Multichannel Acoustic Echo Cancelation in Multiparty Spatial Audio Conferencing With Constrained Kalman Filtering

Zhengyou Zhang, Qin Cai, Jay Stokes

Communications and Collaboration Systems Microsoft Research, Redmond, WA, USA

Outline

- Motivations
- Audio spatialization
- Two approaches to multichannel AEC
- Constrained Kalman filtering
- Experimental results

Motivation

- Current audio conferencing systems
 - \blacksquare Monaural \rightarrow adequate for 1-to-1
 - □ Poor when #people > 2
- Why poor?
 - All the voice streams are intermixed into a single one
 - Huge cognitive load: Do 2 things simultaneously
 - Associate voice signals to the speaker
 - Comprehend what is being discussed

Solutions

Video conferencing

Spatial audio conferencing

□ Spatial audio + Video

Immersive conferencing

Solutions

□ Video conferencing

Spatial audio conferencing

□ Spatial audio + Video

□ Immersive conferencing

Benefits of Spatial Audio

- Human's cocktail party effect
 - Selective attention
 - Only spend effort on comprehension
- Brain rejects incoherent signals at two ears
 - Reverberation & noise are disregarded (not for mono!)
- □ Benefits:
 - Memory, Focal Assurance, Perceived Comprehension, Listener's Preference
 - http://msrweb/users/zhang/ThinkWeekPapers/Spatial%20audio%20conferencing.doc

Multiparty Spatial Audio Conferencing

Virtual seating

Audio Spatialization

- Delay and Gain Modulation
 - Delay

$$\Delta_{R} = D - D \cos(\lambda(\Phi - \Theta))$$

$$\Delta_{l} = D - D \cos(\lambda(\Phi + \Theta))$$

D=0.45ms
$$1 \le \lambda \le \pi/(2\Phi)$$

Gain

$$G_R = \cos(\lambda(\Phi - \Theta)/2)$$

$$G_1 = \cos(\lambda(\Phi + \Theta)/2)$$

Example:

4 remote participants

Traditional (short)

<u>Spatial</u> (<u>short</u>)

Multichannel AEC

Question: Which reference signals to use?

Approach 1: Use Speaker Signals

- Possible problem:
 - Correlation between speaker signals

Approach 2: Use Far-End Channels

- Cancel each individual far-end speech
- Our solution: Constrained Kalman filtering

Multichannel AEC: Diagram

Problem Statement

- □ Remote channels: $\{X^i | i = 1, ..., P\}$
- □ Spatialization on S speakers: $Y^s = \sum_{i=1}^{s} G^{is} X^i$
- Speaker's room response: L-tap filter

$$\mathbf{H}_{t}^{s} = [H_{t}^{s}, H_{t-1}^{s}, \dots, H_{t-L-1}^{s}]^{T}$$

■ Microphone input: Echo

$$D_{t} = \sum_{i=1}^{P} \sum_{s=1}^{S} G^{is} (H_{t}^{s} X_{t}^{i} + H_{t-1}^{s} X_{t-1}^{i} + \dots + H_{t-L-1}^{s} X_{t-L-1}^{i}) = \sum_{i=1}^{P} \sum_{s=1}^{S} G^{is} \mathbf{H}_{t}^{sT} \mathbf{X}_{t}^{i}$$

Problem Statement (cont'd)

- Determine the echo cancellers:
 - one per remote channel *i*: *L*-tap filter

$$\mathbf{W}_{t}^{i} = \left[W_{t}^{i}, W_{t-1}^{i}, \dots, W_{t-L-1}^{i}\right]^{T}$$

such that echo is cancelled, i.e.,

$$D_t - \sum_{i=1}^p \boldsymbol{W_t^{iT}} \boldsymbol{X_t^i} = 0$$

 \square Constraint: W_t^i 's are not mutually independent

Constrained Kalman Filtering

State Vector: Echo cancellers + Speaker RIR filters

$$\boldsymbol{S}_{t} = \left[\boldsymbol{W}_{t}^{1T}, \dots, \boldsymbol{W}_{t}^{PT}, \boldsymbol{H}_{t}^{1T}, \dots, \boldsymbol{H}_{t}^{ST}\right]^{T}$$

 \square System equation: $S_t = S_{t-1} + n_t$

$$S_t = S_{t-1} + n_t$$

- □ Observation equation: $D_t = A_t^T S_t + v_t$ with $A_t = [X_t^{1T}, ..., X_t^{pT}, 0^{1T}, ..., 0^{ST}]^T$

□ New observation equation: observation + constraint

$$Y_t = B_t S_t + v_t$$
 with $Y_t = [D_t, 0, ..., 0]^T$ $B_t = \begin{bmatrix} A_t^T \\ C \end{bmatrix} v_t = \begin{bmatrix} v_t \\ u_t \end{bmatrix}$

Constrained Kalman Filtering (cont'd)

Assumptions

$$E[\boldsymbol{n}_t] = \mathbf{0} \qquad E[\boldsymbol{n}_t \boldsymbol{n}_t^T] = \boldsymbol{Q}_t$$

$$E[\boldsymbol{v}_t] = \mathbf{0} \qquad E[\boldsymbol{v}_t \boldsymbol{v}_t^T] = \boldsymbol{R}_t = \begin{bmatrix} \sigma_t^2 & \mathbf{0}^T \\ \mathbf{0} & \boldsymbol{\Lambda}_t \end{bmatrix}$$

Equations

Tuning parameter to control how hard the constraint be satisfied

$$S_{t}^{-} = S_{t-1}$$

$$P_{t}^{-} = P_{t-1} + Q_{t}$$

$$K_{t} = P_{t}^{-}B_{t}^{H}(B_{t}P_{t}^{-}B_{t}^{H} + R_{t})^{-1}$$

$$S_{t} = S_{t}^{-} + K_{t}(Y_{t} - B_{t}S_{t}^{-})$$

$$P_{t} = (I - K_{t}B_{t})P_{t}^{-}$$

Benefits of Constrained KF

- The constraint is taken care of automatically, and can be imposed with varying degrees.
- All channels are taken into account simultaneously.
 Overlapping far-end talking is not an issue
- The AEC for each channel is updated continuously because of the constraint, even if it is inactive.
 - →AEC's are always up to date
- Ambient noise can be time varying.
 - → Use a separate noise tracker

Comparison with Prior Art

- T.N. Yensen, R.A. Goubran, and I. Lambadaris, "Synthetic Stereo Acoustic Echo Cancellation Structure for Multiple Participant VolP Conferences", IEEE Transactions on Speech and Audio Processing, Vol. 9, No. 2, pp. 168-174, Feb. 2001.
- Same: One canceller per remote channel
- □ Differences:
 - Constrained vs. independent cancellers
 - Additional canceller is initiated before being active
 - A canceller is updated even if it is not active
 - Frequency vs. time domain
 - □ KF (RLS) vs. NLMS

Experimental Results

- Simulation setup:
 - 4 remote talkers at[-30°, 30°, 0°, -45°]
 - Each talks for 4s
 - □ Noise: -20dB
 - Fixed RIR
- Comparison
 - Constrained KF
 - Multiple mono NLMS

Experiment: Overlapping Talkers

Two simultaneous remote talkers

Experiment: Changing RIR

-30dB change in RIR every 0.5 seconds

Experiment with real data

Conclusions

- Constrained Kalman Filtering for multichannel AEC
- Outperform over multiple independent mono AECs
 - Additional canceller is initiated before being active
 - A canceller is updated even if it is not active
- Naturally works with multiple simultaneous remote talkers without resort to channel switching

Thank you!

Q&A