
Fitness-Guided Path Exploration in Dynamic Symbolic Execution

Tao Xie1 Nikolai Tillmann2 Jonathan de Halleux2 Wolfram Schulte2

1 Department of Computer Science, North Carolina State University, NC 27695, USA
2 Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA

1xie@csc.ncsu.edu 2{nikolait, jhalleux, schulte}@microsoft.com

Abstract

Dynamic symbolic execution is a structural testing tech-

nique that systematically explores feasible paths of the pro-

gram under test by running the program with different test

inputs. Its main goal is to find a set of test inputs that lead

to the coverage of particular test targets, e.g., specific state-

ments or violated assertions. In theory, it is undecidable

whether a test target can be covered, and in practice the

number of feasible paths explodes. Nevertheless, for many

programs, heuristic search strategies can often cover a test

target quickly by analyzing only a few potentially feasible

paths. We propose a novel approach called Fitnex, a search

strategy that uses state-dependent fitness values (computed

through a fitness function) to guide path exploration. The

fitness function measures how close an already discovered

feasible path is to a particular test target. Our new search

strategy gives paths with better fitness values higher prior-

ity in the search. As a result, the search needs to consider

fewer paths to cover test targets faster. Our new fitness-

guided search strategy can be integrated with other strate-

gies that are effective for exploration problems where the

fitness heuristic fails. We implemented the new approach

in Pex, an automated structural testing tool developed at

Microsoft Research for .NET programs. We evaluated the

new approach on a set of micro-benchmark programs. The

results show that the new approach is effective since it con-

sistently achieves high code coverage faster than existing

search strategies.

1 Introduction

Structural software testing aims at achieving full or at

least high code coverage such as statement and branch cov-

erage of the program under test. A passing test suite that

achieves high code coverage provides high confidence of

the quality of the program under test. The problem of test-

ing for finding bugs can also be reduced to the problem of

structural testing with the goal of covering all statements as

public bool TestLoop(int x, int[] y) {

1 if (x == 90) {

2 for (int i = 0; i < y.Length; i++)

3 if (y[i] == 15)

4 x++;

5 if (x == 110)

6 return true;

}

7 return false;

}

Figure 1. An example method under test.

follows. Every bug can be seen as a special error state-

ment, which may be guarded by a condition. For example,

when a test oracle is expressed by an assertion of a condi-

tion, then covering the negated condition witnesses a bug.

Note that an assertion is used here in a general sense; the

behavior reflected by the assertion can be expressed using

contracts [13,17] or as part of parameterized unit tests [21].

Random testing [6,18] is one of the most commonly used

techniques for software testing primarily due to its ease of

implementation and the marginal overhead in choosing in-

puts. However, the random testing technique is not effective

when inputs needed to reach a given statement are very spe-

cific and if there is only little chance of randomly finding

them in the input space. For example, given the method un-

der test shown in Figure 1, to cover the statement in Line

6, the integer value of argument x needs to be exactly 90

and the array elements of argument y needs to include ex-

actly 20 elements whose values are 15 and 0 or more other

elements whose values are not 15. Although the example

method is specifically contrived here to illustrate the issues,

such similar cases commonly occur in realistic programs

under test, posing challenges for automated test generation.

To address the issues faced by random testing, dynamic

symbolic execution (DSE) [5, 8, 19] (also called directed

random testing [8] or concolic testing [19]) has been re-

cently proposed. DSE is a variation of symbolic execu-

tion [12], which leverages observations from concrete ex-

ecutions. It executes the program under test for given in-

puts, while performing a symbolic execution in parallel to

collect symbolic constraints on inputs obtained from pred-

1

icates in branch statements along the execution. The con-

junction of all symbolic constraints along a path is called

the path condition. DSE is typically performed iteratively

to systematically increase code coverage. In each iteration,

after applying DSE to an already explored path, a search

strategy decides on a branching node in the path to flip1.

Intuitively, flipping a branching node in a path means to

construct a new path that shares the prefix to the node with

the old path, but then deviates and takes a different branch.

Whether such a flipped path is feasible is checked by build-

ing a constraint system representing the flipped path’s feasi-

bility. If a constraint solver can determine that the constraint

system is satisfiable, and if it can compute a satisfying as-

signment, then, by construction, we have found a new test

input that will execute along the flipped path. For the exam-

ple shown in Figure 1, assuming that the initial argument

values x and y are 0 and an array {0}, respectively, then the

false branch of Line 1 is taken and the path condition is (x

!= 90). Negating the constraint for the branching node in

Line 1 (i.e., flipping the branching node) produces a new

constraint system: (x == 90). Solving the constraint sys-

tem produces a new test input (x as 90 and y as an array

{0}) to cover the true branch of Line 1.

Code inspection reveals that covering the true branch of

Line 5 (called the test target) needs exactly 20 executions of

the true branch of Line 3 inside the loop. However, applying

DSE to hunt for such a case (thus covering the test target)

faces significant challenges. First, the number of loop it-

erations in Lines 2-4 depends on the length of the array y,

which can range from 0 to 231−1. A breadth-first or depth-

first search strategy would not be able to explore and cover

the test target within a reasonable amount of time. Second,

even when we put a bound such as 20 for the loop iterations

(given that we need at least 20 loop iterations to achieve the

test target coverage), then the number of paths for the loop

iterations is 220, which is still too large in practice.

The program in Figure 1 illustrates a general exploration

problem for DSE: to explore and cover a program that con-

tains one or more branches with relational conditions (here,

(x == 110)), where the operands are scalar values (inte-

gers or floating point numbers) that are computed based on

control-flow decisions connected to the test inputs through

data flow (here, if (y[i]==15) x++;). Such indirect re-

lationships between the program conditions and the test in-

puts pose a challenge for search strategies for relevant paths.

To tackle this exploration problem, we propose a novel

approach called Fitnex for guided path exploration in DSE

to achieve test target coverage quickly. The guided search

1The execution paths span an execution tree, where a branching

node represents an instance of a conditional branch in the code. An

if-then-else statement in the code can correspond to multiple

branching nodes in the execution tree, and even along a path in the exe-

cution tree. For example, when a loop contains an if-then-else, it

may be executed multiple times in the path.

provided by our Fitnex approach alleviates issues encoun-

tered by previous DSE approaches with (bounded) exhaus-

tive search [5, 8, 19] or random search [15]. In particular,

the approach assigns to already explored paths fitness val-

ues computed by program-derived fitness functions. (Fit-

ness functions have traditionally been used in search-based

test generation [16].) A fitness function measures how close

an explored path is in achieving test target coverage. A

fitness gain is also measured for each explored branch: a

higher fitness gain is given to a branch if flipping a branch-

ing node for the branch in the past helped achieve better

fitness values. Then during path exploration, our Fitnex

strategy would prefer to flip a branching node whose cor-

responding branch has a better fitness gain in a previously

explored path with a better fitness value.

The core Fitnex strategy is effective for only certain ex-

ploration problems — those amenable to fitness functions.

To address the issue, the Fitnex strategy can be combined

with other search strategies. Such an integration also allevi-

ates the issue of local optimum2, also known as a “plateux”,

commonly faced in search-based test generation [16].

We have implemented the Fitnex strategy in Pex [1, 20],

an automated structural testing tool for .NET developed at

Microsoft Research.

This paper makes the following main contributions:
• We propose a fitness-guided strategy for path explo-

ration in (dynamic) symbolic execution. To the best

of our knowledge, it is the first technique that uses fit-

ness values to directly and effectively guide path ex-

ploration.

• We integrate the fitness-guided strategy with other

strategies to address exploration problems where the

fitness heuristic fails and to address the issue of avoid-

ing a local optimum.

• We implement the proposed Fitnex strategy in Pex [1,

20]. The Fitnex implementation has been released as

open source in the Pex Extensions project webpage3.

The Fitnex strategy has been integrated into the default

search strategy in Pex, which consists of a combination

of various individual strategies. Pex has been previ-

ously used internally at Microsoft to test core compo-

nents of the .NET architecture and has found serious

bugs [20].

• We evaluate our approach on 30 micro-benchmarks

created to reflect various typical exploration prob-

lems encountered in testing real, complex C# code

under test. The evaluation results show that our

new approach consistently achieves higher code cover-

age faster than other strategies, including random and

breadth-first strategies.

2A local optimum occurs when a solution is optimal within its neigh-

boring solutions, in contrast to a desirable global optimum, where a solu-

tion is optimal among all possible solutions.
3http://www.codeplex.com/Pex

2

The rest of the paper is organized as follows. Sec-

tion 2 presents our illustrative example. Section 3 presents

dynamic symbolic execution in Pex. Section 4 presents

our new Fitnex strategy for fitness-guided path exploration

and its integration with other search strategies. Section 5

presents the evaluation results. Section 6 discusses related

work. Section 7 discusses research issues and future work,

and Section 8 concludes.

2 Example

We use the example shown in Figure 1 to illustrate our

Fitnex strategy. In particular, we explain how our Fitnex

strategy is able to help cover test targets such as the true

branch of Line 5. During DSE’s path exploration [1,5,8,19],

a key decision in each iteration is which branching node to

flip next. Recall that flipping a branching node in a path

means to construct and decide the satisfiability of a con-

straint system that represents all conditions in the path pre-

fix before the branching node to flip, conjuncted with the

negation of the condition of the branching node to flip.

Fitness computation for a path. We introduce fitness

functions to select the most promising path along which

a branching node should be flipped. Our fitness functions

are derived from the Boolean binary predicates [14,23] that

appear in the program under test. Fitness functions com-

pute fitness values, reflecting how close a path’s execu-

tion is to covering the test target (e.g., a not-yet-covered

branch). Exploration then prefers the fittest paths, i.e. those

that are closest to covering the test target. For example,

for the predicate (x == 110) in Line 5, the fitness func-

tion is “if (|110 - x| == 0) then 0 else |110 -

x|”. The smaller a fitness value is, the closer (fitter or bet-

ter) the path’s execution is to covering the test target. The

fitness value 0 represents the case where the test target will

be covered.

Assume that five existing test inputs Tests 0-4 (gen-

erated via iterations of path exploration) explored Paths

0-4 as listed below.

Test 0:

TestLoop(0, new int[] {0});

Path 0: 1F

Test 1:

TestLoop(90, new int[] {0});

Path 1: 1T, 2T, 3F, 2F, 5F

Test 2:

TestLoop(90, new int[] {15});

Path 2: 1T, 2T, 3T, 2F, 5F

Test 3:

TestLoop(90, new int[] {15, 0});

Path 3: 1T, 2T, 3T, 2T, 3F, 2F, 5F

Test 4:

TestLoop(90, new int[] {15, 15});

Path 4: 1T, 2T, 3T, 2T, 3T, 2F, 5F

A path is denoted by the sequence of line numbers for taken

branches followed by T or F to represent true and false

branches, respectively. Each item in the sequence repre-

sents a branching node.

Recall that the true branch of Line 5 is the test target.

Based on the fitness function for the test target, the fitness

values for Paths 0-4 are the worst (largest) fitness value

(due to not even reaching the location of the test target),

20 (|110 - 90|), 19 (|110 - 91|), 19 (|110 - 91|),

and 18 (|110 - 92|). Because the fitness value of Path

4 (being 18) is better (e.g., smaller) than those of Paths

0-3, in the subsequent iteration, Path 4 is given higher

priority over the other three paths for branching-node flip-

ping.

Fitness-gain computation for a branch. We next de-

scribe how we give higher flipping priority to a more

promising branching node in a path, being determined as

follows. We first compute the fitness gain of a branch.

The fitness gain reflects how much the fitness value has im-

proved across paths after a branching node for the branch

was flipped in the past. For example, when we flipped

the branching node for the false branch of Line 3 (y[i]

== 15) in Path 1 to the true branch, we derive Path 2,

whose fitness value has improved from 20 to 19, i.e., its fit-

ness gain is 1. The same fitness gain, namely 1, is achieved

if flipping a branching node for the same branch from Path

3 to Path 4. Therefore, the computed fitness gain for the

false branch of Line 3 is 1 (averagely). Note that a fitness

gain can be negative indicating undesirable consequence;

for example, the computed fitness gain for the true branch

of Line 3 is -1, because flipping a branching node for this

branch to the false branch could lead to fitness gain of -1

(averagely).

When we flip the branching node for the false branch

of Line 2 (loop predicate) of Path 2 to the true branch, we

unfold the loop, deriving Path 3 or Path 4 (depending on

whether the constraint solver assigns the additional array el-

ement with 15); Path 4’s fitness value is 18, with 1 fitness

gain. Assuming that Path 4 is derived, the computed fit-

ness gain for the false branch of Line 2 is 1.

We assign a composite fitness value to each branch-

ing node for a branch b in an explored path p as (F (p)
- FGain(b)), where F (p) is the fitness value for p and

FGain(b) is the fitness gain for b. We prioritize branch-

ing nodes for flipping among all the branching nodes (from

the explored paths) based on these nodes’ composite fitness

values: the lower, the higher priority. For example, we give

the highest priority to flip the branching node for the false

branch of Line 2 in Path 4 since it has the best composite

fitness value 17, being (18 - 1). Such a node flipping un-

folds the loop, helping get closer to the coverage of the test

target. Eventually, after a relatively small number n of iter-

3

Algorithm 3.1 Dynamic symbolic execution (DSE)

/*intuitively, J is the set of already analyzed program inputs*/

Set J := ∅
loop

Choose program input i such that ¬J(i)
stop if no such i can be found

Output i

Execute P (i); record path condition C /*C(i) holds*/

Set J := J ∨ C /*viewing C as the set {i | C(i)}*/

end loop

ations (n ranging from 18 to 36 depending on whether the

additional array element after each iteration of loop expan-

sion is assigned the value of 15 by the constraint solver4),

our path exploration leads to a path that has fitness value 0,

i.e., covers the test target. Such a small n is in sharp con-

trast to 220, the bounded search space for path exploration,

highlighting the benefits brought by our Fitnex strategy.

3 Dynamic Symbolic Execution in Pex

Dynamic symbolic execution (DSE) [5, 8, 19] is a vari-

ation of conventional static symbolic execution [12]. DSE

executes the program starting with arbitrary inputs, while

performing a symbolic execution in parallel to collect sym-

bolic constraints on inputs obtained from predicates in

branch statements along the execution. Then a constraint

solver is used to compute variations of the previous inputs

in order to steer future program executions along different

execution paths. In this way, all feasible execution paths

will be exercised eventually through such iterations of input

or path variations. Algorithm 3.1 shows the general iterative

dynamic symbolic execution (DSE) algorithm implemented

by Pex [1, 20].

The advantage of DSE over static symbolic execution is

that the abstraction of execution paths can leverage observa-

tions from concrete executions, and not all operations must

be expressed or reasoned about symbolically. Using con-

crete observations for some values instead of fully symbolic

representations leads to an under-approximation of the set

of feasible execution paths, which is appropriate for testing.

Assuming that symbolic execution for each individual

path has perfect precision, and assuming that we have an

efficient and complete constraint solver, then the crucial as-

pect of iterative DSE is the choice of the new program in-

puts i in each loop iteration. This choice decides in which

order the different execution paths of the program are enu-

merated.

When enumerating paths of the example program in Fig-

4A “smart” constraint solver can potentially assign a historically re-

warding value (e.g., 15) to new array elements due to loop-iteration ex-

pansion.

ure 1, one could always choose to unroll the loop further,

and never, not even eventually, visit the true branch inside

the loop. This observation illustrates the need for a fair

choice between different branches when enumerating exe-

cution paths. Even more aggressively, this observation illus-

trates the further need for a guided choice between different

branches when enumerating execution paths since both the

true branch inside the loop and the loop-unrolling branch

are most desirable to explore among different branches.

In practice, it turns out that this choice should not be left

to the constraint solver, but that it is more appropriate to

leverage structural information about the program and pre-

viously executed paths to guide the search, and to guarantee

a fair and guided choice.

To this end, Pex implements a variation of Algo-

rithm 3.1. All execution paths of the program belong to

its execution tree. Each node of this tree, called branch-

ing node, is an instance of a control-flow point of the pro-

gram. If the program has loops or nested branches, a single

control-flow point (such as a branch) of the program might

have several instances (branching nodes) in the execution

tree. Many conditional control-flow points of the program

might not depend on the program inputs. In this paper, we

consider a compact form of the execution tree where each

branching node is a control-flow point that does depend on

the program inputs.

Through DSE, we learn the reachable portion of this tree

one path at a time.5 In each step of Pex’s search, it selects a

flipped branching node of the known execution tree where

it is not known yet whether one of its outgoing branches is

feasible. Pex then forms the next constraint system to solve

as

• the conjunction of the constraints leading to the flipped

branching node,

• conjuncted with the negation of the disjunctions of the

constraints of the already known immediate outgoing

branches of the flipped branching node.

If the constraint system turns out to be infeasible, the se-

lected branching node is marked as exhausted and dis-

carded.

To guarantee that our algorithm will visit all reachable

control-flow points eventually, we need a search strategy

that performs a fair and guided choice between all control-

flow points. Our new approach described in the next sec-

tion provides a fitness-guided search strategy in combina-

tion with other strategies.

4 Approach

The core of our approach is the Fitnex search strategy

guided by fitness values computed with a fitness function

5Using summarization techniques [2, 7], it is possible to collapse sub-

trees into nodes. In addition, identical subtrees at leaves can be shared [4].

4

Table 1. Fitness functions of predicates

Predicate Fitness function

True False

F (a == b) 0 |a − b|
F (a > b) 0 (b − a) + K
F (a >= b) 0 (b − a)
F (a < b) 0 (a − b) + K
F (a <= b) 0 (a − b)
F (P1 && P2) 0 F(P1) + F(P2)

F (P1 || P2) 0 (F(P1) * F(P2))/(F(P1) + F(P2))

(Section 4.1). To deal with program branches not amenable

to a fitness function, and alleviate the local optimum issue,

our approach includes integration of the fitness-guided strat-

egy with other search strategies (Section 4.2).

4.1 Fitness-Guided Search Strategy

A fitness function (Section 4.1.1) gives a measurement

on how close an explored path is to covering a test target.

We compute a fitness value for each already explored path

and prioritize these known paths based on their fitness val-

ues (Section 4.1.2). We compute a fitness gain for a branch-

ing node in an already explored path and prioritize branch-

ing nodes based on their fitness gains (Section 4.1.3). Dur-

ing path exploration, we give higher priority to flipping a

branching node with a better (higher) fitness gain in a path

with a better (lower) fitness value (Section 4.1.4).

4.1.1 Fitness Functions for Target Predicates

When a target predicate, e.g., a branch of the program, is

not yet covered, we measure how “close” its evaluation is to

covering the target predicate with fitness functions [14, 23]

as listed in Table 1. Column 1 shows the form of a target

predicate. Columns 2 and 3 show the fitness function for

the target predicate. In particular, the fitness value shown in

Column 2 is 0 when the predicate in Column 1 evaluates to

true. When the predicate in Column 1 evaluates to false, the

expression shown in Column 3 computes the fitness value.

In the fitness functions, K is a failure constant and is added

when the predicate is false. For example, for a predicate like

(a > b), if (a > b) is evaluated to be true, then the fitness

value is 0; otherwise, the fitness value is (b − a) + K.

Our path exploration process tries to minimize the fitness

values computed by the fitness function for paths being ex-

plored. If the fitness value computed for a path is 0, then we

cover the target predicate (e.g., covering the target branch).

Although the last two rows of Table 1 list fitness functions

for composite predicates that include logical operations like

&& or ||, our approach implemented in Pex does not need to

deal with composite predicates, because Pex operates at the

.NET instruction level where these composite predicates in

conditionals are typically decomposed into multiple condi-

tionals with simple predicates at the .NET instruction level.

Besides target predicates for branches (in the program

under test) that are not yet covered, we also consider non-

branching target predicates for Boolean binary expressions

(in the program under test) whose true or false values have

not yet been exercised. The motivating case for covering

these target predicates is illustrated below:

bool b = (x > y);

if (b) ...

Suppose that the true branch of the conditional “if

(b)” is our test target and thus (b) is our target predicate.

However, there exists no good fitness function for a predi-

cate in the form of (bool) where bool is a boolean variable;

that is why we do not list such a predicate type in Table 1.

That is, we do not have a good way to measure how “close”

the evaluation of (bool) is to cover (bool) since there are

only two outcomes: either covering it (i.e., bool being true)

or not covering it (i.e., bool being false). Our preceding

technique addresses this issue by covering the target predi-

cate for the binary boolean expression (x > y) with fitness

guidance, subsequently covering the true branch of the con-

ditional.

4.1.2 Fitness-Value Computation for Paths

This section presents our technique for computing and as-

signing a fitness value to a path based on the fitness function

for a given target predicate.

Fitness-value computation in dynamic symbolic exe-

cution. Computing fitness values in the context of symbolic

execution is complicated since the fitness function may be

applied on symbolic values and thus the fitness value would

be symbolic. Comparing symbolic fitness values is expen-

sive, requiring pairwise comparison and invocations of a

constraint solver. To reduce analysis cost, taking advantage

of dynamic symbolic execution (the context where our ap-

proach is applied), our technique uses concrete variable val-

ues (collected at runtime) to compute fitness values based

on fitness functions. In theory, using runtime concrete val-

ues instead of symbolic values is imprecise since the run-

time concrete values are just the symbolic fitness value’s

exemplary instances, chosen arbitrarily by the constraint

solver. However, in practice, based on our experience, such

imprecision can be neglected for the purposes of our fitness-

guided search heuristic.

Fitness-value assignment to a path. Given a target

predicate and an explored path, we assign a fitness value to

the path with the following conceptual procedure. We first

collect all the occurrences of the target-predicate evaluation

(e.g., when a target branch is within a loop, the branch’s

target predicate can be encountered and evaluated multiple

times in the explored path). We then compute the fitness

5

value for each occurrence of the target-predicate evaluation,

and assign the best (lowest) fitness value among these fit-

ness values to the path. When there is no occurrence of

the target-predicate evaluation in the path, we assign the

worst fitness value (e.g., the maximum 32-bit integer) to the

path. Intuitively, we would give higher priority to flipping a

branching node in a path with a better (lower) fitness value.

The next section describes a technique for further helping

determine flipping priority for branching nodes in a path.

4.1.3 Fitness-Gain Computation for Branches

Selecting a branching node in a path to flip can be reduced

to selecting the branching node that (1) has not been flipped

before and (2) once flipped has the best potential for im-

proving the path’s fitness value. To measure the potential of

each branching node, we first compute fitness gain for each

branch in the program under test as below.

In each iteration of path exploration, assume that a

branching node bn (whose corresponding branch is b) in

path pi (with fitness value as fvi) is flipped and a new path

pi+1 (with fitness value as fvi+1) is produced. Then the

fitness improvement from pi to pi+1 is (fvi − fvi+1). That

is, the fitness gain for flipping the branching node of b is

(fvi − fvi+1). We finally compute the fitness gain for b
as the average of all the fitness gains for flipping branching

nodes of b in the past. (Note that a fitness gain can be neg-

ative when (fvi − fvi+1) is negative, indicating that such

flipping is not desirable.) Intuitively, we would give higher

priority to flipping a branching node (in a path) for a branch

with a better (higher) fitness gain.

4.1.4 Fitness-Guided Exploration

To help prioritize branching nodes for flipping among all

the branching nodes (from the explored paths), we compute

a composite fitness value for each branching node as below.

A composite fitness value of a branching node (for a branch

b) in an explored path p is computed as (F (p)−FGain(b)),
where F (p) is the fitness value of p and FGain(b) is the fit-

ness gain of b. We give higher flipping priority to a branch-

ing node with a better (lower) composite fitness value.

The prioritization of branching nodes produced by our

Fitnex search strategy basically implements the the first line

of the loop body in Algorithm 3.1: in each iteration, the

branching node with the highest priority is flipped to form a

new program input (exploring a new path). Once a branch-

ing node has been flipped, it is removed from the prioritized

list of branching nodes, being avoided flipping again in the

future.

The next section describes how we can integrate our Fit-

nex search strategy with other search strategies to effec-

tively address exploration problems (in one program under

test or across different programs under test), each of which

may be amenable to only one or a few specific strategies

(including the Fitnex strategy) being integrated.

4.2 Integration of Search Strategies

A straightforward fair search strategy would be a random

strategy, which chooses branching nodes to flip randomly.

While such a strategy often performs reasonably well, it has

a grave problem: it would result in a random distribution of

path lengths. If the program contains a loop over an un-

bounded unsigned integer of 32 bits, then an average path

would have 232/2 = 231 branches. In other words, this

strategy tends to dwell on un-rollable loops.

There are many well-known simple search strategies,

e.g., breadth-first, depth-first. However, each such strat-

egy is biased towards particular control-flow points. While

breadth-first search favors initial branches in the program

paths, the depth-first search favors final branches.

To avoid any particular bias, e.g., those mentioned

above, Pex combines various strategies into a top-level

meta-strategy. To this end, Pex provides a rich set of ba-

sic strategies and strategy combinators.

A strategy is informed about new branching nodes (in

short as nodes), flipped nodes, and nodes that have been ex-

hausted. Initially, a root node is announced. A strategy can

be asked to provide the next node to flip; the strategy can

choose to decline the request. When the top-level strategy

decides to provide a node, then the search stops.

When we conducted the evaluation (Section 5) for eval-

uating our new approach, the main strategy of Pex was de-

fined as follows:

ShortCircuit(

CodeLocationPrioritized[Shortest],

DefaultRoundRobin)

This main strategy uses the following strategies and

strategy-combinators:

• ShortCircuit(s0, . . . , sn) combines a sequence of

strategies s0, . . . , sn in the following way: as long as

an earlier strategy si provides more nodes to flip, a

later strategy sj (where j > i) will not be asked to

provide nodes to flip.

• CodeLocationPrioritized[S] partitions all nodes

into equivalence classes based on the control-flow lo-

cations (branches) of which the nodes are instances.

For each equivalence class, an inner frontier of type

S is maintained, which is informed about only nodes

of its equivalence class. When a node is to be se-

lected, a fair choice is performed between all equiva-

lence classes, and then the inner frontier of the chosen

equivalence class is asked to provide a node. When the

inner frontier does not provide a node, another equiv-

alence class is chosen. If all equivalence classes have

been exhausted, no node is provided.

6

• The Shortest strategy maintains a list of nodes or-

dered by their depths in the execution tree, and it re-

members the smallest depth observed so far. When

asked to provide a node, it would remove the first ele-

ment of the list and return it if it has the smallest ob-

served depth.

The DefaultRoundRobin strategy is defined as fol-

lows:

RoundRobin(

CodeLocationPrioritized[

ShortestThroughAllCodeBranches],

CodeLocationPrioritized[

CallStackTracePrioritized[

ShortCircuit(

Shortest,

CappedBranchCoveragePrioritized[

Random]

CodeLocationPrioritized[

CodeLocationFrequencyPrioritized[

DepthPrioritized[Random]]],

CallStackTracePrioritized[

CodeLocationPrioritized[

ShortCircuit(

Shortest,

DepthPrioritized[Random])]],

Fittest[

RoundRobin(

CallStackTracePrioritized[

IterativeDeepening]

CodeLocationPrioritized[

IterativeDeepening])])

This strategy uses the following strategies and strategy-

combinators:

• RoundRobin(s0, . . . , sn) combines a sequence of

strategies s0, . . . , sn. Every time it is asked to pro-

vide a node, it will ask the next strategy, starting over

with the first strategy at the end. An inner strategy may

notify the RoundRobin strategy that it made progress,

and that it should be considered one time more often

than usual. (This feature is used by the frontier for the

Fitnex strategy.) Such progress notifications are hon-

ored only up to 256 times in a row, in order to guaran-

tee fairness.

• The ShortestThroughAllCodeBranches strategy

is similar to the Shortest strategy; but instead of

maintaining a global list of branches sorted by their

depths in the execution tree, it maintains one such

list for each branch coverage vector that was recorded

when the node was created.

• CallStackTracePrioritized is similar to

CodeLocationPrioritized, but when building

equivalence classes, instead of projecting nodes to

control-flow points, it projects nodes to the stack trace

that was recorded at the time the node was created.

• CappedBranchCoveragePrioritized[S] projects

nodes to the branch coverage vector that was recorded

when the node was created. However, instead of just

considering hit or not hit for a branch, a hitCount up to

256 is distinguished for each branch. In fact, the par-

titioning according to coverage hitCounts is not flat,

but is organized in a tree as follows: at height n of the

tree, the partitioning considers coverage hitCounts up

to 2n. In other words, first nodes are partitioned based

on whether branches were hit or not (hitCount >=
20 = 1). Within this equivalence class, nodes are par-

titioned based on whether branches were hit up to two

times, or more (hitCount >= 21 = 2), and so on.

When a new node is to be selected, a fair choice is first

made based on the coarsest partitioning, i.e., whether

branches were hit or not, and then, if there is more than

one candidate within that class, the next finer partition-

ing is used. If there is more than one candidate within

the finest considered partitioning, a strategy of type S
is used.

• Random selects nodes randomly.

• CodeLocationFrequencyPrioritized[S] again

performs a fair choice between equivalence classes,

where a node is in the equivalence class defined by

how often the control-flow location of the node itself

has been covered in the path prefix up to the node.

• DepthPrioritized[S] partitions nodes by their

depths in the call tree.

• IterativeDeepening always provides nodes with

the smallest available depth.

• Fittest[S] is the frontier for the Fitnex strategy; for

each target and each fitness value, an inner frontier of

type S is used to select between nodes. When the Fit-

nex frontier makes progress, i.e., if a fitness value im-

proves, then the Fitnex frontier notifies its outer fron-

tier, which may boost its probability of being used

more often later on.

The default strategy of Pex described above is the result

of continuous and still ongoing empirical evaluation against

a set of benchmarks reflecting various typical exploration

problems encountered in testing real, complex C# code un-

der test.

In summary, the default strategy has a bias towards flip-

ping nodes with short depths in the execution tree; the intu-

ition is that easy cases should be covered fast. It partitions

nodes into various equivalence classes based on structural

coverage criteria, leading to diversity, while avoiding the

general combinatorial explosion. The structural coverage

criteria arose from general observations (e.g., branches in

different calling contexts often serve entirely different pur-

poses). Last but not least, it uses the Fitnex frontier with

progress boost to eagerly climb local fitness hills without

distraction from other frontiers.

7

Table 2. Evaluation subjects
#basic #runs #runs #runs #runs

blocks Pex Pex

with without iterative

subject Fitnex Fitnex random deepening

1 9 15 22 12 227

2 16 45 58 13 127

3 29 26 30 14 50

4 40 9 9 15 22

5 20 42 22 16 42

6 28 17 127 19 28

7 21 35 27 21 51

8 34 91 30 24 65

9 29 18 25 26 24

10 25 18 26 26 24

11 27 18 26 26 24

12 27 18 26 26 24

13 27 18 26 26 24

14 39 11 11 27 31

15 34 16 17 33 16

16 9 13 26 41 295

17 40 12 26 41 1000

18 18 122 68 43 369

19 11 20 33 45 135

20 18 20 35 46 962

21 25 17 17 55 39

22 25 65 52 55 118

23 19 31 30 112 33

24 16 31 30 112 33

25 44 62 104 185 113

26 11 22 171 277 823

27 9 23 249 566 1000

28 9 23 249 566 1000

29 21 24 73 1000 1000

30 62 101 775 1000 1000

mean

improvement n/a

over random 5.2 1.9 (1) 0.9

5 Evaluation

We have implemented our Fitnex strategy and its inte-

gration with other strategies in Pex [1, 20], an automated

structural testing tool for .NET developed at Microsoft Re-

search. To evaluate our Fitnex strategy and its integration,

we compare the following different search strategies:
• Pex with the Fitnex strategy: Pex’s default strategy as

described in the previous section.

• Pex without the Fitnex strategy: a variation of Pex’s de-

fault strategy for evaluation purposes, where the Fitnex

strategy has been removed.

• Random: a strategy where branches to flip are chosen

randomly in the already explored execution tree (but

no branch is selected twice).

• Iterative Deepening: a strategy where breadth-first

search is performed over the execution tree.

In this evaluation, the Random and Iterative Deepening

strategies serve as a baseline against which new better

strategies should show improvements. We did not include

the Depth-First strategy commonly used in other DSE tools

in the evaluation results, as it consistently performs abysmal

in most subjects, since most subjects contain loops whose

bounds are related to the program inputs, and the Depth-

First strategy keeps unrolling the last loop instead of at-

tempting to cover any of the designated hard-to-reach state-

ments.

Through this evaluation, we intend to answer the follow-

ing research questions:

• Is the integrated Fitnex strategy effective in achieving

high code coverage fast?

• To what extent does the Fitnex strategy degrade or im-

prove the performance of other strategies when they

are integrated?

• How does the integrated Fitnex strategy compare to the

other strategies?

5.1 Subjects

The evaluation subjects listed in Table 2 (whose Column

2 shows the number of a subject’s basic blocks) are a col-

lection of micro-benchmark programs routinely used by the

Pex developers to evaluate Pex’s performance. The subjects

were created by extracting characteristic exploration prob-

lems from real, complex C# programs. As a result, their size

may seem small (each has less than 100 basic blocks), but

that is because they contain only the essence of an individ-

ual exploration problem. Each subject contains one or more

hard-to-reach statements that were designated by hand.
Several subjects encode constraint systems over strings.

Pex explores these programs by analyzing the called string
methods as well, which often contain loops over the indi-
vidual characters of the strings. A simple example of such a
subject is listed below, where the target is to create a string
as the test input that starts with the word “Hello”, ends with
“World”, and contains at least one space.

public void HelloWorld(string value) {

if (value.StartsWith("Hello") &&

value.EndsWith("World!") &&

value.Contains(" "))

MustReach();

}

One subject is a small parser for a Pascal-like language,

and the target is to create a legal program; the smallest le-

gal program to be created as input to the subject is of the

following form: program X; begin end.

Another set of subjects is similar to the example

TestLoop shown in Figure 1, where a loop iterates over

program inputs, and then values computed by the loop are

used later on.

8

Figure 2. #runs for different search strategies.

5.2 Results

In the evaluation, we measured how many runs were

needed to cover designated hard-to-reach statements in our

evaluation subjects. Each run indicates that a node flipped

by the combined top-level search strategy indeed leads to

the discovery of a new feasible path. At most 1000 runs

were considered for each subject.

In the evaluation, the execution time of DSE was domi-

nated by the time spent to execute and monitor the subjects,

and constraint solving. The time spent by the search strate-

gies, including Fitnex, to maintain the nodes and select the

next branching node to flip was negligible. Thus, the num-

ber of runs is a good proxy for measuring the effectiveness

of search strategies.

The results of the evaluation are shown in Table 2 as well

as Figure 2. For each subject, the number of runs needed to

cover the designated statements is shown in Columns 3-6 of

Table 2 for the four compared strategies. The last row of the

table shows the mean improvement factor of each strategy

over the Random strategy. Figure 2 shows the visual render-

ing of the results with the x axis as the subject ids and the y

axis as the number of runs. Smaller run numbers are better

and the number 1000 indicates that some of the designated

statements could not be reached.

From the results, we observe that Random and Iterative

Deepening cannot always produce paths covering the test

targets; the performance of these strategies serves as our

baseline, against which we want to improve. Pex’s default

strategy without Fitnex could find paths to cover all test tar-

gets. Adding Fitnex to Pex’s default strategy effectively im-

proves the overall performance: while Pex’s default strategy

improves performance on average by a factor of 1.9 over the

Random strategy, including Fitnex improves performance

on average by a factor of 5.2 over the Random strategy.6

Compared to the Random and Iterative Deepening strate-

gies, the Fitnex strategy integrated with Pex’s other strate-

gies is more effective in achieving high code coverage fast.

The Fitnex strategy integrated with Pex’s other strategies

also improves the overall performance over Pex’s other

strategies alone. As a result, the Fitnex strategy integrated

with Pex’s other strategies is most effective in achieving

high code coverage fast.

6 Related Work

Path exploration strategies in symbolic execution.

DART [8] and CUTE [19] perform a depth-first search.

SMART [7], an extension of DART, computes method sum-

maries in order to make the analysis modular and thereby

more scalable, and it requires a fixed order that explores in-

nermost functions first. EXE [5] uses depth-first search as

its default strategy. It also provides a mixture of best-first

and depth-first search by dynamically blocking processes

based on coverage heuristics. Its recent improvement [4]

cuts off redundant parts of the search space, and requires

a strict depth-first search. SAGE [9] implements a genera-

tional search that explores only a very limited horizon, start-

ing from an execution path spawned by a meaningful seed

6Since we capped the number of runs at 1000, which was only relevant

for the Random and Iterative Deepening strategies, these average improve-

ment factors are in fact conservative.

9

input. The JPF [24] model checker has also been extended

to support static symbolic execution [3], instead of dynamic

symbolic execution supported by the preceding tools. JPF’s

search strategies include depth-first and breath-first search

in addition to some structural heuristics [10]. None of these

existing search strategies is strongly guided towards cover-

ing test targets in the form of branches. In contrast, our new

Fitnex strategy is the first one directly using fitness values

to effectively guide the exploration of paths towards cov-

ering individual branches. In addition, the Fitnex strategy

is integrated with other strategies in Pex to achieve overall

effectiveness for programs with various characteristics.

Search-based test generation based on fitness values.

Search-based test generation [16], often referred to as evo-

lutionary testing (ET) [22], uses genetic algorithms to find

test data to achieve test target coverage. Based on fitness

values computed from test outputs or other observations

along execution paths, ET selects a subset of test inputs

with the best fitness values, and then applies crossover and

mutation operations (in a random fashion) on this subset

to produce new test inputs. Recently Evacon developed by

Inkumsah and Xie [11] loosely integrates evolutionary test-

ing [22] and symbolic execution [19] in generating effective

method sequences for achieving high structural coverage.

Our new Fitnex strategy shares commonality with existing

ET approaches in that both use fitness functions to com-

pute fitness values. However, the salient novelty and differ-

ence of Fitnex is our novel way of using the fitness values

to guide the search process for feasible paths in DSE, as

opposed to performing a search (largely randomly) on the

test inputs, as usually done in ET. Fitnex uniquely computes

fitness gains for branches to help select branching nodes to

flip, which involves solving constraint systems, whereas ex-

isting ET approaches would randomly apply crossover and

mutation operations on test inputs. In addition, our Fit-

nex strategy is also well integrated with other strategies for

achieving overall effectiveness.

7 Discussion

Enhancement of fitness functions. We currently assign

the worst possible fitness value to a path that does not reach

immediately before a test target (such as a branch). As-

sume that none of the known paths reaches immediately be-

fore a test target, then we will have no indication of which

paths are more promising to cover a test target. In this case,

the Fitnex frontier does not choose any node to flip, but it

will rather let other strategies proceed with which the Fit-

nex strategies has been combined. In future work, we plan

to explore using a new type of fitness function [22]: defining

the fitness value of a path as a probability measure propor-

tional to the ratio of the control and call dependence edges

traversed during the path over the control and call depen-

dence edges of the target predicate. Then we can assign

different fitness values to different paths that do not reach

immediately before the test target if these paths have differ-

ent distances in reaching before the test target.

Guidance from tool users. Sometimes tool users could

have insights and knowledge in knowing which test targets

to focus on first or formulating a sub-target to focus on first.

With the best of our knowledge, no previous test genera-

tion tool provides convenient features to allow tool users

to guide the tool when the tool cannot effectively accom-

plish the test generation task. For example, a tool may get

stuck in exploring loop iterations that may not help cover a

particular test target. The integration of Fitnex with other

strategies alleviates the issue to some extent, but there will

always be programs for which no fully automatic and ef-

fective search strategy exists. To this end, Pex provides a

mechanism for allowing tool users to specify annotations

for informing Pex which portion of the program under test

should be given higher (or lower) priority in path explo-

ration. These annotations are used by several search strate-

gies, including Fitnex. We plan to explore this promising

area of cooperation between the tool and tool users in ac-

complishing testing tasks in future work.

Method-sequence generation. In object-oriented test
generation, generating effective method sequences [11] is
an important and yet challenging problem. We can re-
duce the method-sequence generation problem to the path-
exploration problem by constructing a test driver such as the
one below for testing a Stack class:

public void TestDriverForSeq(int[] methods,

int[] args, int SeqLen){

Stack s = new Stack();

for (int i = 1; i <= SeqLen; i++) {

switch (methods[i]) {

case 1: s.push(args[i]); break;

case 2: s.pop(); break;

default: s.clear(); break;

}

}}

There, the path explosion problem is aggravated and espe-

cially calls for an effective approach such as the one pro-

posed in this paper. We plan to apply our Fitnex strategy

and its integration to address the sequence generation prob-

lem in future work.

Complexity of fitness-guided exploration. If a given

program is amenable to fitness functions, then Fitnex ba-

sically reduces the general problem of exponential path ex-

ploration to polynomial complexity, since the fitness-guided

exploration always makes progress towards the coverage of

the test target, instead of trying all possible combinations as

in previous approaches.

10

8 Conclusion

Dynamic symbolic execution generates test inputs to

achieve test target coverage by iteratively exploring paths of

the program under test. The number of possible paths grows

exponentially with the lengths of the paths. Although the

reachability of a test target is undecidable in general, ded-

icated search strategies may be effective for certain kinds

of programs in finding paths that cover a test target. We

have developed a novel search strategy called Fitnex for

fitness-guided path exploration in dynamic symbolic execu-

tion. Fitnex prioritizes the search by minimizing fitness val-

ues, which indicate how close a path is to covering a test tar-

get. Fitness-guided exploration can be integrated with other

search strategies to achieve overall testing effectiveness. We

have implemented the Fitnex strategy and integrated with

other strategies in Pex, an automated structural testing tool

for .NET developed at Microsoft Research. The evaluation

results show that our new approach consistently achieves

high code coverage faster than existing search strategies.

References

[1] Microsoft Research Foundation of Software Engineering

Group, Pex: Dynamic Analysis and Test Generation for

.NET, 2007. http://research.microsoft.com/

Pex/.

[2] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven

compositional symbolic execution. In Proc. TACAS, pages

367–381, 2008.

[3] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A

symbolic execution extension to Java Pathfinder. In Proc.

TACAS, pages 134–138, 2007.

[4] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attack-

ing path explosion in constraint-based test generation. In

Proc. TACAS, pages 351–366, 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: automatically generating inputs of death. In

Proc. ACM CCS, pages 322–335, 2006.

[6] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: adap-

tive random testing for object-oriented software. In Proc.

ICSE, pages 71–80, 2008.

[7] P. Godefroid. Compositional dynamic test generation. In

Proc. POPL, pages 47–54, 2007.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-

tomated random testing. In Proc. PLDI, pages 75–84, 2005.

[9] P. Godefroid, M. Y. Levin, and D. Molnar. Automated white-

box fuzz testing. Technical Report MSR-TR-2007-58, Mi-

crosoft Research, Redmond, WA, May 2007.

[10] A. Groce and W. Visser. Model checking Java programs

using structural heuristics. In Proc. ISSTA, pages 12–21,

2002.

[11] K. Inkumsah and T. Xie. Evacon: A framework for inte-

grating evolutionary and concolic testing for object-oriented

programs. In Proc. ASE, pages 425–428, 2007.

[12] J. C. King. Symbolic execution and program testing. Com-

mun. ACM, 19(7):385–394, 1976.

[13] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design

of JML: A behavioral interface specification language for

Java. Technical Report TR 98-06i, Department of Computer

Science, Iowa State University, June 1998.

[14] X. Liu, H. Liu, B. Wang, P. Chen, and X. Cai. A unified fit-

ness function calculation rule for flag conditions to improve

evolutionary testing. In Proc. ASE, pages 337–341, 2005.

[15] R. Majumdar and K. Sen. Hybrid concolic testing. In Proc.

ICSE, pages 416–426, 2007.

[16] P. McMinn. Search-based software test data generation: a

survey. Softw. Test. Verif. Reliab., 14(2):105–156, 2004.

[17] B. Meyer. Object-Oriented Software Construction. Prentice

Hall, 1988.

[18] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In Proc. ICSE, pages 75–

84, 2007.

[19] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit

testing engine for C. In Proc. ESEC/FSE, pages 263–272,

2005.

[20] N. Tillmann and J. de Halleux. Pex – white box test genera-

tion for .NET. In Proc. TAP, pages 134–153, 2008.

[21] N. Tillmann and W. Schulte. Parameterized unit tests. In

Proc. ESEC/FSE, pages 253–262, 2005.

[22] P. Tonella. Evolutionary testing of classes. In Proc. ISSTA,

pages 119–128, 2004.

[23] N. Tracey, J. Clark, and K. Mander. Automated program

flaw finding using simulated annealing. In Proc. ISSTA,

pages 73–81, 1998.

[24] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.

Model checking programs. Autom. Softw. Eng., 10(2):203–

232, 2003.

11

