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Abstract

Network coordinate systems, such as GNP and Vivaldi,
provide virtual positions for networked hosts, which en-
able the hosts to connect to nearby peers, find the closest
server, or organize themselves in a topologically-aware
manner. Current network coordinate systems, however,
only use latency to compute the positions, leaving out an
important network metric—namely bandwidth.

In this paper, we present a unified approach that pro-
vides virtual positions based on both bandwidth and la-
tency. The key intuition is that network latency and
bandwidth are approximate tree metrics, that is, a set of
distances that can be embedded in a tree. We first ar-
gue based on intuition and analysis of three real-world
datasets why bandwidth and latency can be represented
as tree metrics. Then, we present Sequoia, an accurate
and light-weight system that provides virtual network po-
sitions by embedding bandwidth or latency on trees; the
network positions computed by Sequoia are as easy to
use as a set of coordinates. Finally, we present an evalua-
tion based on the three datasets showing that: 1) Sequoia
represents latency as accurately as Vivaldi in addition to
being the first "coordinate” system for bandwidth; 2) it
enables selection of the closest and the most-provisioned
(highest bandwidth) server with low error and overhead;
and 3) it computes topologically-aware trees, which can
be used to organize a networked system efficiently.

1 Introduction

Latency-aware network applications are pervasive these
days: Web-based services and content distribution net-
works (CDNs) often redirect client requests to the closest
server while peer-to-peer systems and distributed hash
tables (DHTs) prefer to select neighbors based on net-
work proximity. Naturally, several systems have been
designed and built to provide latency-centric functional-
ities. Systems such as IDMaps [8], Meridian [25], and
Oasis [9] provide the capability for discovering closest-
servers efficiently. Other systems such as GNP [16], Vi-

valdi [6], and PIC [5] provide a convenient set of coor-
dinates for each host that can then be used to estimate
latency and select proximal peers.

However, a totally different network property—
namely bandwidth—has emerged as a crucial perfor-
mance factor. With the increasing advent of online-
media-streaming, podcasts, and movie/video downloads,
clients of web-based multi-media services and hosts of
peer-to-peer CDNs have a new need to select servers
based on bandwidth in addition to latency. Current sys-
tems that compute network coordinates based on latency,
unfortunately, fail for bandwidth; while, the suitability of
other systems for bandwidth-based server selection has
not been explored yet.

This paper, for the first time, presents an intuitive
model for network bandwidth. The proposed model is
based on the observation that under certain typical cir-
cumstances, bandwidth is a tree metric; that is, the set
of bandwidth measures can be exactly embedded as dis-
tances on a tree. For instance, bandwidth is a tree met-
ric when it primarily depends on the last-mile, access
links. Claims from prior measurement studies support-
ing the prevalance of this instance and an analysis of a
real-world bandwidth dataset presented in this paper in-
dicate that Internet bandwidth is indeed an approximate
tree metric.

Fortuitously, Internet latency also turns out to be an
approximate tree metric. While this revelation may not
be surprising since the Internet is quite hierarchical, our
analysis of two real-world latency datasets confirm that
end-to-end latencies closely follow the hierarchy.

The outcome of the above observations is an elegant
and unified model to represent both latency and band-
width. This paper explores the model of embedding net-
work latency and bandwidth onto trees. More concretely,
it presents the notion of prediction trees, where end hosts
at the leaf level connected via a network of virtual inner
nodes with carefully assigned link weights model latency
or bandwidth. Note that systems that reconstruct the
internal topology of the Internet already exist [15, 27].



However, unlike these systems that try to locate individ-
ual gateways and routers through expensive and intrusive
measurement probes, our approach strives to build a “vir-
tual” model (where internal nodes represent fake routers)
through light-weight, end-to-end mechanisms.

Prediction trees provide key intrinsic advantages:
First, predicting latency or bandwidth between two
hosts in a tree requires a mere computation (just like
coordinate-based network positioning systems) when the
paths to a common ancestor are known. Thus, the
paths to a common root host can serve as “coordi-
nates” for each host. Second, finding the closest or
best-provisioned server can be accomplished efficiently
through a simple search along the path from the root to a
leaf. Finally, a reasonably-balanced tree is a highly scal-
able structure where operations (such as search or join)
can be accomplished with low overhead.

This paper presents a system called Sequoia that
provides a variety of network-centric functionalities
based on the above-described notion of prediction
trees. Sequoia maintains a collection of virtual trees
between the participating hosts and provides effi-
cient latency/bandwidth prediction, server selection, and
topology-aware clustering through easily-decentralized,
light-weight mechanisms. It is resilient to violation of
the triangle inequality condition in network measures,
tolerates non-availability of some measurements, and
shows good scalability with increasing number of hosts.

We envision that Sequoia would serve the needs of
several networked systems and applications. First, path
quality prediction is useful for neighbor selection in Dis-
tributed Hash Tables and peer-to-peer file sharing ser-
vices (e.g., BitTorrent). Second, web services can use
Sequoia to efficiently redirect clients to the closest server
(like Meridian does) or to a well-provisioned server. Fi-
nally, hierarchical networked systems, such as overlay
multicast systems [4, 28, 22] and network monitoring
systems [19, 26] can leverage the intrinsic topology-
aware hierarchy built by Sequoia to organize themselves.

Overall, this paper makes the following major contri-
butions: First, it presents an elegant approach for repre-
senting network measures as tree metrics, providing intu-
itive and analytical reasons to argue that at least two im-
portant measures—latency and bandwidth—are approx-
imate tree metrics. Second, it outlines the design and
implementation of the Sequoia system, which constructs
prediction trees for latency and bandwidth in a cost-
efficient yet accurate manner. Finally, it demonstrates
the new abilities that Sequoia provides for bandwidth-
based server selection and topology-aware hierarchical
clustering while highlighting Sequoia’s ability to match
the state-of-the-art in latency-based network positioning,
all through an extensive evaluation driven by real-world
datasets.

The rest of the paper has the following organization:
Section 2 provides some background about tree metrics
and makes a case for embedding network measures on
trees. Section 3 then describes the Sequoia system in de-
tail while Section 4 evaluates Sequoia. Finally, we dis-
cuss suitable applications and related work in Sections 5
and 6 and conclude in Section 7.

2 Background and Intuition

The key intuition behind this work is that Internet path
measures such as bandwidth and latency are approxi-
mate tree metrics. In this section, we provide some back-
ground about tree metrics and present intuitive and ana-
lytical arguments to back up this intuition.

2.1 Tree Metrics

Consider a set D of pair-wise measurements of some net-
work path property, say latency or bandwidth, between
a set V of networked hosts. This set of measures D is
a tree metric if there exists a tree 7' with non-negative
weights such that V' C T and dy (u,v) = dr(u,v) for
all u,v € V, where d(u, v) represents the pair-wise path
property. In other words, a set of measures is a tree met-
ric if it can be derived from distances on a tree, that is,
embedded on a tree. Note that in the above definition,
the tree 7' may have additional nodes not present in the
set V.

There is a convenient condition called the Four-Points
Condition [3] (4PC) to verify whether a set of mea-
sures is a tree metric. The four-points condition states
that for any four hosts w, X, y, and z ordered such that
d(w,x) + d(y,2) < dw,y) + dx,2) < dw,z) +
d(z,y), d(w,y) + d(z,z) = d(w,z) + d(z,y). That
is, of the three sums of distinct pairs of distances, the
highest sum is equal to the second highest sum. A set
of measures is a tree metric if and only if every set of
four hosts satisfies the 4PC [3]. Figure 1 illustrates the
four-points condition graphically.

Another form of tree metric that is useful for modeling
network path properties is the ultra metric. An ultra met-
ric embeds network hosts into a hierarchically-separated
tree, where any pair of hosts with the same least common
ancestor also has the same distance. By least common
ancestor, we mean the closest common ancestor in the
tree. Note that, once again, the tree might include addi-
tional hosts not present in the set of measures. An ultra
metric is a stricter form of tree metric in that every ul-
tra metric is a tree metric while the inverse is not always
true.

Similar to tree metrics, there is a convenient condi-
tion to verify whether a set of measures is an ultra met-
ric. This condition, called the Three-Points Condition
(3PC) [3], states that for any three hosts X, y, and z or-
dered such that d(y, z) < d(z,z) < d(z,y), d(z,y) =



d(w,x)+d(y,z) < d(w,y)+d(x,z) = d(w,z)+d(x,y)

Figure 1: Four-Points Condition: For any four nodes
and the three sums of distinct pairs of distances between
them, the highest sum is equal to the second highest iff
the nodes and distances are embeddable in a tree.

d(x, z). That is, of the three measures, the largest is equal
to the second largest. A set of measures is an ultra metric
if and only if every set of three hosts satisfies the 3PC [3].
Figure 2 illustrates an ultra metric and the three-points
condition graphically.

Note that the above definition of the three-point condi-
tion applies to distance measures, where smaller is better.
The corresponding 3PC for bandwidth would state the
converse, that is, in any triplets, the two smaller band-
widths are equal.

2.2 Bandwidth and Latency as Tree Metrics

We first argue why tree metric is a fitting representation
for bandwidth. We do this by presenting two hypothet-
ical network models in which bandwidth measures turn
out to be exact tree metrics.
Best Bandwidth Networks: Consider a network of
hosts connected by routers and gateways where the path
used to route packets between two hosts is the best band-
width path, that is, the path with the highest bottleneck
bandwidth, where the bottleneck bandwidth of a path is
the minimum of the bandwidths of each link in the path.
We can trivially show that the set of bandwidths be-
tween the end hosts in the above network is an ultra met-
ric. Assume, for instance, that there are a set of hosts, X,
y, and z with d(y, z) > d(x, z) > d(z,y) that violate the
3PC for bandwidth; that is, d(z, z) # d(x,y). Then the
path x — 2z — y would have a higher bandwidth than
the current path, indicating that the network is not using
the best bandwidth paths—a contradiction.
Edge Bandwidth Networks: Consider a network of
hosts connected by routers and gateways where the last-
mile access links have lower bandwidths than the links
at the inner core. That is, the bottleneck bandwidth be-
tween two end hosts only depends on the bandwidths of
the access links connecting the two end hosts to the net-

d(B,C) > d(A,B) = d(A,C)
d(A,B) > d(A,D) = d(B,D)
d(C,B) > d(C,D) = d(B,D)

Figure 2: Tree Showing an Ultra-Metric: Hosts B and C
with a common ancestor to A have the same distance to
A. Similarly for A and B with respect to D.

work and is totally independent of what routing policies
are used for finding the paths.

In the above model too, we can trivially show that the
set of bandwidths between the end hosts is an ultra met-
ric. Consider any set of three hosts, x, y, and z with
a, > ay > a,, where a;, a,, and a, are the band-
widths of the access links connecting x, y, and z. Then,
min(a,,a,) > min(a,,a;) > min(a,, a,); and there-
fore, d(y,z) > d(z,z) = d(z,y), the 3PC for band-
width, since d(u, v) = min(a,, a,) in the above network
model.

The Internet, of course, does not always satisfy the
above models. In fact, the first scenario of best-
bandwidth networks may arise only in rare instances; for
example, when a CDN such as Akamai uses the best-
provisioned paths in an overlay network!

However, the second scenario, where the path band-
width depends on the last-mile, access links, is more
common. This is especially true in the increasingly
prevalent broadband networks as shown by a recent mea-
surement study by Dischinger et al. [7]. Another study
by Hu et al. [13] claims that, even in the Wide-Area In-
ternet, 60% of paths between random end hosts have the
bottleneck in the first or second hop. The conclusions of
these studies indicate that Internet bandwidth could be
close to tree metric.

End-to-end latency, on the other hand, typically de-
pends on all the components in the path. Naturally, it
is harder to understand why latency might fit into tree
metrics as well. At a high level, the Internet has a hier-
archical organization, with different tiers of ISPs (Tier 1,
Tier 2, etc.). Yet, in practice, this organizational hierar-
chy does not translate to topological hierarchy since ISPs
have peering relationships in complicated ways; Tier 1

! Akamai actually employs overlay routing on their EdgePlatform;
although, we are not aware if the routes are optimized for bandwidth.



100

(%)

CDF

UC-PlanetLab Latency
Cornell-King Latency -
HP-PlanetLab Bandwidth -—---
Distance‘on a Sphgre——~~~

1 1
0.2 0.4 0.6 0.8 1
4PC-Epsilon

Figure 3: CDF of es for Different Datasets: The es are
generally small indicating that the datasets closely resem-
ble tree metrics. In contrast, latencies between nodes dis-
tributed on the surface of a sphere have much bigger cs.

ISPs peer with each other, Tier 2 ISPs have multiple Tier
1 parents and Tier 2 peers, and so on.

We believe that even though the Internet is a mesh
with lots of shortcut paths, the shortcuts often do not
contribute significantly to latency. It is known that the
top tiers are more densely connected than the lower
tiers [24]. Hence, the shortcuts tend to be present mostly
in the top tiers, and a fast, over-provisioned top-tier
would keep the impact of these shortcuts on end-to-end
latency low compared to the effect of longer links in the
edges of the Internet.

Next, we present further, quantitative evidence to
show that Internet measures are approximate tree met-
rics.

2.3 Analysis of the Tree-ness of the Internet

We quantify the fit of a set of measures to the tree metric
by measuring how well it satisfies the four-points condi-
tion. We use a parameter called the 4PC-¢ originally in-
troduced in [1] to quantify the deviations from 4PC. The
4PC-€ for a set of four nodes w, X, y, and z ordered such
that d(w, z) + d(y, z) < d(w,y) + d(z,z) < d(w, z) +
d(x,y) is the one that satisfies the equation d(w, z) +
d(z,y) = d(w,y)+d(z, z) +2e- min{d(w, x),d(y, z) }.
The paper [1] provides more intuition about this defini-
tion of 4PC-e¢.

The distribution of 4PC-es show how close a network
measure is to a tree metric. The 4PC-es are zero for a
perfect tree metric and at most one for an arbitrary met-
ric.

We compute the distributions of 4PC-¢s for three re-
alworld datasets: 1) a UC-PlanetLab Latency dataset of
round-trip times between PlanetLab nodes measured at
University of Cincinnati [35], 2) a Cornell-King Latency
dataset of latencies measured between DNS servers us-

ing the King technique [11] at Cornell University [29],
and 3) a HP-PlanetLab Bandwidth dataset of available
bandwidth measurements between PlanetLab nodes col-
llected at HP Labs [33] using the pathChirp tool [20].
Table 1 summarizes the details about these datasets.

Figure 3 shows the CDF of 4PC-es for each dataset.
In this graph, we omit the node sets where a triangle in-
equality violation occurred since the definition of 4PC
only applies to a metric. In our datasets, violations of
the triangle-inequality occurred for roughly 15 to 40 %
of the triplets. We discuss more about triangle-inequality
violations later in this section.

At a high-level, Figure 3 shows surprisingly small val-
ues of 4PC-es (less than 0.2 for 80% of values) indi-
cating that all three datasets are approximate tree met-
rics. Further, as a sanity check, the figure also shows
the distribution of 4PC-es for a metric of latencies on the
surface of sphere, as would be the case if the latencies
between Internet hosts were based on geographical dis-
tance. Not surprisingly, the distribution of 4PC-es for
a sphere shows much less resemblance to a tree metric
than latencies on the Internet. This also indicates that the
prevalent approaches [6] for modeling Internet latency
using coordinate-based models and Euclidean distances
may not be the most fitting.

2.4 Assumptions

Overall, the above intuition and analysis indicates that
approximating Internet path measures as tree metrics is
a promising approach. Certainly, this approach makes
a few assumptions about the path measures. Similar to
prior coordinate-based approaches [16, 6, 5] for model-
ing latency, this approach also assumes that the network
measure is a metric. The metric assumption implies at
least two properties: 1) the measures are symmetric and
2) the triangle inequality holds. However, these proper-
ties do not always hold in the Internet. Policy-based rout-
ing (such as hot potato and cold potato) that do not select
shortest or bandwidth-optimal paths and transient over-
heads such as queuing delay lead to violations of sym-
metry and the triangle inequality condition.

Our approach, described in the next Section, does not
currently address asymmetric network measures. How-
ever, it is resilient to triangle inequality violations and
works well in their presence as will be evident from our
evaluation.

Finally, we are aware that the term bandwidth often
refers to related yet different measures: capacity, the
theoretical maximum bandwidth of a path in the ab-
sence of cross traffic, available bandwidth, the actual un-
used bandwidth at a given instant, and the bulk-transfer
throughput achievable by a TCP connection [17]. The
intuition provided above as well as our approach and
techniques described below apply well to any of these



bandwidth measures. The dataset we use to evaluate our
approach, however, measured available bandwidth.

3 Sequoia

We next present Sequoia, a system that applies the above
insights for embedding network measures such as latency
and bandwidth onto trees. Sequoia strives to use these
tree embeddings to provide network-aware functionali-
ties such as path quality estimation, server selection, and
hierarchical clustering to applications. The rest of this
section provides an overview of Sequoia, details its de-
sign, and describes how it supports the above functional-
ities.

3.1 Overview

Sequoia constructs “virtual” prediction trees for a system
of networked hosts through end-to-end measurements.
The prediction tree for a set of networked end hosts looks
as follows: The end hosts form the leaf nodes and are
connected via a network of virtual inner nodes. The links
in this virtual topology have weights that model a net-
work measure, that is, latency or bandwidth.

The inner nodes are virtual in the sense that they are
introduced for purely modeling purposes and are not ex-
pected to have any real-world associations. The tree
topology also does not imply that the end hosts orga-
nize into a tree-based distributed system; the virtual trees
could merely be an abstraction in the memory of a few
or all hosts in the system. However, as explained later,
Sequoia’s virtual trees could be used to construct a hier-
archically organized distributed system if required.

Sequoia designates an end host as a lever R for each
virtual tree; the lever could be any of the end hosts or a
specially provisioned landmark server. The lever acts as
a reference for the tree; that is, link weights are assigned
such that the tree path from the lever to an end host has
the same distance as the real Internet path between the
lever and the end host. Figure 4 illustrates a virtual tree
for three end hosts and a lever.

The prediction tree provides a convenient way to es-
timate path qualities between participating hosts. Each
host has a distance label that encodes the path of the
host to the lever and the corresponding link weights. Two
hosts can then quickly estimate the quality of their path
without referring to other parts of the tree. For exam-
ple, in Figure 4, hosts A and B have the distance label st
and C the label t. Two nodes, say A and C, can estimate
their distance by computing the path A,s,t,C from their
distance labels.

In addition, a prediction tree enables three other
network-centric functionalities. First, a participating
end-host can use the prediction tree to discover a closest
or best-provisioned peer node by merely looking at its
immediate vicinity in the tree. For example, in Figure 4,

host A can find its closest peer host B through a localized
search. Second, an external end-host can use the tree to
guide its search to find the best server. Such a search can
start at the lever and direct itself in the tree along the path
from the lever to the chosen server at the leaf. Finally, the
prediction tree itself provides a network-aware hierarchi-
cal clustering of hosts. For example, in Figure 4, hosts
A and B being closer to each other than host C form a
lower-level cluster.

3.2 Design

The central process in Sequoia is prediction-tree con-
struction. Sequoia’s algorithms for constructing predic-
tion trees are based on a basic heuristic that ensures that
the constructed tree will provide zero distortion if the
modeled path quality is an exact tree metric. That is,
if we start with a tree metric, we get a zero-distortion
prediction tree.

The join algorithm based on the above heuristic has
the following key step: A host’s position in the tree is
determined by the lever and one other node called the
anchor. A host, say B, tries to maintain exact distances
to the lever R and its anchor A; it preserves the three
distances d(A,R), d(B,R), and d(A,B), by introducing a
virtual node s in the existing tree path between A and R.
Note that computing the distances from s to R, A, and B
such that it preserves the real distances is quite trivial (for
instance, d(s, R) = 0.5-(d(4, R)+d(B, R)—d(A, B))).

A host B joining an existing prediction tree first finds
a suitable anchor A in the current tree. In order to pre-
serve zero-distortion for tree metrics, the anchor needs
to be the host that maximizes the distance d(s,R) on
the tree [3]. This distance d(s, R) = 0.5 - (d(4, R) +
d(B,R) — d(A, B)) is called the Gromov product and
will be denoted as (A|B)g in the rest of the paper. This
basic join algorithm is illustrated in Figure 6.

3.2.1 Anchor Tree

Even though the above algorithm provides an elegantly
construction for prediction trees, it does not help in shap-
ing the structure of the tree. Consequently, the resulting
prediction tree may not have a nice balanced structure.
For instance, if we start with distances on a linear chain
of hosts, then the resulting prediction tree will also be
a chain. This has profound impact on the scalability of
our approach because the cost of basic primitives such as
distance labels and server selection depends on the tree
structure.

We propose an alternative, scalable abstraction called
the anchor tree. An anchor tree is simply a tree showing
anchor relationships of end hosts in the prediction tree.
Figure 5 shows an example anchor tree for the prediction
tree in Figure 4. Unlike the prediction tree, an anchor
tree can be constructed in a well-balanced manner. Even
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Figure 4: Prediction Tree: An example prediction tree
between three end hosts and a lever. The link weights
model path qualities such as latency.
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in the adverse case where the distances are induced by
a linear chain, we can construct a well-balanced anchor
tree.

The anchor tree and its corresponding prediction tree
are equivalent; the former is just a more scalable repre-
sentation of the latter. It provides the exact same distance
estimates as the prediction tree although computing dis-
tance is a bit more tedious. The path from an end host
to the lever also serves as the distance label in an anchor
tree. Two end hosts can estimate the distance between
them based on their distance labels. A simple distance
computation algorithm is to construct a prediction tree
based on the anchor relationships encoded in the two dis-
tance labels and then use the prediction tree to estimate
the distance.

A well-balanced anchor tree has the following advan-
tages over prediction trees: First, it provides short dis-
tance labels that scales logarithmically with system size.
Second, the paths from the lever to hosts are also short
enabling efficient searches for best servers. Finally, un-
like the prediction tree, an anchor tree is composed only
of real hosts and can be directly used to construct a dis-
tributed system.

3.2.2 Best Host Discovery
The anchor tree also facilitates a low overhead technique
for construction of prediction trees. Note that, the tree
construction algorithm outlined earlier involved the key
step of finding an anchor that maximizes the Gromov
product. This step might involve searching through all
hosts in the system and measuring their distance to the
joining host. Such an effort is unproductive as it requires
O(N) measurements in a system of N hosts.

Sequoia instead uses the anchor tree to prune this
search space and find a suitable anchor with less mea-

Figure 5: Anchor Tree: An example anchor tree corre-
sponding to the prediction tree in Figure 4.

surements. We first outline a general search algorithm
on the anchor tree for finding a host that meets a gen-
eral search criterion with respect to a target host B. The
search starts with the lever as the candidate host. It looks
at all the hosts within a certain search_depth D from the
lever and measures their distance to the target host. The
best host from this set is chosen as the new candidate and
the search is repeated until no progress can be made. Fi-
nally, the search returns the best host in the path from
the lever to the last candidate. This search algorithm is
illustrated in Figure 7.

The search criterion in the above algorithm can be set
according to requirements. A criterion based on small-
est latency or largest bandwidth enables server selec-
tion. For tree construction, the criterion is to maximize
d(A, R) — d(A, B), where B is the joining node. Note
that the third term in the Gromov product, d(B, R) is a
constant during the anchor search.

The above search algorithm is a heuristic and is not
guaranteed to find the correct anchor or the closest or
the best-provisioned server. It is a practical trade-off to
keep measurement cost low albeit, as shown in Section 4,
an effective one. The number of measurements required
by the search algorithm is also not bounded although we
expect it to scale logarithmically on average if we bound
the number of hosts a node can anchor.

3.3 Practical Issues

In this section, we discuss how Sequoia handles other
major practical issues.

3.3.1 Bandwidth Representation

The previous discussion primarily talked about building
prediction and anchor trees for a distance (latency) mea-
sure. There are two choices for representing bandwidth



Figure 6: ConstructTree Algorithm: Basic prediction
tree construction algorithm that preserves tree metrics
for a set ' of hosts.

: return tree T := constructTree(V \ {R}, R);

1

2:

3: function ConstructTree(V,R):

4:  if |V| > 1 then

5: choose next host B € V

6 choose anchor A that maximizes (A|B)g

7 add virtual node s between A and R at dis-
tance (A|B)g from R;

add node B at distance (A|R)  from s

T := constructTree(V \ {B}, R);

o x

10: fi;
11:  return T;
12: end ConstructTree

on a prediction tree. The first is to use prediction trees
as a black-box for modeling any approximate tree metric
and represent bandwidth by treating it as a distance met-
ric. The second is to build a bandwidth-specific predic-
tion tree where the prediction tree will resemble an ultra-
metric tree, similar to Figure 2. One well-known way
to build a bandwidth-specific prediction tree is to build
a maximum- weighted spanning tree (MST) between the
hosts using bandwidths as link weights and then defining
the distance between two hosts in the MST as the weight
of the smallest weighted-link in the path [3].

Sequoia chooses the first, black-box approach. We
found it to have better accuracy than the second approach
and easier to unify the methodology for representing la-
tency and bandwidth. However, bandwidth has a con-
verse semantics compared to latency—higher is better as
opposed to smaller is better for latency. Hence, Sequoia
reverses the order of bandwidth measures by subtracting
each measure from a high constant before tree construc-
tion and subtracts the predicted value from the same con-
stant before providing it to the application. Note that, the
choice of this constant does not affect the outcome of the
prediction in any way. It just needs to be high enough to
avoid negative values after subtraction.

3.3.2 Multiple Trees

It turns out that the accuracy of the prediction tree de-
pends on the choice of the lever and its location in the
network. It is possible that the chosen lever is not well-
suited to demarcate the relative positions of some hosts
in the network, or the lever may not be able to measure
its distance to some hosts. To mitigate the impact of bad

Figure 7: SearchTree Algorithm: Basic search algorithm
to find a candidate host meeting some search criterion
with respect to a target host B using the anchor tree.

: return candidate C' := SearchTree(R, B);

1
2:
3: function SearchTree(C, B):
4: S :=all hosts at depth D from C in the anchor
tree;
C’ :=best host S that meets the search criterion;
if C # C’ then
C := SearchTree(C’, B);
fi;
9:  return C;
10: end SearchTree

® W

levers and network problems, Sequoia uses multiple pre-
diction trees referenced at distinct levers. Choosing the
median distances estimated from the trees then helps in
removing the outliers and improving the accuracy of pre-
diction and server selection.

3.3.3 Balancing Anchor Trees

As highlighted earlier, a well-balanced anchor tree is cru-
cial for the scalability of Sequoia. It is desirable that the
anchor tree is not too deep (shorter paths from hosts to
the lever) and not too fat (bounded children for each an-
chor). In practice, the anchor trees generally don’t seem
to appear too deep or fat (see Section 4).

Yet, we have a mechanism to build balanced anchor
trees to handle worst-case scenarios. The ConstructTree
algorithm in Figure 6 chooses the anchor when a new
host joins the tree. It is possible to pre-determine the an-
chor choices in a desirable way by changing the order in
which hosts join the tree. Our anchor balancing mech-
anism changes the join order so that each anchor has a
bounded number of children and anchor paths are not
unnecessarily deep. Unfortunately, this mechanism is ex-
pensive (requires O(N log N) computations for a system
with N hosts), and we don’t intend to employ it except in
a bad case.

3.3.4 Triangle Inequality Violations

Network measures are not true metrics and often violate

key properties such as the triangle inequality condition.

It is crucial for Sequoia to be resilient to such violations.
First, observe that violations of triangle inequality has

a simple effect on Sequoia’s prediction trees; they pro-

duce negative weights on the links. This is because the



Gromov product can be negative if the triangle inequality
does not hold. Negative link weights are not particularly
a problem for computing distances on trees since trees
are acyclic (there are no negative-weight cycles). Nev-
ertheless, they might make a few distance estimates to
come out negative. Sequoia simply ignores negative es-
timates and instead uses estimates from other trees.

But Sequoia also corrects the above aberration and
avoids negative link weights by fixing the triangle in-
equality. It adds a large constant to each measured
value before building the prediction tree and subtracts
it back before presenting estimated distances to appli-
cations. Adding a large constant (similar to bandwidth
representation) does not change the accuracy of predic-
tion tree in any way. It simply results in the Gromov
product being higher by that constant and consequently
avoids any negative link weights.

3.3.5 Non-availability of Measurements

Network measurements sometimes fail; a few hosts may
not respond to measurement probes, or firewalls and in-
termediate gateways may block the probes. We designed
Sequoia to use opportunistic meaurements wherever pos-
sible and to be resilient to measurement failures when-
ever it occurs. Sequoia simply ignores unavailable mea-
surements; it sets the Gromov product to negative infinity
if one of the component measurements is not available.
In the case that a host cannot measure itself to a lever,
Sequoia uses the other prediction trees referenced at dif-
ferent levers.

3.3.6 Changing Measures

Finally, network measures are not constant; latency and
available bandwidth change often. Instead of modifying
the prediction trees to reflect each change, we propose a
simple approach to adapt to dynamic changes. Sequoia
maintains a sliding window of trees constructed at dif-
ferent times. Periodically, it constructs a new tree based
on the oldest prediction tree (at the same lever) but with
new, updated measurements. A weighted median could
help pick fresher distance estimates from multiple trees.

3.4 Architecture

Sequoia is conducive to be deployed in many ways. In
this section, we make a few remarks about the choices
for Sequoia’s architecture.

Centralized Service: Sequoia could be a centralized
Web service like iPlane [15], exporting a query interface
to external clients. Clients could query Sequoia to esti-
mate a network property to a targeted host or choose the
best server from a set of target hosts. Sequoia in turn
could take advantage of opportunistic measurements re-
ported by the clients or explicitly instruct clients to per-
form measurements to target hosts. This architecture

might require additional effort to keep Sequoia respon-
sive and available.

Partially Centralized System: A better architecture for
Sequoia is to keep the participating hosts actively in-
formed about their current “coordinates”, that is, distance
labels. A centralized server leverages measurements ob-
served by the hosts, builds prediction (and anchor) trees
efficiently, computes the distance labels, and informs the
hosts. Hosts, in turn, can use the distance labels to per-
form latency/bandwidth prediction and server selection
independently without consulting the centralized server.
Fully-Decentralized System: Finally, Sequoia could be
a distributed system with no centralized server. The an-
chor trees provide a convenient distributed organization
for such a deployment. Each host could maintain each
host on its path to the lever as neighbors . The SeachTree
algorithm in Figure 7 can be converted into a network
protocol for finding the anchors and best servers through
the above neighbor relationships (similar to peer-to-peer
systems such as Gnutella [32]). Levers would serve as
bootstrap hosts that new hosts can contact to join Se-
quoia with lever failures compensated by other levers in
the system. Finally, if anchor hosts fail then their parents
in the anchor tree can take over their role naturally.

4 Evaluation

We next present an evaluation of Sequoia. First, we
show Sequoia’s basic ability to represent the underlying
datasets accurately. Second, we demonstrate Sequoia’s
practical benefits by using server selection as a targeted
application. Finally, we discuss a few structural proper-
ties of Sequoia trees and highlight their topological cor-
relations with the real world.

The evaluation is driven by the three real-world
datasets (UC-PlanetLab, Cornell-King, and HP-
PlanetLab) mentioned in Section 2. Table 1 summarizes
the properties of these datasets. The datasets rep-
resent different network properties (two latency and
one available bandwidth) measured on geographically
spread-out hosts in the Wide-Area Internet (two be-
tween PlanetLab [30] hosts and one, Cornell-King,
between infrastructure (DNS) servers).  They are
also of widely-different scales (125, 396, and 2500
hosts) and sometimes highly incomplete (only 40%
of measurements in HP-PlanetLab). Finally, none
of them are strict metrics as they have a significant
amount of triangle-inequality violations (up to 40% in
HP-PlanetLab).

Our evaluations were performed on an implementation
of Sequoia’s tree construction algorithms in Cff. We con-
struct different numbers of Sequoia trees with randomly
chosen levers for each dataset, use the above-described
datasets to drive the measurements, and keep track and



Dataset Measure Technique Hosts | Measurements | /A <> Violations
UC-PlanetLab | Latency Ping 125 15625 15 %
Cornell-King Latency King [11] 2500 3123750 22 %
HP-PlanetLab | Bandwidth | pathChirp [20] | 396 65077 40 %

Table 1: Summary of Datasets

report the number of measurements required to construct
the trees. All numbers reported in this Section are based
on the decentralized tree-construction algorithm that uses
selected, partial measurements from the datasets.

4.1 Prediction of Network Properties

We first present the error in using Sequoia to model
and predict network properties. We represent the pre-
diction error as a relative error: the ratio of the ab-
solute difference between the predicted and the true
values over the true value, that is, abs(tree_value —
graph_value) /graph_value. In the presence of multi-
ple Sequoia trees, the predicted, tree value was taken as
the median of the values estimated from all the trees.

We compare the accuracy of Sequoia models against
Vivaldi [6], the well-known coordinate-based approach
to model network latencies, using the Vivaldi simula-
tor [31] built at Harvard University. For Vivaldi, we
used the default value of three coordinates, set the num-
ber of neighbors to include all hosts for the two com-
plete datasets and 50% of hosts for the third, incomplete
dataset, and the number of iterations to match the size of
the data set so that both Vivaldi and Sequoia would use a
similar number of measurements in the best case.

Figure 8 shows the CDF of relative errors for Sequoia
with 1, 5, and 15 trees in comparison to Vivaldi for
the three datasets. We will first discuss the two latency
datasets: UC-PlanetLab (Figure 8(a)) and Cornell-King
(Figure 8(b)).

For both latency datasets, Sequoia’s prediction accu-
racy is comparable to Vivaldi. Of course, Sequoia’s ac-
curacy depends on the number of trees used and, in gen-
eral, improves with more trees. Moreover, the number
of trees required to achieve a satisfactory level of accu-
racy depends on the size of the dataset; Sequoia 5 and
Sequoia 15 do well for UC-PlanetLab and Cornell-King
datasets respectively. Moreover, the presence of triangle
inequality violations do not seem to deter effectiveness
of Sequoia or Vivaldi. Finally, both Sequoia and Vivaldi
tend to have a heavy tail of high errors. In practice, the
heavy-tail does not affect the usefulness of either of the
systems as most applications can tolerate the occasional
errors. In theory, fortunately, treating network proper-
ties as approximate tree metrics provides a good handle
in characterizing the worst-case performance of tree em-
bedding algorithms as shown in [1].

For the bandwidth dataset (Figure 9), Sequoia is

clearly able provide a reasonably accurate representation
while Vivaldi fails. The inability of Vivaldi to model
bandwidth is not surprising as Vivaldi was not expected
to work in the first place; bandwidth measurements can-
not be intuitively tied to a coordinate space with Eu-
clidean distances whereas it fits well into tree metrics as
explained in Section 2. Sequoia’s prediction errors for
bandwidth, however, seem to be higher than the errors for
latency. We will show in the next section that Sequoia’s
bandwidth representation already has significant practi-
cal benefits. Finally, Sequoia 1 appears to perform really
bad for this dataset; closer examination showed that this
aberration is just the result of a bad random choice for
the lever, and our use of median values across multiple
trees is a good idea for eliminating such aberrations and
outliers.

The previous figures showed that Sequoia provides
good prediction accuracy. A natural inquiry is to under-
stand the number of measurements required to achieve
that accuracy. We next show the distribution of the num-
ber of measurements used for finding the anchors while
each new host tried to join the trees. We plot a distribu-
tion because the number of measurements varies for each
host. We plot the measurement overhead for different
datasets as a CDF in Figure 10. Since each dataset has a
different number of hosts, we plot the measurements as
a fraction of the total number of hosts measured when a
new host joins (x-axis).

Overall, Figure 10 shows that tree construction only
consumes a small fraction of the measurements. More-
over, the curves are fairly steep indicating that most hosts
use a similar number of measurements. Occasionally,
however, a host might perform a large number of mea-
surements (as shown by the tail). The most important
observation is that the fraction of measurements required
decreases with the number of hosts in the datasets; its
much lower (about 5% median) for the largest dataset
(Cornell-King) compared to (about 20% median) the
smallest dataset (UC-PlanetLab). This trend indicates
that the measurement overhead scales sub-linearly with
the number of hosts. In general, we expect the scaling to
be logarithmic since the search is typically a walk down
the tree.

4.2 Server Selection

Next, we demonstrate some practical benefits of Sequoia
by showing how well it enables selection of closest and
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Figure 9: Relative Error in Predicting Bandwidth: Se-
quoia shows an ability to represent available bandwidth
with reasonable accuracy.

best-provisioned (highest bandwidth) hosts.

A target host trying to find the best server can be both
an existing participant of the system or an external en-
tity. In the former case, if the system employs Sequoia,
the target is already part of the Sequoia trees; it can then
find the best server through the tree search algorithm de-
scribed in Section 3 without requiring additional mea-
surements. In the latter case, where the target is an exter-
nal entity, it might need to perform active measurements
to guide its search. This results in a trade-off between
the number of measurements performed and the quality
of the best server found.

Here we show that with Sequoia, an external target can
find a good quality server with a moderate measurement
overhead. We show this through simulations where we
choose each host in the dataset to be an external entity
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Figure 10: CDF of Measurements Performed for Tree
Construction: Tree construction requires measurements
to a small fraction of hosts and the amount of measure-
ments scales sub-linearly with the number of hosts.

seeking to find the closest or the best-provisioned server
for a latency or a bandwidth dataset respectively. The
Sequoia trees built for the remainder of the dataset is then
used to find the best server. The search algorithm on the
Sequoia trees is restricted to only search at depth zero at
each step, that is, as the anchor tree is descended from the
lever only the children of each candidate is used to guide
the search. Finally, the best host out of the candidates
found by each tree is chosen as the selected server.

Figures 11 and 12 present the results for closest and
best-provisioned server selection. They plot the quality
of server selection as the error in the latency or band-
width of the best host found by Sequoia versus the net-
work measure to the best server in the dataset. We plot
the absolute error for closest-server selection and the
relative error for best-provisioned-server selection since
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Figure 12: Error in Selecting Best-Provisioned Server:
Sequoia is able to identify better-provisioned servers with
acceptable error margins.

bandwidth tends to have orders of magnitude variation.

Figures 11 and 12 show that server selection through
Sequoia works well in practice. Using a reasonable num-
ber of trees (5 for the UC-PlanetLab and HP-PlanetLab
datasets and 15 for the Cornell-King dataset), Sequoia
finds a closest server within 10 ms about 80% of the time
and a best-provisioned server with less than 50% error
80% of the time. The quality of selection of the best-
provisioned host might appear to be inadequate from
these numbers. However, server bandwidths vary in or-
ders of magnitude and the challenge often is in selecting
a 10 Mbps server over a 1 Mbps server. Moreover, the
effectiveness of Sequoia’s server selection can be further
improved by increasing the number of trees used.

Figure 13 shows the other half of the tradeoff, namely,
the measurement overhead while performing server se-
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Figure 13: CDF of Measurements Performed for Server
Selection: Server selection requires measurements to a
small fraction of hosts, and the amount of measurements
scales sub-linearly with the number of hosts.

lection. It plots the CDF of the measurement overhead in
units similar to Figure 10 for the number of trees men-
tioned in the previous paragraph. Overall, this figure in-
dicates that the number of measurements required was a
small fraction of the total number of hosts in each case,
with the fraction scaling sub-linearly with the number of
hosts in the dataset as expected.

4.3 Topological Properties

Finally, we discuss the properties of the tree topology
that Sequoia constructs. We first show the path lengths
of each host to the lever in the anchor tree; recall that this
path represents the distance label or the “coordinates” as-
sociated with each host. Short path lengths are desirable
as they reduce the memory footprint for storing distance
labels of hosts.
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Figure 14 shows the distribution of the host-lever path
lengths in the anchor trees for each dataset. As ex-
pected, the path lengths are variable since Sequoia’s
tree-construction algorithms don’t guarantee a perfectly-
balanced tree. Yet, they are typically small and show
low variance. For instance, in the largest Cornell-King
dataset of 2500 hosts, the label lengths are all under 16
with the mode of the distribution being a reasonable 9 per
tree. Even though these numbers are much higher than
the typical number of coordinates in Vivaldi or GNP, its
still small enough for the capacities of modern systems.

While we presented aggregate statistics so far, the
trees that Sequoia constructs also provide surprising rev-
elations. We show a portion of the Sequoia tree con-
structed for the UC-PlanetLab latency dataset in Fig-
ure 15. At a high level, we found that the Sequoia tree
was able to isolate hosts in different continents in the
world into well-defined regions in the tree (sub-trees).
This figure shows the European portion. The hosts are
shaded by countries for clarity.

The Sequoia tree isolates hosts in different regions of
Europe into well-defined clusters. For instance, there is a
cluster at the top-right consisting of hosts in UK and Ire-
land (ie) and another at at the bottom-left with hosts in
Poland (pl) and Germany (de). Hosts in larger regions,
Spain (es) and Portugal (pt) and Norway (no), Sweden
(se), and Finland (fi) are also well-separated. The clus-
tering is not perfectly geographic, however; a couple of
UK nodes seem to be wrongly clustered.

We believe that this result strongly supports our in-
tuition for treating network properties as tree metrics. It
indicates that the Internet is largely hierarchical, more hi-
erarchical in some regions (Europe) than others (USA),

Figure 15: Prediction Tree for PlanetLab Hosts in Eu-
rope: The prediction tree seem to separate hosts in dif-
ferent countries in Europe into well-defined regions.

and the observed latencies follow the hierarchy. This re-
sult also opens out Sequoia to be valuable for a wider-
class of applications that benefit from building topology-
aware overlays or hierarchical distributed systems.

4.4 Summary

Overall, the evaluation substantiates three key contribu-
tions of Sequoia. First, Sequoia provides the novel abil-
ity to construct an intuitive model for bandwidth using
a small set of measurements and enable practical appli-
cations to perform effective bandwidth-based server se-
lection. Second, Sequoia extends the same intuition to
model latency while providing the same ease-of-use and
accuracy as a state-of-the-art, coordinate-based latency
model. Finally, Sequoia’s tree models are well-correlated
with the Internet topology making it a promising tool to
build topology-aware systems. These observations were
drawn using real-world datasets with the usual inconsis-
tencies and vagaries making a strong case for Sequoia’s
practicability.

5 Applications

Sequoia promises unique abilities to networked systems.
In this section, we discuss how Sequoia could benefit dif-
ferent network applications.

Server Selection: Several applications often have the
need to select a ”best” host from a set of other hosts based
on some quality criterion such as distance, bandwidth,
load, or a combination of such criteria. Typical scenar-
ios where this need arises include: a) peer-to-peer struc-
tured DHTSs such as Chord [23] and Pastry [21], which
try to connect peers with other closer peers as neigh-
bors, b) peer-to-peer file sharing services and content dis-



tribution networks such as BitTorrent, in which, a peer
host likes to download torrents from another closer, well-
provisioned peer, and c) clients of online video stream-
ing services that like to enrich their experience by con-
necting to a closer server with high bandwidth. We al-
ready showed how Sequoia enables selection of closest
and best-provisioned hosts.

Constraint Satisfaction: A few applications require
host selection based on more complex constraints com-
pared to the simple criterion above. For instance, Voice-
over-IP (VoIP) services, such as Skype, often try to lo-
cate an intermediate relay node with good quality paths
to two end hosts, while online gaming systems with mul-
tiple players, such as XBox LIVE, benefit from a well-
placed coordination server with good paths to all the
client hosts.

Locating a server with good connections to multiple

target hosts often requires extensive search among the set
of hosts in the system. Sequoia can serve as an efficient
data structure for resolving such constraint satisfaction
queries. For instance, the common ancestor in the dis-
tance labels of the target hosts might be a good starting
point for doing such searches.
Hierarchical Organization: Finally, several distributed
systems build a topology-aware hierarchy between the
participating hosts: application-level multicast and video
streaming protocols such as End System Multicast [4]
and Bayeux [28], distributed network monitoring sys-
tems such as Astrolabe [19] and SDIMS [26], peer-to-
peer overlays such as Meridian [25] and Coral [10]. Se-
quoia provide an inherent, topology-aware hierarchy for
such distributed systems. Even though our tree mod-
els are virtual, that is, intermediate nodes are not real
hosts, the virtual tree can be easily converted into a real,
topology-aware tree by using known clustering protocols
such as [19].

6 Related Work

Efforts for mapping and modeling Internet topology
broadly fall into two categories: 1) end-to-end ap-
proaches that fit end-to-end measurements to predeter-
mined models and 2) end-to-middle approaches that con-
struct topology maps by probing routers and gateways in
the core.

In the end-to-end category are several network posi-
tioning systems that fit Internet latency to simple topol-
ogy models. GNP [16], Vivaldi [6], ICS [14], and PIC
[5] assign synthetic coordinates from a low-dimensional
(2-8) Euclidean space to each node and predict inter-
node latencies by computing the Euclidean distance.
Among other approaches, OASIS [9] use closest known
geographic coordinates of the hosts to model position,
while IDMaps [8] uses triangulation with respect to well-

placed landmarks to position the nodes. While the above
techniques give good accuracy for predicting network la-
tency, their suitability for other path measures such as
bandwidth has not been explored.

Sequoia is a similar modeling system based on end-to-
end measurements that introduces a new, more insight-
ful approach applicable to multiple network measures.
It models bandwidth in addition to latency while pro-
viding a similar, convenient distance-label abstraction as
the coordinates-based approaches. Moreover, Sequoia’s
topology models show a surprising similarity to the In-
ternet.

In contrast to the above end-to-end approaches, recent
systems such as iPlane [15] and S® [27] have taken up
the effort to measure the core of the Internet. They probe
a large number of known routers and gateways (available
in public sources such as Route Views [34]) with a wide-
range of tools that can measure or estimate inter-link la-
tency, loss-rate, and bandwidth using PlanetLab hosts as
vantage points. Through extensive measurements and
clever inference mechanisms, they build a topological
map that serves as a useful information service for the
Internet.

Such a network information service based on measure-
ments of the core is definitely in a better position to pro-
vide an accurate view of the Internet. However, a small
to medium-sized networked system may not find it cost-
effective to repeatedly measure a large portion of the In-
ternet core. It could, on the other hand, consult a third-
party service to obtain the necessary information. But
the service may not be monitoring the part of the network
where the system is deployed (in an enterprise network,
for example), may be forbidden from use due to policy
reasons, or may not be affordable. Sequoia promises a
cost-efficient yet effective alternative, which can be in-
dependently and repeatedly deployed.

Finally, a large body of theoretical work [18, 12, 2],
and most recently [1], exists on the topic of of embed-
ding a metric space into a tree. These works provide
lower bounds on the accuracy of tree embeddings and
provide algorithms with proven upper bounds for con-
structing tree models.

7 Conclusions

Bandwidth is a critical network property, awareness of
which substantially enriches the experience of clients of
online video streaming services and participants in peer-
to-peer content distribution systems. Yet few systems ex-
ist today that facilitate clients and peers to make prefer-
ential selection of high bandwidth servers over low band-
width ones. This paper presented an enabling system
called Sequoia that provides bandwidth-awareness to ap-
plications.



In that process, Sequoia introduces a new approach for
representing bandwidth and latency with a single uni-
fying model. This approach based on embedding net-
work measures into trees appears to fit well into the
largely hierarchical Internet. Sequoia leverages this fit to
provide both bandwidth-based and latency-based func-
tionalities for path quality prediction, server selection,
and hierarchical clustering. This paper validated the
above intuition, presented the design and implemen-
tation of Sequoia, and evaluated its benefits. Over-
all, tree-embeddings of network measures turns out to
be a greatly promising approach to facilitate network-
awareness.
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