Chapter 1

Protecting Financial Institutions from
Brute-Force Attacks

Cormac Herley and Dinei Floréncio

Abstract We examine the problem of protecting online banking accounts
from password brute-forcing attacks. Our method is to create a large num-
ber of honeypot userID-password pairs. Presentation of any of these honeypot
credentials causes the attacker to be logged into a honeypot account with fic-
titious attributes. For the attacker to tell the difference between a honeypot
and a real account he must attempt to transfer money out. We show that is
simple to ensure that a brute-force attacker will encounter hundreds or even
thousands of honeypot accounts for every real break-in. His activity in the
honeypots provides the data by which the bank learns the attackers attempts
to tell real from honeypot accounts, and his cash out strategy.

1.1 Introduction and Related Work

The majority of banking and financial institutions in the US authenticate
users with a simple userID-password pair. The main encouragement for brute-
force attackers is the notorious weakness of user-chosen passwords, first ob-
served three decades ago by Morris and Thompson [7]. A more recent study of
web password habits by Floréncio and Herley [1] showed that weak passwords
are still very common. Much of the work on password attacks has focussed
on off-line attacks. Instead of focussing exclusively on keeping the attacker
out we propose to let him in and, as Provos and Holz put it [6], “look at the
bright side of break-ins.” Break-ins are a problem because it can be hard to
tell the fraudulent activity in an account resulting from a break-in from the
legitimate activity of the account owner. By allowing the attacker into many
honeypots for every one real account we will learn detailed information on
his strategy both for cash-out and to tell honeypots from real accounts. In
addition we slow him down more effectively than a lockout rule, without the
Denial of Service hole that lockouts create. Pinkas and Sander [5] examine
a question close to our problem: their motivation is to prevent brute-force
attacks without resorting to a lockout policy. The lockout policy opens a De-
nial of Service vulnerability, and, as [5] points out, this can be a very serious
issue for some classes of accounts: e.g. the possibility of eliminating a rival

Microsoft Research
One Microsoft Way
Redmond, WA



2 Cormac Herley and Dinei Floréncio

from an online auction by locking their account would be unacceptable to
eBay for example. Pinkas and Sander’s raise the attacker’s cost by requiring
that a Human Interactive Proof (HIP) be solved after a threshold number
of attempts has been exceeded. Van Oorschoot and Stubblebine [4] enhance
the scheme by better use of the recent account login history; they are able to
improve the protection and simultaneously reduce the number of HIP’s that
legitimate users will be asked to solve.

1.2 Attacks

Brute-force and guessing attacks In a brute-force attack repeated creden-
tial pairs are tried in an attempt to gain access to an account. The simplest is
directed against a single account: the attacker tries all possible passwords for
one userID until one succeeds. For non-numeric passwords he might increase
his yield by trying passwords in order of likelihood. Simple brute-force at-
tacks like this are generally stopped by a “three strikes” type lockout policy
(but such policies open up a Denial of Service attack as below). Far more
likely to succeed is a bulk guessing attack against a large number of accounts
[5, 3]. Instead of trying different passwords for a single userID the attacker
tries different userID-password pairs. Since only a small number of unsuc-
cessful logins are attempted at any individual userID the attack is far harder
to detect. Observe that a bulk guessing attacker knows very little about his
victims. For example an attacker who forces entry will generally not know
the name, address or any other information about the victim until he logs in.
Cash-out strategies: Once an attacker forces entry, the server has few
means to distinguish him from the legitimate user. It might seem that all
is now lost, but in fact the attacker’s task is just beginning. The assets in
the compromised account is all potential gain, but to turn the potential into
reality he must move the assets to a “safe place,” by which we mean cash or
an account the attacker controls that is beyond the reach of the bank or law
enforcement and cannot be frozen. It is important that any transfers he per-
forms cannot be reversed when the break-in is detected; it is also important
that none of the intermediate accounts can be used to identify the attacker.
For example, wiring money from a compromised account at BigBank to an
account at AnotherBigBank will naturally draw scrutiny to the holder of the
second account. This task is far from trivial. Thomas and Martin [8] describe
a complex ecosystem that has developed around harvesting stolen creden-
tials. Cashiers and drop men are used to pick up money moved from the
compromised accounts.

Do we care about brute-force anymore? The existing approach to brute-
force attacks is a combination of:

e password strength policies,
e “three strike” type lockout rules and



1 Protecting Financial Institutions from Brute-Force Attacks 3

e fraud and anomaly detection at the backend server.

Passwords strength policies are unpopular and users demonstrate consider-
able preference for short passwords. Three strikes type lockout rules suffice to
slow down attacks on a single account, but do little against the bulk guessing
attacker. Further, in some cases any lockout on an account can be very unde-
sirable. Three well-timed failed logins can deny access a rival in an auction,
for example [5]. Equally, an attacker who gains access to the list of userID’s at
a bank can halt all online access at a cost three times as many form submits
as their are accounts. And this attack can be repeated. Details on the backend
fraud detection employed by banks is understandably not made public.

The prevalence of brute-force attacks is itself hard to estimate. One might
argue that in the age of better attacks such as phishing and keylogging brute-
force is no longer an issue. However, banks are unable to lower the defences
against it. And these defences result in burdensome password policies for
users, and lockout policies, which generate the Denial of Service (DoS) vul-
nerability. It is argued by Floréncio et al. [2] that bulk guessing brute-force
attacks are the main reason for strong password policies on online accounts.
The approach we introduce in the next section makes brute forcing a great
deal harder. Thus, we claim it carries two great advantages. First, it removes
the need to encumber users with strong password policies. Second, it removes
the need for a lockout rule and thereby eliminates a lockout based DoS threat.

1.3 Method

A Simple Honeypot account: A honeypot account at a financial institu-
tion is an account that appears exactly like a real account, except of course
there is no real money there. In every other respect it is indistinguishable
from a real account. It has all the attributes that a real account would have:
name, address, email account of record, beneficiary information, account his-
tory, balance, holdings etc. When logging in to any account a user generally
expects to be able to:

e Change account information (e.g. name, address, beneficiaries etc)

e Buy or sell instruments (e.g. move money from checking to savings, buy
or sell stock etc).

e Send money to previously used accounts (e.g. utilities, mortgage)

e Send money to a new recipient

An attacker who enters a honeypot account will have access to the full range
of services, with the exception of course that the bank will not actually remit
any money to anyone. It will however pretend that it has done so. Only
attackers will enter a honeypot, and the goal of the account is to create the
illusion of reality. Thus the bank will do everything possible to perpetuate
the illusion except part with money.



4 Cormac Herley and Dinei Floréncio

Generation of Honeypot accounts: To protect against brute-force at-
tackers a bank may need thousands, or even millions of honeypot accounts.
Hence it is important to be be able to generate such accounts at will. This
is actually simple. Our solution is to copy attributes from a the pool of real
accounts, but enter fictional attributes for name, address, beneficiaries etc.
This guarantees that the honeypot contains valid account history and trans-
action details. For example an attacker would see real online bill pay details,
together with the amounts and dates, but for a fictionally generated user.
Accounts are generated on-demand at the time of first entry, but account
information persists through successive logins.

Distribution of Honeypot accounts: Consider an institution BigBank
which assigns users a b, bit userID and enforces that passwords are at least b,
bits. Together the userID-password pair form the credential that grants access
to a user account. In general entry of a wrong userID or wrong password or
both results in a “login failed” message to the user.

In our solution the bank in addition to the credentials of real users allows
access to a honeypot account when any of a number of honeypot credentials is
presented. The size of the combined userID-password search space, at 20=+br
is far larger than the number of real user accounts the number of honeypot
accounts can outnumber real accounts. For example, for a given userID if a
single 8-digit PIN results in login there is one correct password, and almost
one million incorrect possibilities. Instead of having each of these incorrect
passwords results in a “login failed” page we have the bank assign 10000 of the
incorrect passwords to honeypot accounts. Thus an attacker who mounts a
brute-force attack on the password of that userID is 10000 times more likely
to gain entry to a honeypot account than a real account. With an 8-digit
PIN we can still ensure that a legitimate user who types two digits of his
PIN incorrectly (there are (g) -10% = 2800 such possibilities) will still never
enter a honeypot.

Honeypots associated with a userID assigned at setup: To ensure that
a user who types the userID correctly, and gets no more two characters of the
password incorrect, never enters a honeypot we must ensure that honeypot
passwords, for that userID, are a sufficient distance from the true password.
Since the salted hash is all that is required for authentication, passwords
are generally not stored on the server. Thus the only time the server can
determine which passwords are close to the true password for a particular
userID is when the account is being set up. At this time, when it salts and
hashes the password, it should also generate as many honeypot passwords as
required and also salt and hash them. In this way there is no change in the
existing arrangements for storing credentials. The details associated with a
honeypot need not be generated only when an attacker enters the account.

Cashing-out must be done on real accounts only: If an attacker forces
entry he must first determine if he is in a real or a honeypot account and
then cash-out. He would be very foolish to attempt cash-out on all accounts:
since stepping stone accounts and the services of cashiers are expensive [8], he



1 Protecting Financial Institutions from Brute-Force Attacks 5

cannot risk a cash-out attempt on a honeypot. Should he do so he identifies
his cashier, and the bank will suspect any attempt to transfer to the cashier
from a real account.

Telling them Apart Without Getting Caught: Suppose the attacker
has compromised N accounts, of which M <« N are real and the remainder
honeypot. The attacker and the bank each have partial and different infor-
mation about the break-ins. The attacker knows all N of the accounts he has
broken, but does not know which M are real. The bank knows only that the
N — M logins to the honeypot accounts must be the work of an attacker, but
does not know which M real accounts are also compromised.

To distinguish the real from the honeypots, but with the constraint that
his activity must vary from account to account. Suppose the attacker sends
funds for a small purchase (from an innocent retailer) from each of the N
accounts and arranges to have mail sent to a hotmail account when the item
ships. This can be done, but is cumbersome. The attacker must choose a
retailer who will accept a transfer or check and then arrange for funds to be
sent from the compromised account. This would enable him to identify the
M real accounts that are active. But it also notifies the bank that these M
real accounts have something in common with the N — M honeypot accounts.
Clearly a one-size-fits all strategy will not work to distinguish accounts if he
is to remain undiscovered. To avoid linking a real account, when he finds it,
to the known-bad work of an attacker he must employ N different retailers
to probe his collection of accounts. While he may be able to write a script
that programmatically arranges a transfer from each of the N accounts, it
is not possible to set up purchases at N different retailers this way. This is
expensive: the attacker must expend individual effort for a retailer on each of
the N accounts. Thus the attacker’s effort increases with IV, while the bank
can generate honeypot accounts at will. For large enough N the attacker is
faced with great effort for minimal return.

References

1. D. Floréncio and C. Herley. A Large-Scale Study of Web Password Habits. WWW
2007, Banff.

2. D. Floréncio, C. Herley, and B. Coskun. Do Strong Web Passwords Accomplish Any-
thing? Proc. Usenix Hot Topics in Security, 2007.

3. K. J. Hole and V. Moen and T. Tjostheim. Case Study: Online banking Security. IEEE
Security € Privacy Magazine, 2006.

4. P.C. van Oorschot, S. Stubblebine. On Countering Online Dictionary Attacks with
Login Histories and Humans-in-the-Loop. ACM TISSEC vol.9 issue 3, 2006.

5. B. Pinkas and T. Sander. Securing Passwords Against Dictionary Attacks. ACM CCS,
2002.

6. N. Provos and T. Holz. Virtual Honeypots. Addison Wesley, 2007.

7. R. Morris and K. Thompson. Password Security: A Case History. Comm. ACM, 1979.

R. Thomas and J. Martin. The Underground Economy: Priceless. Usenix ;login:, 2006.

®



