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ABSTRACT

Message Passing Interface (MPI) is a widely used standard fo
managing coarse-grained concurrency on distributed ctergDe-
bugging parallel MPI applications, however, has alwaysitzepar-
ticularly challenging task due to their high degree of conent
execution and non-deterministic behavior. Determinisgigay is
a potentially powerful technique for addressing theselehgeés,
with existing MPI replay tools adopting either data-repbayrder-
replay approaches. Unfortunately, each approach hasdsdifs.
Data-replay generates substantial log sizes by recordeny eom-
munication message. Order-replay generates small logsiebu
quires all processes to be replayed together. We believehibse
drawbacks are the primary reasons that inhibit the wide t&alop
of deterministic replay as the critical enabler of cyclikodgging
of MPI applications.

This paper describesibgroup reproducible replal&RR), a hy-
brid deterministic replay method that provides the benefitsoth
data-replay and order-replay while balancing their traffe- SRR
divides all processes into disjoint groups. It records thaents of
messages crossing group boundaries as in data-replaydarts
just message orderings for communication within a groupnas i
order-replay. In this way, SRR can exploit the communicatm
cality of traffic patterns in MPI applications. During replale-
velopers can then replay each group individually. SRR resluc
recording overhead by not recording intra-group commuitoa
and at the same time reduces replay overhead by limitingitiee s
of each replay group. Exposing these tradeoffs gives thethse
necessary control for making deterministic replay pratficr MPI
applications.

We have implemented a prototype, MPIWiz, to demonstrate and
evaluate SRR. MPIWiz employs a replay framework that allows
transparent binary instrumentation of both library andesyscalls.
As aresult, MPIWiz replays MPI applications with no sourcele
modification and relinking, and handles non-determinisnbath
MPI and OS system calls. Our preliminary results show that-MP
Wiz can reduce recording overhead by over a factor of fouatired
to data-replay, yet without requiring the entire applioatio be re-
played as in order-replay. Recording increases exectuitioa by
27% while the application can be replayed in just 53% of itseba
execution time.

1. INTRODUCTION

Software bugs remain a key factor impacting the reliabitity
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high-performance computing (HPC) applications. A recéntys
of more than 20 HPC systems, for instance, found that softwar
bugs accounted for 24% of system failures [32]. Debuggin@HP
applications has always been a particularly challengisg {&3]
due to their high degree of concurrent execution, distetutom-
munication across multiple nodes in contemporary clusteiren-
ments, and non-deterministic behavior [5]. These charatites
conspire to make subtle bugs difficult to reproduce and debug

Deterministic replay is a potentially powerful technique @le-
bugging HPC applications. When an application executesreh
play tool records application inputs, such as messagemgitire
recording phase. Then when developers want to track delaig th
application, in the replay phase they can replay the fautty: p
cesses to any state of a recorded execution and investigate h
these processes reached that state. Replay tools for HHE app
cations typically fall into two categories [22]Data-replaytools
record all incoming messages to each process during progxam
cution, and provide the recorded messages to processes) deri
play and debugging. With this approach, developers carayepl
just faulty processes rather than having to replay the emtar-
allel application. In contrastrder-replaytools only record the
outcome of non-deterministic events in inter-process canmioa-
tion during program execution — for instandeé?l _Recv with
MPI _ANY_SOURCE for MPI applications — and lets sending pro-
cesses reproduce the actual message contents during. répiag
order-replay only records the ordering of non-deterministents,
it records far less data than data-replay.

Despite their benefits, however, existing replay approsadbe
HPC applications impose substantial overhead either atdet
or replay time. These overheads, unfortunately, limitrtioairent
utility. With data-replay, the system must record the cotgeof
all inter-process communication to make every processyaple.
As a result, the replay log size scales directly with the amati
inter-process communication, and becomes prohibitivelgd for
even moderate-scale applications. The NPB kernel LU with 64
processes in our experiments, for example, logs data aatheof
nearly 14 GB per minute. While order-replay dramaticallguees
recording overhead, it imposes overhead during the refiage
All processes must be replayed together, even if the deeelopy
needs to investigate just a few processes. This requireiniémt
practical when an application has a large number of prosdagea
developer only has limited resources for debugging, a comsite
uation in HPC settings. In general, these two approachesgsept
different trade-offs between introducing overhead in #eording
vs. replay phases, and it remains a challenge to find a balsce
tween them and make deterministic replay applicable fgel&PC
applications.

In this paper we propose a hybrid approach cadledgroup re-
producible replay(SRR) that provides the benefits of both data-
replay and order-replay while balancing their trade-o8R di-
vides all processes into disjoirgplay groups During the record-
ing phase, SRR records the contents of messages crossimg gro



boundaries as in data-replay, but records just messageirgsle
for communication within a group as in order-replay. Durieg
play, developers can replay each group independently afttiers.
SRR reproduces messages from outside the group direathytfre
logs, and reproduces messages from within the group thrdisgh
rect execution. It uses the recorded outcome of non-detéstiu
events to make the replay deterministic with the origingcesion.
SRR therefore reduces recording overhead by not recordiray i
group communication, and at the same time constrains thayrep
overhead by limiting the size of each replay group.

SRR is able to dramatically reduce recording overhead Isecau
it exploits communication locality within HPC applicat®f8, 39,
18, 15]. Developers often structure communication pasteuch
that processes typically exchange messages within a gocaymtd
global synchronization and therefore improve overall eygpion
performance. By design, such intra-group messages arethe d
nant form of communication in an application. By making egpl
groups consistent with these communication patterns, mest
sages therefore become internal to a replay group and SRésavo
having to record them.

As a result, the size of the replay group is the critical paat@m
that fundamentally determines the overhead of the SRR appro
We therefore developed a graph partitioning algorithm szalver
the communication locality of a running application, andoaoat-
ically determine the appropriate group size that best captthis
locality. With SRR, though, developers are still free to ab® a
group size according to their needs. In fact, for an apptcatith
n processes, group sizes of 1 andhake SRR behave exactly like
traditional data-replay and order-replay approachepeaively.

We have implemented a prototype of SRR for MPI applications
called MPIWiz. MPIWiz uses a flexible library-based replegme-
work called R2 [11] that employs binary instrumentationrems-
parently make any MPI application replayable without repodaa
tion. We apply MPIWiz to several common MPI applications to
demonstrate its benefits compared to data-replay and cegky

MPIWiz deals with the various sources of non-deterministil Pl
applications. We evaluate SRR relative to data-replay addre
replay in Section 7. Finally, Section 8 summarizes our waore a
concludes.

2. RELATED WORK

Deterministic replay is just one of many approaches thaehav
been proposed for debugging MPI applications. This sedien
cusses how subgroup reproducible replay relates to egistjplay
approaches, and places it in the larger context of MPI dehggg
approaches.

Replay-based debug tools adopt either data-replay [25 @, 2
order-replay [5, 21, 20] approaches to debug MPI applicatio
Each approach has tradeoffs. Data-replay tools generatsivaa
logs, while order-replay tools require all processes todmayed
together. Both of them are impractical for large-scale iepgibns.
SRR is a balance between data-replay and order-replay. lyit on
requires replaying a group of processes, and users carn #agus
number of processes in the group to match the resources iof the
debugging environment. Further, by exploiting localityttie com-
munication patterns of an application, SRR can substantiat
duce the size of logs generated during the recording phase. A
a result, SRR makes it possible to debug large-scale afiplsa
with limited resources in the development environment.

Most MPI replay systems are implemented via the MPI profiling
interface. While convenient, unfortunately this approdoles not
handle non-deterministic system calls, thereby makingfficdlt
to guarantee a completely faithful replay. We have impleieen
SRR in MPIWiz on a general record and replay platform [11}, en
abling MPIWiz to capture all forms of non-determinism in Vdgl-
plications. Other MPI replay systems are implemented byging
the source code of the MPI distribution, which limits its {aduil-
ity. MPIWiz employs binary instrumentation to transpahgme-
play applications without the need to recompile or relinid does

approaches alone. The extent of these benefits of SRR depend§©t depend on the MPI distribution.

upon the communication patterns of applications. For exanfir
an application (NPB kernel CG) with good communication linga
MPIWiz only generates 22% of the data-replay log size. Ewen f
applications that have no communication locality (e.g.BNd@rnel
FT, which uses all-to-all communication), MPIWiz is stilhla to
reduce log size by about 13%. Across a suite of applicatitires,
average recording and replay overheads of MPIWiz natufally
in between that of data-replay and order-replay.

Furthermore, by building on the R2 framework, MPIWiz pro-
vides two additional practical features not found in erigtMPI
replay tools. First, in addition to non-determinism in commita-
tion, MPIWiz also captures non-determinism in operatingteym
calls (e.g.,get ti neof day, r andon) invoked by MPI applica-
tions. All of the applications in the NPB benchmarks, forrmaxa
ple, use non-deterministic system cali( _W i ne), and cap-
turing the full extent of non-determinism is necessary Faiit ac-
curate replay. Second, MPIWiz guarantees that the mematy fo
prints of the replayed processes &tentical to those of the pro-
cesses in recording execution — all application memorytiona
at user-level have the same values during both the recorcepiay/
phases. Ensuring identical memory values further aidsldpees
in debugging applications by removing inconsistencies/beh de-
ployment and debugging environments as a source of uncrtai

The rest of the paper is organized as follows: Section 2 ptese
related work. Section 3 discusses the design of SRR. Settilen
scribes our approach for determining replay groups, antic®es
describes the MPIWiz replay framework. Section 6 detail& ho

More generally, deterministic replay is just one of many ap-
proaches that have been proposed for debugging MPI afiplisat
MPI-CHECK [24] uses static analysis to check the source aide
compile time against the programming rules specified by tifd M
standard. Although useful for identifying some classesrabrs,
static analysis also suffers from false negatives sinceyrparam-
eters are not known until the application executes. Péardde
buggers operate similarly as sequential debuggers [36®B128,

4], but can be difficult to use effectively when there are hadd
of processes. Automatic checking tools address the drdwslizfc
manual checking in parallel debuggers [38, 12, 19, 7, 37s€Eh
tools use similar rules as static analysis, but they vehfyules
at runtime rather than compile time. IMC records commuincat
during execution and checks the trace to identify predefiered
rors [6]. Several recent efforts have also explored the tisgodel
checking to verify MPI applications [23, 29, 33, 35, 34] taife
MPI codes. Though it is difficult for these tools to handle bdge
to non-determinism, they are helpful in application unterding
and deterministic bug tracking. We view SRR as complemgntar
to these efforts, and it can be used in conjunction with athem.

3. DESIGN OVERVIEW

This section presents an overview of our design of subgreup r
producible replay. We first explain how SRR divides all pesees
into the replay groups and exploits communication locatitye-
duce recording overhead. Then we describe SRR record alay rep
for an MPI application.
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Figure 1: Communication traffic in CG, MG and LU (CLASS=C, NP&S=64). The cell afi, j) represents the communication volume (in
bytes) between processandj using shades of gray. With replay groups in sets of 8 secalsntiumbered processes, intra-group messages
account for about 77%, 55% and 50% of application commuioicdtaffic, respectively.

3.1 Communication Locality

The key inspiration underlying SRR is that HPC applications
typically exhibit strong communication locality. A numbafrstud-
ies have shown that HPC applications, by design, have stedt
communication patterns where processes predominanthaege
messages within a group [8, 39, 18, 15]. Such communicagbn p
terns increase parallel application performance by imipigptheir
scalability. For example, Figure 1 shows the communicatiar
terns of three widely-used MPI benchmarks — CG, MG and LU
from the NAS Parallel Benchmarks (NPB) [1]) — generated feom
trace-driven simulation using SIM-MPI [27]. In the figurbetgray
level of a cell at the'" row and;*" column represents the commu-
nication volume between two processeand;. The figure shows
distinct group patterns, where processes can be dividedsinall
groups (e.g., a group of size eight for CG) in which intratgro
communication comprises the majority of overall commutiica
traffic. By organizing application processes into appraterreplay
groups, SRR can dramatically reduce recording overheadiraitd
the resources required during replay.

Based on these observations, a desirable assignment efsgex
into replay groups should satisfy two conditions. Firstregroup
should have a moderate size so that replay requires only naede
hardware resources, i.e., MPIWiz can replay a group of msee
reasonably fast with fewer computing resources than reduior
the entire application. MPIWiz allows developers to speah
upper-bound of the group size, and ensures this bound whén pa
tioning processes. By this means developers have the freédlo
choose different trade-offs between recording and replayread.
Second, given the constraint on group size, the processigad
to each group should reduce inter-group communication ashmu
as possible. In Figure 1a, for example, it is much more affect
to assign processes to replay groups in sets of eight seallent
ranked processes rather than eight randomly selected gzexe
We will describe how MPIWiz satisfies the two conditions ircSe
tion 4, and Section 7.3 experimentally quantifies the tréde
recording overhead and replay group size, and the benefitslof
ing informed group membership assignments.

3.2 SRR Record

ter whether the message is intra-group or not). Table lrmslihe
recording and replay mechanism for different operations.

In the spirit of order-replay, since the replay phase exectlie
processes within a replay group, SRR does not have to recgrd a
data corresponding to intra-group deterministic MP| comitar
tion operations. Replay naturally reproduces messager arufk
contents. For non-deterministic intra-group commun@atiSRR
records the order of the messages but does not record their co
tents; execution during replay will faithfully reprodudeetcontents
of messages as long as it preserves the original orderingsages
sent out of the replay group do not affect the replay of theigro
and can be safely ignored.

In the spirit of data-replay, SRR records the full conterfigter-
group messages received from outside the replay group, lhasve
their order if the receive operation is non-determinisBice only
processes within a group execute during the replay phassages
from outside the group have to be recorded during the recgrdi
phase so that they can be faithfully emulated during replay.

Collective communication involves messages sent among a se
of processes. As a result, during the recording phase MPIWiz
needs to determine the process membership of a collective co
munication to determine what information to record, if ani
collective communication specifies the set of processeshied
in the operation, albeit indirectly. To determine whethes tur-
rent process is involved, MPIWiz uses two steps. First, tede
mines the MPI group associated with the collective commanic
tion’s communicator viavPl _Conmm gr oup. It then translates
its global rank (the rank inPl _COMM WORLD) into the context
of this MPI group viavPl _Group_t ransl at e_r anks. If the
result isMPl _UNDEFI NED, then the process is not in the group,
otherwise it is participating in the collective communioat Since
the process membership of the collective communicationaigme
recalculated during the replay phase, MPIWiz records tfi@ima-
tion during the record phase.

Finally, when non-deterministic system calls are usedctlydy
the application, MPIWiz always records their results inltige

3.3 SRR Replay

In the replay phase, SRR replays all of the processes of only
one replay group. The replayed processes generate irug-gr

During the recording phase, SRR records only the contents of messages directly, and the contents of incoming intergroas-

incoming inter-group messages, and records the order cfages
only if an operation is non-deterministic (for any messagemat-

sages are emulated using the recorded logs. Since the raessag
ders of non-deterministic operations have been recordeR, &n



Table 1: Summary of record and replay mechanisms for the MRIahd system calls.

MPI _Conm r ank

Category API Example Record&Replay mechanism
Point-to-Point Communicatioy MPI _Send, During recording, log inter-group communication, ignonéra-group communication. Duringy
MPl _Recv replay, emulate inter-group communication using the lod,r@produce intra-group communica:
tion. For non-blocking operations, log the request typedsa receive) and buffer informatiorf.
(Section 3.2 & Section 3.3)
Collective Communication MPI _Bcast, Record members involved, handle message contents as vimihtpgooint communication. Re
MPI _Gat her place with point-to-point communication during replaye¢8on 3.2 & Section 3.3)
MPI Environment API MPl _Init, Record parameters and return value. Emulate them usingdghduring replay. (Section 3.2 §

Section 3.3)

Non-determinism in MPI MPI _ANY_SOURCE,

MPl _ANY_TAG

Wildcard receives. Record the real values for source andi¢dds. Replace them with redl
values during replay. (Section 6.1.2)

MPI _Wai t any,
MPl _Test sone

Record returned request indices, and handle corresponusgages buffer according to poirjt-
to-point communication. During replay, check the requgsetand handle corresponding mes-
sage buffer according to point-to-point communicatiorect®n 6.1.3)

MPI _Pr obe Record the parameters and returned value. Emulate therg tienlog during replay. (Sect
tion 6.1.3)
Non-determinism in OS Get Ti ckCount Record the outcome according to the semantics of the rolEimeilate them using the log during

replay. (Section 6.2)

/+ NPl _Bcast() replay code */
| oad MPl _Bcast rank_list fromlog
if (I amroot) { /+ for data sender =/
foreach rank in rank_list:
if (rank is in replay group)
send nessage to rank
} else { /+ for data receiver =/
if (root is in group)
recv nmessage from root
el se
| oad nessage from | og

Figure 2: Pseudo code fMPI _Bcast during replay.

guarantee a deterministic replay by enforcing this ordeepiay,
as follows. For non-deterministic point-to-point opeoas, SRR
replaces the parameters introducing non-determinism, (eitgl-
cards) with their real values. For collective operatioriRRSeplays
them using multiple point-to-point operations becauseesofithe
participants might be outside of the group. For instancguie 2
illustrates how it replay8/Pl _Bcast . If the replayed process is
the broadcast root, it generates messages to only thosesgex
in the replay group (the others do not execute during repléy)
the replayed process is a recipient, it receives the messaggth
point-to-point communication replay if the root is in th@gp, oth-
erwise, the recipient loads the message from the log.

A key difference between SRR and order-relay is how SRR de-
livers intra-group messages. In order-replay, the mesisadgiv-
ered to the receiver by the sender through the same chaninghas
recording phase, e.g., through a socket. However, in SRRyiep
the original MPI initialization routine which constructset MPI
parallel computing environment cannot execute idengicai in
the recording phase because only the processes in the gplay
execute. To address this problem, SRR replay skips therconst
tion of the full computing environment (similar to data-l@p, and
as a result does not establish the communication channelagam
the replayed processes as during the recording phase. Asilg re
normal MPI communication functions (e.dvPl _Send) cannot
deliver the message in SRR replay. Therefore, SRR needsue em
late the communication channels and deliver messagef iTdet
emulated communication channels also enable SRR to cahgol
order of message delivery, a necessary condition for rejind
non-determinism in MPI message orders. In our current imple

the replayer, antiPl _Recv receives messages from the replayer.

4. REPLAY GROUPS

The size and membership of replay groups are key parameters
that determine the overhead and performance of SRR. A btraig
forward way to determine these parameters is to utilize kpewl-
edge and manually specify them. This approach is reasondige
the developer knows much about the communication flow of the
MPI application and the communication pattern presents doo
cality.

In general, though, it is more practical to have MPIWiz auto-
matically determine replay groups. First, we need to findtbat
group size constraint. Then, for a given group size, we deter
an efficient membership of all processes to replay groupzllyj
we search in a range of group sizes below a bound providedeby th
user to find one that provides a near-optimal result, i.sylte in
the smallest inter-group communication volume.

For the group size constraint, in practice we imagine usets s
ting it to a small multiple { — —4) of the number of processor cores
in their debugging environment both to limit the replay exém
time overhead, as well as to fit the working set of the replgyed
cesses within memory constraints. As with data-replay,a gb
SRR is to enable users to debug MPI applications on a single ma
chine. To keep the execution time of replay reasonable, ribxepg
size should reflect the resources available in the debugging
ronment. Having the group size reflect the number of processo
minimizes replay execution overhead. With the advent oftimul
core architectures, we believe this rule of thumb matchedweare
trends well.

After setting the group size constraint, we formalize theugr
membership problem asfaway graph partitioning problem. We
represent the communication pattern of an application avghaph,
in which each vertex represents a process and the weightchf ea
edge is the aggregate message traffic between the two condbsp
ing processes of the two vertices. This communication ggwh
be obtained, for example, by profiling the execution of theliap-
tion (e.g., with a tool like SIM-MPI [27] as in Figure 1). Ouodgl is
to partition this graph int@& partitions with roughly equal numbers
of vertices, and where the sum of the weights of edges crpssen
partition boundary is minimized.

Although MPIWiz can handle replay groups of different sizes

mentation of MPIWiz, we use a dedicated replayer process as awe argue that partitioning the process graph into nearlyplksjnes

message relay, i.e., the wrapperM?l _Send sends messages to

is desirable for the following reasons. First, the replagugr size
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CLASS=C). If the group size upper bound is setSte= 12, MPI-
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constraint should be applied to the largest partition, wtiee MPI-
Wiz cannot replay that partition with reasonable overhe&an.the
other hand, if the total size of two partitions is still snealthan
the specified upper bound, they should be merged togethen Th
the inter-group communication between them becomes groap
communication and does not need to be recorded. Therefwe, t
merging of the two partitions will certainly not increase tiecord-
ing overhead, but more than likely will decrease it. Cregtiearly
equal-sized groups tends to generate a balanced resulh vighic
more efficient than the original unbalanced one.

Although this kind of graph partitioning problem is NP-coete,
many algorithms have been proposed to find reasonably gaed pa
titioning using heuristic methods [9, 3, 26]. MPIWiz emptog
multilevel k-way partitioning algorithm MLKP [16] to partition the
process communication graph. We chose this algorithm since
can generate a high-quality partitioning in linear time pbexity
proportional to the number of edges (Section 7.3 shows tiee-ef
tiveness of MLKP). LetS be the upper bound of the partition size,
n be the number of vertices in the communication graph,/atite
number of partitions. Because the result of MLKP is nearly ba
anced, MPIWiz can limit the size of a partition to be lowerrtha
by guaranteeing that/k < S.

Given an upper bound of the partition size, the largest value
of k that satisfies this upper bound may still not produce the min-
imal amount of inter-group communication traffic. The reago
that a group size of eight exactly matches the natural group-c
munication boundaries in the application (Figure 1). Sliglarger
groups will include processes that place them outside aof tae-
ural communication group, causing substantially morerigteup
communication that MPIWiz needs to record in the log. Fonexa
ple, Figure 3 shows the inter-group communication traffictfe
NPB benchmark CG, as collected by SIM-MPI [27], for a range
of replay group sizes. In general, the inter-group commatioa
volume decreases with larger group sizes, but there stiit ssme
local optimal points (e.g., at 4, 8, 16, etc.).

The next step is to automatically discover a local optimurarne
the upper bounds' on replay group size. We do so by applying
MLKP iteratively across a range of valueskotfo discover the value
that generates the optimal result. For each group size, MddRr
tifies the replay group and we use SIM-MPI to collect the agate
inter-group communication volume. Fortunately, the nundjet-
erations is reasonably small — we show that MPIWiz only needs
to search for group sizes in the ran§¢g2 < n/k < S. Figure 3
shows the results of this process whes= 12.

Let s be the replay group size of one local optimal point. The

Table 2: Group sizes grow slower as applications scale.

Proc. # 16 32 64 128 256
GrowSize] CC| 4 8 8 16 16
P MG| 4 8 8 16 16

group sizes should also be a local optimal point since, in this case,
groups with siz€s can be formed by merging pairs of groups with
sizes. These merging operations do not increase the inter-group
communication volume while maintaining its local optimunite
same time. Then giveR as the group size upper bound, if there
is no local optimal point with group size less th&nhMPIWiz can
find the optimal partitioning result when group size equal§'tIf
there are local optimal points with group size less tharet s be
the local optimal group size which is less than and nearest to
Then we must haves > S since2s is also a local optimal point,
which we can rewrite as > S/2. Hence, since by definition is
less thanS, we haveS/2 < s < S. Therefore, by searching in the
group size range from§/2 to S, MPIWiz can find a global optimal
group size satisfying the constraint.

A final observation is that, in scalable MPI applicationg $ize
of a communication group does not scale as quickly as theathver
application size. As the application scales up, the numbgronps
increases accordingly, while the number of processes nwihth
group increases more slowly. Table 2 shows that the grou siz
grows more slowly as applications scale to larger numbeps @f
cesses for two NPB applications. As a result, even with appli
tions using a large number of processes, MPIWiz can replay th
application using relatively small replay groups. In auhdit since
group size grows slower than application size, the largerag-
plication, the more SRR will reduce recording overheadtireddo
data-replay.

5. REPLAY FRAMEWORK

Deterministic replay requires that all MPI routines arehbia-
playable and deterministic. In this section we describe apr
proach for making MPI routines replayable, and in Sectiones w
describe the techniques we use to ensure that all MPI andrsyst
routines are deterministic.

MPIWiz takes advantage of a replay platform called R2 that
we previously developed for multi-threaded, distributgxblaca-
tions [11]. R2 uses binary instrumentation to transpayeinter-
pose wrappers on API routines for both runtime environmasts
well as system calls. For the MPI library, MPIWiz transpdigim-
terposes a wrapper routine around each MPI routine in thariib
interface.

Under MPIWiz, when applications call into the MPI librareth
instead invoke the wrapper. The wrapper implements therdeco
and replay functionality, and invokes the actual MP! lilgrasutine
when necessary. For example, when an applicationBlls Recv,
it will instead call a wrapper for the function. During thecoed
phase, the wrapper will callPl _Recv, record the contents of the
received message to the log if appropriate, and then retutinet
application. During the replay phase, the wrapper may e@ula
VPl _Recv by returning the contents of the message from the log
rather than invoking the routine.

Implementing the recording and replay functionality foe #n-
tire MPI API can be tedious because it requires wrappinglyear
300 API functions. Thanks to R2, which provides a flexibleeod
generation mechanism, we only need to write several geneds
templates as annotations on API parameters instead of ihanua
programming recording and replay wrapper functions fory@é|
routine. MPIWiz currently supports 191 of the most commenly



int

[reproduci bl e]

MPI _Recv (
[out, bsize("GCetSize(datatype,
[in] int count,
[in] MPI_Datatype datatype,
[in] int src,
[in] int tag,
[in] MPI_Comm conm
[out, opt(MPI_STATUS | GNORE)] MPI_Status* status
)

count)"), force] voidx buf,

Figure 4: The annotation &Pl _Recv.r eproduci bl e means
this function may be reproduced if it is called by a process in
replay groupi n means the parameter is not modified, and no log-
ging is needed, whileut indicates the parameter is changed by the
routine and it is recorded automatically by generated cbdéeze
indicates how to obtain the length of the buffer, drat ce means
the length itself should be saved since the length can noaloei
lated during replayopt means the parameter can be null or some
special values, in which cases it does not need to be saved.

used MPI functions (MPI-2.0 has 284 functions in total). &un
tions not supported include remote memory access, MPI i@, a
dynamic process creation. Expanding the set of supportect fu
tions with further annotations is ongoing work.

For example, Figure 4 shows the signaturevBf _Recv. To
generate its wrapper functions, we only need to annotatapts
and output parameters as shown in the figure. The generaR in
will then parse the annotations and generate code that iy i
parameters during the recording phase and returns outpampa
ters during the replay phase. Compared with the manual appro
automatic code generation is more convenient and avoidg p@n
tential errors in manual programming. Compared with presio
MPI replay tools, which use customized MPI libraries rattiem
binary instrumentation, this approach has the benefit tietrans-
parently applicable to different MPI distributions.

6. HANDLING NON-DETERMINISM

Roughly speaking, for a replay tool everything that canret b
deterministically reproduced during the replay phase sdede
logged during the recording phase. This section describesm
proach for handling non-determinism in both the MPI API and i
system calls.

6.1 Non-determinismsin MPI API

MPIWiz needs to accomodate three sources of non-detemminis
in the MPI API: inter-group messages, the use of wildcarcmpar
eters when receiving messages, and the use of wait, tegprabe
operations.

6.1.1 Inter-group Message Content

receiver. Currently, MPIWiz records the entire buffer usetth de-
rived data types. In such cases, recording the entire reteiffer
ensures the correctness of replay, but it may be inefficiecabise
only a subset of the buffer may actually be used. A more efficie
solution is for MPIWiz to process the definitions of theseadsipes
and record only the transmitted data. Our experience withapP
plications suggests that the use of derived data types mumon,
however, so we have left optimizing derived data types feourk
work.

6.1.2 Wildcard Receives

Another source of non-determinism is the order of messages r
ceived using wildcard parameters. For a receive operaioappli-
cation typically specifies the source, the communicatat,anon-
ventional tag. However, both the source and the tag can loigge
using wildcards, e.givVPl _ANY_SOURCE and tagvPl _ANY_TAG.

A wildcard as the source (or tag) identifier allows a messaga f
any process to be accepted. When wildcards are used to eéeceiv
messages, the arrival order of messages is non-deteriairist-
ferent orders may change the application’s behavior becthes
execution after the receive operation may depend on the ofde
messages.

Since MPIWiz handles messages from inside and outside of the
replay group differently, it needs to determine the actuassage
origin when the source is set td°l _ANY_SOURCE. Typically,
MPIWiz can retrieve the actual source from the status pateime
Unfortunately, the MPI standard allows applications tooignthe
status parameter by setting it to a special vai®l ( STATUS_| G
NORE or MPI _STATUSES | GNORE). To successfully record such
receive operations, we transparently replace the speatalksvalue
provided by the application with an allocated private Vialeéapro-
vided by the MPIWiz runtime to ensure the MPI routine returns
the necessary information. After retrieving the actuaksewf the
message, MPIWiz records it and restores the special stalus &s
provided by the application. MPIWiz performs similar stejpsing
replay. This method makes use of MPI’s functionality, andsloot
change the application’s control flow and semantics.

Non-blocking receive operations can also use these wildeass,
and therefore also need special treatment to determineotivees
process of a message. Non-blocking operations return iramed
ately without waiting until messages are received or dedigde.g.,

MPI _I recv/ MPI _I send). Instead, an application uses test op-
erations (e.g.MPl _Wai t/ MPI _Test) to check for the arrival

of messages or to check if a send operation has finished. Non-
blocking receive operations return MPI request objectsclwvban
subsequently be used as handles by test operations. A t&st-op
tion returns a status parameter for the related requestinAtiee
status can be ignored according to MPI standard. We adopt the
same techniques described above to determine the actuaksou

of the non-blocking receive operations, and record anchyetblem

During the recording phase, when a process receives a neessagaccordingly.

MPIWiz needs to determine whether or not the message camme fro
a sender outside the replay group. At initialization timeRIM/iz

reads the membership of replay groups from a configuratien fil
which stores the ranks of processes in each group. When agsroc

6.1.3 Waits, Tests and Probes

The MPI routinesVPl _\Wai t sone, MPl _\Wai t any, MPl _Te
st some andMPl _Test any can also introduce non-determinism.

receives a message MPIWiz checks the membership of thersendeThese procedures operate on a set of requests posted bgysrevi

process, and records the received message if it is from ereliift
replay group than the current process.

MPIWiz retrieves the message from the receiving bufferj-typ
cally provided as parameters to MPI routines. In additiopl&n
buffers, MPI allows applications to specify derived datpety for
which the sender can transmit a data trunk which is latet apti
placed into non-contiguous positions of the receiving &u#t the

non-blocking operations, and return if any or some of theiests
have completed in blocking or non-blocking manners for svaitd
tests, respectively.

To address the non-determinism introduced by wait and fest o
erations, MPIWiz maintains a table tracking the requesttqub
by non-blocking operations and their corresponding buifiiéor-
mation. To help illustrate how MPIWiz handles such operatjo



MPI _Request requests[2];
MPl _Irecv(bufl, cntl, typel,
MPI _Irecv(buf2, cnt2, type2,

srcl,
src2,

tagl,
tag2,

cont,
con?,

requests[0]);
requests[1]);

/+ wait until either bufl or buf2 is ready */
MPI _Wi tany(2, requests, index, status);

Figure 5. An example of non-determinism caused Iyl
_Wi t any. WhenMPI _Wai t any returns, eithebuf 1 or buf 2
is ready, depending on the actual execution.

Figure 5 illustrates the use &Pl _\Wai t any. During the record
phaseMPI _| r ecv just inserts the request and buffer information
into the table. AfteiVPl _Wai t any returns, it records the index
of the returned request and the status structure. Sincetedve
buffer contains the message at this point, MPIWiz uses tigs-
mation to index into the table and decide whether it needsdord
the message contents based on the message source.

During the replay phaskPl _| r ecv also only inserts the re-
quest and buffer information into the table, and the buffen-c
tents are backfilled byPl _\Wai t any. If the request is bound
to a send operation, the process is similar. Indeed, allr otfaé
and test functionsMPl _Wait, MPI _Waital | ,MPl _Test and
MPI _Test al | ) are handled in the same way.

Blocking Pl _Pr obe and non-blockindv/Pl _I pr obe are anal-
ogous toMPl _Wai t andMPI _Test , respectively. Both of them
can also accepPl _ANY_SOURCE andMPI _ANY_TAGas source

Table 3: Application characteristicgsll-to-All: all-to-all commu-
nication pattern;Locality: group communication localityM/S:
master/slave patternlon-determ. MPland Non-determ. Sys
whether non-deterministic MPI and operating system calés a
used, respectivelyColl. Operation whether collective operations
are used.

Communication Patterns
Locality All-to-All M/S
Operations CG|MG |LU|[FT|GE|ASP| PU
Non-determ. MPI v |V V4 NV vV
Non-determ. Sys| +/ vV VIV V
Coll. Operation V4 vV I VIV V v

demonstrate the benefits SRR provides over data-replayrded o
replay approaches alone. All of the applications also usee§orm
of non-deterministic operations, and we demonstrate tHal\Wiz
is able to correctly handle such cases.

This sections answers the following questions:

e What is the record and replay overhead and performance of
MPIWiz compared to data-replay and order-replay alone?

e What is the sensitivity of the record log size to replay group
size and membership?

We start by describing our methodology.
7.1 Methodology and Applications

and tag parameters. The difference between probes and the wa e conducted our experiments on a cluster of eight nodes to-

and test operations is that, after a successful probe, thespmnd-
ing message is not copied to the application buffer. Theeefan-
like waits and tests, it is impossible to handle the messageea
time of probe operation. A common programming convention is
to invoke a receive operation after a probe. Therefore, MPAW
records and replays probe operations as normal operatibinsuty
special treatment. Instead, it is the responsibility ofghbsequent
receive operation to properly handle the message. Duripigye
MPIWiz loads the return value of the probe operation fromitige
Doing so directs the application to follow the same execufiath
as during the replay phase, and the corresponding recegratign
takes over.

6.2 System Calls

Some applications may directly call some system calls pleavi
by the operating system, or indirectly through the MPI monati
These system calls can depend on the execution environaraht,
therefore are non-deterministic when the replay envirartna-
fers from the recording environment. For example, randomber
generators will produce inconsistent numbers, @&t i meof day
(on whichMPI _W i e depends) returns different values at differ-
ent times. These system calls fall into a wide range of caitego
including 1/0O operations (e.g., reading a file), callbackdiions of
signals and interrupts, etc., and must be carefully dealt ga that
they can be replayed deterministically. Further, idedily mem-
ory footprints of each process should also be identical éoh bhe
record and replay phases. Having identical memory fodipiig
very useful when debugging memory-related bugs like buffer-
flow. To make both system calls and memory footprints determi
istic across the record and replay phases, MPIWiz relies tipe
functionality implemented in the R2 framework.

7. EVALUATION

In this section, we evaluate MPIWiz using NPB benchmarks and
real-world applications with a variety of communicatioritpans to

talling 64 cores. Each node is equipped with two Quad-Core In
tel Xeon 2.33 GHz CPUs, 8 GB RAM, and a 140 GB hard disk.
We run MPI applications within the MPICH2-1.0.7 environrhen
on Windows Server 2003 Enterprise Edition SP1. All machares
connected through a switched 1Gbps Ethernet LAN. Each psoce
writes its log to local disk without compression.

We evaluate MPIWiz using the following set of applicationighw
64 processes:

e CG, MG, LU, FT: NAS Parallel Benchmarks (NPB) kernels
version 2.4 compiled in Class C [1].

e GE [14]: A message passing implementation of Gaussian
Elimination.

e ASP [17]: A parallel application that solves the all-pairs-
shortest-path problem with the Floyd-Warshall algorithm.

e probe-unexp (PU) [10]: A test program that validates the
correctness of non-deterministic MPI probe operationd, an
stress-tests communication primitives using many message
and a range of messages sizes.

Table 3 summarizes the characteristics of the applicatioms
use in terms of their communication patterns and their ugenf
deterministic operations.

The applications fall into three distinctive communicatipat-
terns. (1) CG, MG and LU have communication locality as Hlus
trated in Figure 1, and every eight successively rankedgsseEs
form a natural replay group. (2) For FT, GE and ASP, commu-
nication is uniformly distributed across all processes.isTdil-
to-all style has no communication locality, and representsss-
than-ideal case for SRRin terms of reducing recording aasmth
Though these applications do not benefit as much as CG and MG
from SRR, our experiments show that SRR remains helpful even
when no communication locality exists. As with the previapgli-
cations, we place eight processes with successive rankejiay
group (Section 7.3 shows that results are insensitive tpaingcu-
lar replay group membership). (3) PU uses a master/slaverpat



the master sends messages to slaves, and slaves only caratauni
with the master. Since replay groups are disjoint, the maste
only be in one group. Consequently, we organize the mastek (r
0) and a slave (rank 1) as one replay group, and each otheratav
its own independent replay group. Since nearly every psoiseia

its own replay group (as the case for traditional data-ggpldnis
pattern represents a worst-case for SRR.

The applications also use different forms of non-detersmmi
as described in Section 6.1. In terms of non-deterministkRl M
communication operations, MG, LU, GE and PU use receive op-
erations with theMPl _ANY_SOURCE source wildcard; PU also
uses probe operations with the wildcavBl _ANY_TAG message
type. In terms of non-deterministic system calls, GE used\m-
dows system calet Ti ckCount directly, and all NPB kernels
call MPl _W i nme. The prevalence of non-deterministic operations
in these common applications show that handling non-détésm
in both communication and system is important for any refday.

Finally, the table also shows that all applications exceptBe
collective communication operations, which MPIWiz harsdies-
ing the techniques described in Section 3.2 and Section 3.3.

7.2 Record and Replay Overhead

This section presents the record and replay overhead of MPI-
Wiz compared to data-replay and order-replay in terms ofexe
tion time (for both record and replay phases) and record iog s
MPIWiz implements data-replay by considering each prooess
own replay group, and order-replay by including all proessi
one replay group.

7.2.1 Execution Time

Figure 6 compares the execution time of MPIWiz for the vari-
ous record and replay scenarios relative to the baselineugza
time of the original application. It shows the execution eirmof
both the record and replay phases for data-replay and SRRevit
play groups of eight processes, and the execution time oéttwrd
phase for order-repldy.

The execution times of the record phases of all approaclees ar
slower than the baseline due to the overhead of capturing log
Since SRR is a balance between data-replay and order-régslay
execution performance falls roughly halfway between thivee
approaches.

The execution times of the replay phases of data-replay Bl S

d —e—CG
10 —=—FT

SRR Replay Speed

1 2 4
Processor Number

Figure 7: SRR replay speed relative to data-replay for aiffe
number of processors.

(eight cores in that experiment). What is the impact on repla
ecution time if a user has fewer processor resources thasizbe
of a replay group? Figure 7 answers this question for the Q5 an
FT applications with a replay group size of eight. When thaeee
sufficient processors (eight), replay execution time isefathan
data-replay. With fewer processors, the replay time cpoed-
ingly increases. Note that, with fewer processors, not dolgs re-
play have to execute the replayed processes, but it also hastlle
all intra-group communication operations as well. Incesaeplay
execution time may be acceptable for debugging; if not,susan
always decrease the size of the replay group at the cost refasc
ing the size of the log. We view this flexibility as an impoitan
feature of SRR.

7.2.2 Log Size

Figure 8 compares the size of the logs generated during¢bede
phase of MPIWiz for data-replay, order-replay, and SRRc&in
order-replay only needs to record ordering informationtetmmn-
deterministic operations, as expected its log sizes arégitdg
compared to data-replay and SRR. However, since the go&Bf S
is to retain the replay execution benefits of data-replayléseonly
a subset of the original application processes), the moeedsting
comparison is between SRR and data-replay.

Since SRR only records inter-group messages, whereas data-
replay has to record all messages, SRR log sizes are stoatéyr
than data-replay. The degree to which SRR improves log sige o
head, though, depends upon the communication pattern afithe
plication. For the applications with group communicationdlity,
the SRR log size is only 38% of data-replay on average, orgust
third of the log size required by data-replay.

are faster than the baseline because messages in both cases a With all-to-all applications, whose communications aréanmly

taken from the log. As expected, the replay time of SRR is stow
than data-replay. Data-replay emulates all communicdtjoread-
ing from the log without the need to wait and synchronize,lavhi
SRR needs to reproduce and exchange intra-group messdges. A
since the current implementation of MPIWiz uses a relay @sec
for all communication — in particular, to simplify the hantj

of collective communication — this level of indirection adaddi-
tional overhead during replay.

Recall from Section 4 that we expect users to constrain yepla
group sizes to fit within the computing resources of theiuggjing
environments, which is typically limited in HPC environntenThe
replay execution times in Figure 6 show the benefits of having
enough processor cores to replay all processes in the rgpbap

IMPIWiz currently replays all processes on a single node ésee
of implementation and debugging. Since it is misleading &am
sure the execution time of order-replay for all 64 processessin-
gle node, we do not report replay execution time for ordetae
Since order-replay restarts all processes and executesmafiuta-
tion and communication as with normal execution, its reag-
cution time is nearly the same as the base execution time [25]

distributed across all processes, SRRstill provides scneft. If

the replay group contairis of the totaln processes, the expected
log size reduction with SRR i%/n relative to data-replay. For
the FT, GE and ASP applications, we therefore expect SRR-to re
duce the log size by /8 ~ 12.5% relative to data-replay, where

k = 8 n = 64 in our experiments. Figure 8 shows that SRR
logs for FT, GE and ASP are 13%, 12.8%, and 13.1% smaller than
data-log, respectively, or 13% on average. These resulishntize
theoretical analysis very well.

PU benefits least from SRR, whose log only decreases about
1.6%. Since almost every process is in its own replay gradup, t
communication pattern makes SRR behave almost identinétiy
data-replay.

7.3 Replay Group Size and Membership

Finally, we evaluate the sensitivity of the record log siang
erated by MPIWiz to the replay group size and membership. The
size of the replay group represents a tradeoff to the apjaicde-
veloper: a larger group size produces smaller logs (less-group
traffic needs to be recorded), but requires more resourcesgdu
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Figure 8: SRR’s log size compared to data-lcd/G: geometric
mean for applications of the current communication pattern

replay (more processes have to execute again during reflayg)
size can also be sensitive to process membership sincespesce
that exhibit communication locality will generate moresirgroup
traffic if they are not placed in the same replay group.

We explore these issues with the following experiment. For a
given application, we vary the size of a replay group from one
process (equivalent to data-replay) to 64 processes @quivto
order-replay). For each replay group size, we determinpribeess
membership of the group using two methods: according togrou
communication locality (Section 4), and uniform randonesgbn
as a baseline.

Figure 9 shows the results of this experiment for two applica
tions, one with communication locality (CG) and anotherhwiit
locality (FT), in two graphs. The-axes show the size of the replay
group, and thej-axes show the log size relative to a group size
of one process (data-replay). The two curves correspondoiepg
membership based on locality and using a random assignifioent;
random, we performed 3 trials and show the average and sthnda
deviation of the trials.

The results in Figure 9 confirm that larger groups producdlsma
logs. For random group assignment, the log size decreasgklyo
linearly with the size of the group. For applications witlcédity,
however, MPIWiz can do much better.

Figure 9a shows the benefits of making informed group mem-
bership assignments for applications that exhibit comeation
locality. Relative to a random assignment, exploiting camioa-
tion locality substantially reduces the log size. For a greize of
eight, for example, the log size using locality is 2.8 timesaler
than with random. Figure 9b, however, shows that applioatio
lacking communication locality are insensitive to groupnnber-
ship. The group membership assignment using graph paitiio

=
=
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—e— Random —e— Random
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©
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Figure 9: Log size as a function of replay group size and membe
ship relative to log size of data-replaj,ocality: organize replay
groups according to communication localifgandom: organize
replay groups randomly. WitRandom we show the average and
standard deviation from 5 trials.

results in the same log sizes as using a random assignment.

8. CONCLUSION

This paper proposes a new deterministic replay method, sub-
group reproducible replay (SRR), for making deterministiplay
practical for MPI applications. SRR balances the tradeafftsoth
data-replay and order-replay. It partitions processes diigjoint
replay groupsand allows any subset of these groups to be recorded
and replayed. We have implemented a prototype, MPIWiz, toate
strate and evaluate the SRR approach to deterministicyrepla

By partitioning processes into replay groups, SRR can fexly
ploit communication locality in MPI applications to furtheeduce
recording overhead. When using MPIWiz on popular MPI bench-
marks, for example, SRR can reduce recording overhead byaove
factor of four relative to data-replay.

Replay groups also make the replay phase more feasibléveelat
to order-replay. An important advantage of data-replayhat it
can replay any process of an application individually onrayle
machine, whereas order-replay requires all processes ofitinal
application to be replayed together. SRR strikes a balaatveden
the two. It only requires replaying the processes of a sirgéay
group, enabling practical replay on one multi-core machatber
than an entire cluster as with order-replay.

MPIWiz provides two additional benefits not found in exigtin
MPI replay tools. In addition to handling the non-deterraimi
in MPI operations, it also handles non-determinism due sbesy
calls like get ti neof day. And it guarantees that the memory
footprints of the replayed processes are identical to tlodsbe
original processes. These features further increase Hutiqality



of deterministic replay for MPI applications.

Finally, although MPIWizis a fully functional replay toat,cur-
rently does not support checkpointing. Checkpointing wa<rit-
ical for evaluating SRR relative to data-replay and ordgtay, but
we recognize that checkpoint and restart is important fanynze-
plications and are implementing them as future work.
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