the more interesting
comparison is between SRR and data-replay.

Since SRR only records inter-group messages, whereas data-
replay has to record all messages, SRR log sizes are strictlylower
than data-replay. The degree to which SRR improves log size over-
head, though, depends upon the communication pattern of theap-
plication. For the applications with group communication locality,
the SRR log size is only 38% of data-replay on average, or justa
third of the log size required by data-replay.

With all-to-all applications, whose communications are uniformly
distributed across all processes, SRRstill provides some benefit. If
the replay group containsk of the totaln processes, the expected
log size reduction with SRR isk/n relative to data-replay. For
the FT, GE and ASP applications, we therefore expect SRR to re-
duce the log size by1/8 ≈ 12.5% relative to data-replay, where
k = 8, n = 64 in our experiments. Figure 8 shows that SRR
logs for FT, GE and ASP are 13%, 12.8%, and 13.1% smaller than
data-log, respectively, or 13% on average. These results match the
theoretical analysis very well.

PU benefits least from SRR, whose log only decreases about
1.6%. Since almost every process is in its own replay group, this
communication pattern makes SRR behave almost identicallywith
data-replay.

7.3 Replay Group Size and Membership
Finally, we evaluate the sensitivity of the record log size gen-

erated by MPIWiz to the replay group size and membership. The
size of the replay group represents a tradeoff to the application de-
veloper: a larger group size produces smaller logs (less inter-group
traffic needs to be recorded), but requires more resources during

8

0

0.5

1

1.5

2

2.5

3

CG (1147s) MG (46.6s) LU (72.1s) AVG FT (93.0s) GE (120.8s) ASP (54.9s) AVG PU (400.6s)

Locality All-to-All M/S

R
e
la

ti
v
e

 S
p

e
e

d

Data Log SRR Log Order Log Data Replay SRR Replay

Figure 6: Record and replay speeds relative to base execution time (beside the application name on thex-axes). Data Log, SRR logand
Order Logmean the record phases for data-replay, SRR and order-replay respectively.AVG: geometric mean for applications of the current
communication pattern.

0%
20%
40%
60%
80%

100%

CG MG LU AVG FT GE ASP AVG PU

Locality All-to-All M/S

R
el

at
iv

e
Lo

g
S

iz
e

Figure 8: SRR’s log size compared to data-log.AVG: geometric
mean for applications of the current communication pattern.

replay (more processes have to execute again during replay). Log
size can also be sensitive to process membership since processes
that exhibit communication locality will generate more inter-group
traffic if they are not placed in the same replay group.

We explore these issues with the following experiment. For a
given application, we vary the size of a replay group from one
process (equivalent to data-replay) to 64 processes (equivalent to
order-replay). For each replay group size, we determine theprocess
membership of the group using two methods: according to group
communication locality (Section 4), and uniform random selection
as a baseline.

Figure 9 shows the results of this experiment for two applica-
tions, one with communication locality (CG) and another without
locality (FT), in two graphs. Thex-axes show the size of the replay
group, and they-axes show the log size relative to a group size
of one process (data-replay). The two curves correspond to group
membership based on locality and using a random assignment;for
random, we performed 3 trials and show the average and standard
deviation of the trials.

The results in Figure 9 confirm that larger groups produce smaller
logs. For random group assignment, the log size decreases roughly
linearly with the size of the group. For applications with locality,
however, MPIWiz can do much better.

Figure 9a shows the benefits of making informed group mem-
bership assignments for applications that exhibit communication
locality. Relative to a random assignment, exploiting communica-
tion locality substantially reduces the log size. For a group size of
eight, for example, the log size using locality is 2.8 times smaller
than with random. Figure 9b, however, shows that applications
lacking communication locality are insensitive to group member-
ship. The group membership assignment using graph partitioning

1 2 4 8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

Max Group Size
R

el
at

iv
e

Lo
g

S
iz

e

Locality
Random

(a) CG

1 2 4 8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

Max Group Size

R
el

at
iv

e
Lo

g
S

iz
e

Locality
Random

(b) FT

Figure 9: Log size as a function of replay group size and member-
ship relative to log size of data-replay.Locality: organize replay
groups according to communication locality;Random: organize
replay groups randomly. WithRandom, we show the average and
standard deviation from 5 trials.

results in the same log sizes as using a random assignment.

8. CONCLUSION
This paper proposes a new deterministic replay method, sub-

group reproducible replay (SRR), for making deterministicreplay
practical for MPI applications. SRR balances the tradeoffsof both
data-replay and order-replay. It partitions processes into disjoint
replay groupsand allows any subset of these groups to be recorded
and replayed. We have implemented a prototype, MPIWiz, to demon-
strate and evaluate the SRR approach to deterministic replay.

By partitioning processes into replay groups, SRR can fullyex-
ploit communication locality in MPI applications to further reduce
recording overhead. When using MPIWiz on popular MPI bench-
marks, for example, SRR can reduce recording overhead by over a
factor of four relative to data-replay.

Replay groups also make the replay phase more feasible relative
to order-replay. An important advantage of data-replay is that it
can replay any process of an application individually on a single
machine, whereas order-replay requires all processes of the original
application to be replayed together. SRR strikes a balance between
the two. It only requires replaying the processes of a singlereplay
group, enabling practical replay on one multi-core machinerather
than an entire cluster as with order-replay.

MPIWiz provides two additional benefits not found in existing
MPI replay tools. In addition to handling the non-determinism
in MPI operations, it also handles non-determinism due to system
calls like gettimeofday. And it guarantees that the memory
footprints of the replayed processes are identical to thoseof the
original processes. These features further increase the practicality

9

of deterministic replay for MPI applications.
Finally, although MPIWizis a fully functional replay tool,it cur-

rently does not support checkpointing. Checkpointing was not crit-
ical for evaluating SRR relative to data-replay and order-replay, but
we recognize that checkpoint and restart is important for many ap-
plications and are implementing them as future work.

9. REFERENCES
[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,

A. Woo, and M. Yarrow. The NAS parallel benchmarks 2.0.
Technical Report Report NAS-95-020, Numerical
Aerodynamic Simulation Facility, NASA Ames Research
Center, Mail Stop T 27 A-1, Moffett Field, CA 94035- 1000,
USA, Dec. 05 1995.

[2] A. Bouteiller, G. Bosilca, and J. Dongarra. Retrospect:
Deterministic Replay of MPI Applications for Interactive
Distributed Debugging. In14th European PVM/MPI User’s
Group Meeting, pages 297–306, 2007.

[3] C.-K. Cheng and Y.-C. A. Wei. An improved two-way
partitioning algorithm with stable performance.IEEE
Transactions on Computer Aided Design, 10(12):1502–1511,
1991.

[4] C. Clémençon, J. Fritscher, M. J. Meehan, and R. Rühl. An
implementation of race detection and deterministic replay
with MPI. In EuroPar’95, pages 155–166, Aug. 1995.

[5] J. C. de Kergommeaux, M. Ronsse, and K. D. Bosschere.
MPL*: Efficient Record/Play of Nondeterministic Features
of Message Passing Libraries. In6th European PVM/MPI
Users’ Group Meeting, pages 141–148, 1999.

[6] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov,
S. Zheltov, and S. Bratanov. Automated, scalable debugging
of MPI programs with Intel Message Checker. In
SE-HPCS’05, pages 78–82, 2005.

[7] C. Falzone, A. Chan, E. L. Lusk, and W. Gropp. Collective
Error Detection for MPI Collective Operations. In
PVM/MPI’05, pages 138–147, 2005.

[8] A. Faraj and X. Yuan. Communication Characteristics in the
NAS Parallel Benchmarks. InPDCS’02, pages 724–729,
2002.

[9] J. Garbers, H. J. Prömel, and A. Steger. Finding clustersin
vlsi circuits. InIEEE International Conference on Computer
Aided Design, pages 520–523, Nov. 1990.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-performance, portable implementation of the MPI
Message Passing Interface Standard.Parallel Computing,
22(6):789–828, Sept. 1996.

[11] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An Application-Level Kernel
for Record and Replay. InOSDI’08, To appear, 2008.

[12] W. Haque. Concurrent deadlock detection in parallel
programs.Int. J. Comput. Appl., 28(1):19–25, 2006.

[13] HPCC. Hpcc 1998 blue book (computing, information, and
communications: Technologies for the 21st century).
Computing, Information, and Communications (CIC) R&D
Subcommittee of the National Science and Technology
Council’s Committee on Computing, Information, and
Communications (CCIC), 1998.

[14] Z. Huang, M. K. Purvis, and P. Werstein. Performance
Evaluation of View-Oriented Parallel Programming. In
ICPP’05, pages 251–258, 2005.

[15] NAS Parallel Benchmarks: ProActive implementations.
http://proactive.inria.fr/index.php?
page=nas_benchmarks.

[16] G. Karypis and V. Kumar. Multilevelk-way Partitioning
Scheme for Irregular Graphs.Journal of Parallel and
Distributed Computing, 48(1):96–129, 1998.

[17] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. MagPIe: MPI’s collective
communication operations for clustered wide area systems.
ACM SIGPLAN Notices, 34(8):131–140, 1999.

[18] J. Kim and D. J. Lilja. Characterization of Communication
Patterns in Message-Passing Parallel Scientific Application
Programs. InCANPC’98, pages 202–216, 1998.

[19] B. Krammer and M. S. Müller. MPI Application
Development with MARMOT. InParCo’05, pages 893–900,
2005.

[20] D. Kranzlmüller, C. Schaubschläger, and J. Volkert. An
Integrated Record&Replay Mechanism for Nondeterministic
Message Passing Programs. In8th European PVM/MPI
Users’ Group Meeting, pages 192–200, 2001.

[21] D. Kranzlmüller and J. Volkert. NOPE: A Nondeterministic
Program Evaluator. InACPC’99, pages 490–499, 1999.

[22] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
Parallel Programs with Instant Replay.IEEE Trans.
Computers, 36(4):471–482, 1987.

[23] R. Lovas and P. Kacsuk. Correctness Debugging of Message
Passing Programs Using Model Verification Techniques. In
14th European PVM/MPI User’s Group Meeting, pages
335–343, 2007.

[24] G. R. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and
Y. Zou. MPI-CHECK: a tool for checking Fortran 90 MPI
programs.Concurrency and Computation: Practice and
Experience, 15(2):93–100, 2003.

[25] M. Maruyama, T. Tsumura, and H. Nakashima. Parallel
Program Debugging based on Data-Replay. InPDCS’05,
pages 151–156, 2005.

[26] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified
geometric approach to graph separators. In32th Annual
Symposium on Foundations of Computer Science, pages
538–547, Oct. 1991.

[27] SIM-MPI Library.http://www.hpctest.org.cn/
resources/sim-mpi.tgz.

[28] N. Neophytou and P. Evripidou. Net-dbx: A Web-Based
Debugger of MPI Programs Over Low-Bandwidth Lines.
IEEE Trans. Parallel Distrib. Syst., 12(9):986–995, 2001.

[29] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Palmer,
R. Thakur, and W. Gropp. Practical Model-Checking Method
for Verifying Correctness of MPI Programs. In14th
European PVM/MPI User’s Group Meeting, 2007.

[30] PGDBG Graphical Symbolic Debugger.
http://www.pgroup.com/products/pgdbg.htm.

[31] M. Rudgyard. Novel techniques for debugging and
optimizing parallel applications. InSC’06, page 281, 2006.

[32] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. In
International Conference on Dependable Systems and
Networks (DSN 2006), pages 249–258, 2006.

[33] S. F. Siegel. Model Checking Nonblocking MPI Programs.
In 8th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2007), pages
44–58, 2007.

[34] S. F. Siegel and G. S. Avrunin. Modeling wildcard-free mpi
programs for verification. InProceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP 2005), pages 95–106, 2005.

[35] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke.
Using model checking with symbolic execution to verify
parallel numerical programs. InProceedings of the
ACM/SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2006), pages 157–168, 2006.

[36] Totalview.http://www.totalviewtech.com/.
[37] J. L. Träff and J. Worringen. Verifying Collective MPI Calls.

In 11th European PVM/MPI Users’ Group Meeting, pages
18–27, 2004.

[38] J. S. Vetter and B. R. de Supinski. Dynamic Software Testing
of MPI Applications with Umpire. InSC’00, pages 70–70,
November, 4–10 2000.

[39] J. S. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster
architectures.J. Parallel Distrib. Comput., 63(9):853–865,
2003.

10

