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Abstract
People increasingly use multiple devices and Internet
services to manage and share information. Since portable
devices have limited resources for storage and band-
width, it is essential to take advantage of proximity and
selected replication of content. To this end we present
Cimbiosys, a replication platform that permits each de-
vice to define its own content-based filtering criteria and
to share updates with any other device.

Cimbiosys ensures two properties not achieved by pre-
vious systems. First, every device stores exactly those
items whose latest version meets arbitrary filter criteria
that are independent of any hierarchical namespace. Sec-
ond, every device represents its metadata in a compact
form, with state proportional to the number of devices
rather than the number of items. Such compact repre-
sentation enables low synchronization overhead, which
permits frequent synchronization even for bandwidth-
limited devices.

We have implemented Cimbiosys in C# and Mace. We
evaluated the performance of the CIM Sync protocol in
both simulation and using the Mace implementation.

1 Introduction

Alice keeps her favorite recent photos on her iPhone.
When she runs into Bob at the supermarket, all of the
photos of Bob’s daughter at the last rehearsal ofOur
Town are synchronized with Bob’s cell phone, without
involving any of the other private photos stored on Al-
ice’s device.

People who use mobile devices have a growing expec-
tation that they can take a significant measure of their
personal information with them wherever they go and
share selected portions of it with ease. In spite of this
expectation, people report difficulties managing informa-
tion across their own devices so that they have the desired
portions of different collections at hand when they need
them [3].

Delivering information that is relevant to different
people—or is appropriate for different devices—requires
system support for a richer notion of data synchroniza-
tion, one that incorporates personalized content filtering.
In many social and work settings, communication be-
tween devices may be ad-hoc, taking advantage of prox-
imity and the availability of particular content, rather
than relying on established communication patterns or
depending on centrally managed storage.

In this paper, we present Cimbiosys, an application
platform that supports content-based partial replication
and synchronization with arbitrary peers. We designed
Cimbiosys with the expectation that it will support appli-
cations and uses such as home media management [17]
and shared calendars (especially those maintained out-
side the normal workplace environment, where general
public information is mixed with more private, local
scheduling) [9].

The main contribution of this work is in demonstrat-
ing how the platform can provide two important system
properties:

• Eventual filter consistency: Over time, each device
will receive all items of interest to it (i.e. all items
that meet its content-based filtering criteria), and it
will discard all items that have been deleted or that
no longer meet these filtering criteria.

• Eventual knowledge singularity: The metadata
replicas exchange when they synchronize that en-
ables them to detect overlapping interests and iden-
tify missing versions may vary in size over time, but
eventually, it converges to a size that is proportional
to the number of replicas in the system rather than
the number of stored items, even for partial replicas.

Eventual consistency has long been demanded by ap-
plications and provided in replicated systems, but it is
more challenging to ensure in a system that permits ad-
hoc synchronization between partial replicas. Not only
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may individual items match different filtering criteria as
the items are updated, but a device may vary its crite-
ria over time, causing items with stable contents to en-
ter and leave the device’s interest set. Eventual knowl-
edge singularity, on the other hand, is a new property we
have defined to convey the importance of compact meta-
data in making efficient use of bandwidth and system re-
sources. In particular, this property allows Cimbiosys to
use brief intervals of connectivity with peer devices ef-
fectively. By contrast, other known techniques that main-
tain per-item version vectors, such as in Ficus [5], or rely
on operation logs, such as in PRACTI [2], make less ef-
fective use of a relatively slow or intermittent connec-
tion because the data exchanged during synchronization
is roughly proportional to the collection size or depen-
dent on the update rate; this limitation becomes impor-
tant as collection sizes grow into the 10s of thousands of
items, especially if the items are updated frequently.

After the next section motivates this research using
scenarios, Section 3 discusses related work on replica-
tion protocols. Section 4 presents the Cimbiosys plat-
form, including the system model, software components,
and the implementation details. Section 5 provides the
details of the replication protocol (CIM Sync), including
a description of our knowledge compaction method. Sec-
tion 6 explains why the synchronization topologies used
in Cimbiosys embed a hierarchically-filtered tree topol-
ogy to ensure that changes propagate appropriately and
to guarantee eventual knowledge singularity. Following
this discussion, Section 7 presents the results of our eval-
uation of CIM Sync. The conclusion summarizes the
contributions of the Cimbiosys platform and our future
work.

2 Motivation

Collaboration within loosely-organized communities is
a central motivation for our work. In these organic-
growth scenarios, circumstances often demand informa-
tion sharing along an arbitrary topology, without rely-
ing on Internet connectivity or contact with a central-
ized store. For example, in the wake of Hurricane Ka-
trina, disaster workers needed to quickly set up ad hoc
networks where communication and control were dis-
tributed and egalitarian [4]. Because not everyone in
the collaborative setting wants or needs access to the en-
tire collection—bandwidth, storage, and human attention
may be at a premium—filtering enables information to
spread according to interests and requirements. A re-
lated motivation is peoples’ need to easily replicate con-
tent among the multiple devices that they use.

We illustrate the advantages of our approach using two
scenarios that combine information management across
devices with informal sharing based on common inter-
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Figure 1: Photo sharing

ests. The first scenario tracks Alice’s photo sharing (see
Figure 1) and a second describes how Bob updates and
shares the video content that he watches during his com-
mute.

Alice is traveling alone in Thailand, photoblogging as
she goes. Every night, the day’s photos are copied to
her laptop. When she reaches a town with an Internet
café, she uploads photosets to her Flickr account to share
with her friends and family, partly to narrate her trip,
and partly to say, “I’m still alive!” When she returns
from her trip, Alice is anxious to keep her new Thai-
land photo collection safe. She adds them to the master
collection on her PC, which has grown quite large over
the years. For the next few weeks, Alice works on her
Thailand collection, rotating some photos, cropping oth-
ers, and touching up the lighting on a few. Alice tags
the ones she likes with a few descriptive words and rates
them with one to five stars. Five-star photos are her fa-
vorites, the ones that will show up—via a direct WiFi
connection—in her photo frame; they’re also uploaded
to a public travel photoset on Flickr, onto a photojournal-
ism web site (where she hopes to win a prize), and onto
her Facebook account. Comments she receives on any of
these public sites are aggregated, so that she can look at
them when she’s browsing the collection on her laptop or
on the household PC. A copy of all of her tagged photos,
the ones Alice likes well enough to put in the extra effort,
are stored with her family photos on her laptop, so she’ll
have them with her when she travels again.

During his daily commute on Caltrain, Bob entertains
himself by watching videos on his iPod. Each night
he syncs his player with the YouTube channels he sub-
scribes to as well as withThe Daily ShowandColbert
Reportvideo feeds so he’ll have fresh content to watch.
Yesterday while Bob was waiting for the train, he saw
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a electronic billboard advertising a new TV show. His
iPod, which was set up to grab commercial content from
sources he trusts, copied a trailer for the show over a lo-
cal Bluetooth connection. Instead of watching his nor-
mal videos, Bob found himself watching the trailer on the
train. A fellow commuter, who had caught a glimpse of it
over his shoulder asked him for a copy for her own iPod,
as did a third man, who was reading theTimeson his lap-
top. With a flick of his finger, Bob shared the promo with
his fellow commuters. Next time he had Internet access,
Bob subscribed to the promising new show. After he’d
watched the pilot on a subsequent commute, he deleted
it and, when he got home in the evening, his delete even-
tually propagated to his home media center.

These scenarios reflect common usage patterns and re-
veal an implicit set of requirements for a modern storage
platform:

• Interdevice communication may be ad-hoc, taking
advantage of device proximity and the availability
of particular content.

• These ad hoc networks are fluid, and may involve a
changing set of people and devices.

• Not all device-based stores have complete collec-
tions; furthermore, the most complete version of a
collection may not be in the cloud.

• Updates may originate from multiple sites and be
contributed by different people.

The platform described in the remainder of the paper
has been designed with these requirements—and the sce-
narios driving them—in mind.

3 Related Work

While we are not aware of other weakly-consistent repli-
cated systems that combine content-based filtering with
peer-to-peer communication, other systems have demon-
strated several of these aspects.

Disconnected operation is supported by Coda [7], in
which clients prepare by taking a hoard of files before
disconnection and then reconcile updates with the server
when reconnected. BlueFS [10] is similar but empha-
sizes energy efficiency when dealing with small, mo-
bile devices. As opposed to Cimbiosys, neither Coda
nor BlueFS permit clients to share updates with each
other. EnsemBlue [13] extends BlueFS by allowing dis-
connected clients to organize into a temporary ensemble
headed by a client acting in place of the server. Ensem-
Blue reflects a compromise between a full peer-to-peer
architecture and a server-centric architecture.

Peer-to-peer file replication systems such as Ficus [5]
support partitioned operation and permit updates to be

shared between any two replicas. Subsequent work [16]
extends Ficus to support selective, folder-based replica-
tion. Roam [15] is a further extension to the environment
of mobile devices, in which bandwidth limitations may
make it infeasible for all pairs of devices to communi-
cate regularly. Ficus and Roam store a version vector per
item. When synchronizing two replicas, they suffer the
overhead of exchanging version vectors for every item in
order to determine which items are newer.

Bayou [14] and PRACTI [2] reduce communication
overhead by maintaining a single version vector per
replica and utilizing a log-exchange protocol. Because
of the use of logs, their storage use grows proportional
to the update rate. Bayou supports full replicas only.
PRACTI supports partial replicas through the notion of
an interest set, which reflects the file system’s folder
structure. Although all invalidations must be logged at
all replicas, including partial replicas, imprecise invali-
dations can reduce the logging overhead for partial repli-
cas. Cimbiosys, on the other hand, does not require par-
tial replicas to maintain any information about items that
are not of interest. Cimbiosys also recognizes that users
often wish to specify arbitrary filtering criteria that do not
necessarily match entries in some filesystem namespace.

WinFS [11], like Bayou, maintains a single version
vector per replica that is transmitted on every syn-
chronization, but uses state-exchange rather than log-
exchange. Cimbiosys shares these characteristics with
WinFS. WinFS supports folder-based partial replication.
Cimbiosys extends the WinFS design to add support for
content-based filtering while ensuring eventual knowl-
edge singularity.

4 Cimbiosys Platform

4.1 System model

Cimbiosys is a platform developed to support a variety
of applications that manage data on mobile devices, per-
sonal computers, and cloud-based services. It provides a
distributed, peer-to-peer architecture in which each par-
ticipating node, hereafter simply called adevice, stores
full or partial copies of one or more data collections. A
collection, for instance, might be an individual’s digital
photo album, a family’s calendar, a compilation of videos
from different people, or a company’s customer relation-
ship database. Each collection is managed separately and
consists of a set of items that are not shared with other
collections.

An item is an XML object plus an optional associ-
ated file. For example, a photo item stores its JPEG
data in a conventional file and the associated XML object
holds descriptive information, such as when the photo
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was taken, its resolution, a quality rating, and human-
supplied keywords.

A replica is a copy of some or all of the items in a
given collection. The set of items included in device’s
replica is specified by afilter, which is a selection predi-
cate over the items’ XML contents. For example, a filter
might select e-mail messages from a particular individ-
ual, files tagged with certain keywords, or photos with
a 5-star rating. The default “*” filter indicates that the
device is interested in all items, and hence stores a full
replica of the collection.

Each device holding a replica is allowed to read its
locally stored items and update those items, as long as
such updates are in accordance with the collection’sac-
cess control policy. Updated items are then sent to other
replicas via a device-to-devicesynchronization protocol.
Devices generally have regular partners with which they
periodically synchronize their replicas, but may also syn-
chronize with any replica that they encounter. A device
can join the system simply by creating a new (empty)
replica of some collection and then synchronizing with
some existing replica(s).

At any point in time, a replica may hold older ver-
sions of items that have been updated elsewhere or may
not have learned yet of recently created or deleted items.
The CIM Sync protocol guaranteeseventual filter con-
sistency, meaning that a replica eventually receives all
versions of items that match its filter and have not been
overwritten by later versions, and also that the replica
eventually discards items that are updated in such a way
that their contents no longer match the replica’s filter. It
does not provide other guarantees such as causal consis-
tency or multi-item coherence since these are less mean-
ingful for partial replicas.

4.2 Software components

Each device in Cimbiosys runs the set of software mod-
ules depicted in Figure 2. TheItem Storemanages the
items for local replicas of one or more collections. The
file portion of each item is stored in a special directory
in the device’s local file system. XML objects are stored
in a SQL Server (Compact Edition) database where they
can be queried and updated transactionally.

The Communicationmodule is responsible for trans-
mitting data to other devices using available networks,
such as the Ethernet, WiFi, cellular, or Bluetooth. It
also encapsulates the transport protocol used by the Sync
module. Devices are free to use a variety of transport
protocols, including SOAP-based RPC, HTTP, and Mi-
crosoft’s simple sharing extensions (SSE) to RSS. Of
course, two devices must agree on the network and trans-
port protocol that they use during synchronization.

TheSyncmodule implements the synchronization pro-
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Figure 2: Cimbiosys software architecture

tocol described in detail in Section 5. During synchro-
nization, it enumerates versions of items in the Item Store
that are unknown to the remote sync partner and sends
these along with the appropriate metadata, such as ver-
sioning information. The remote partner then adds the
received items to its Store, possible replacing older ver-
sions of these items. We are considering allowing de-
vices to keep multiple versions if requested by an appli-
cation, but our current implementation retains only the
latest known version of each item.

Cimbiosys also includes a number ofUtilities for
recording information about regular synchronization
partners, naming collections and devices, managing ac-
cess controls, and so on.

Securityconsiderations permeate the Cimbiosys de-
sign. For example, all versions of items are digitally
signed by the originating device, and collection-specific
policies dictate which devices are allowed to create, up-
date, and delete items in a collection. A full discussion
of the security design is beyond the scope of this paper.

Applications interact with the Cimbiosys platform us-
ing a specially developed application programming in-
terface (API). Through this API, an application can cre-
ate a new collection, create a local replica for an ex-
isting collection, add items to a collection, update and
delete items, run queries over items, initiate synchroniza-
tion between a local and a remote replica, establish regu-
lar synchronization partnerships, change access permis-
sions, and even change a replica’s filter. Legacy applica-
tions that read and write local files, rather than using the
Cimbiosys API, are supported by “watcher” processes
that monitor file system directories and import files into
(or delete items from) a local replica.

4.3 Implementation

Cimbiosys has been implemented in two different en-
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vironments. One implementation is in C# using Mi-
crosoft’s .NET Framework running on Windows. We
have not yet ported this code to Windows Mobile 6.0,
where it could run on handheld mobile devices. The
other implementation is in Mace, a C++ language exten-
sion that supports distributed systems development [6].
This Mace implementation serves as the basis for the
evaluation presented in Section 7.

Two applications have been designed and are intended
for deployment in our lab. Cimetric, implemented in C#,
is a collaborative authoring tool. It coordinates access
and updates to the complex, heterogeneous set of text,
graphics, and data files created and modified in the pro-
cess of writing a paper. Authors receive their own repli-
cas of the paper, perform local updates, and make those
updates visible to coauthors when they are ready to share
a new version. CimBib is designed as a bibliographic
database and personal digital library in which colleagues
can share references to local and remote copies of pub-
lished papers as well as personal annotations and recom-
mendations; this application is still in a user-centered de-
sign phase. The designs of both Cimetric and CimBib
were informed by a qualitative field study of scholarly
writing and reference use [8].

5 CIM Sync

This section focuses on one key aspect of the Cimbiosys
platform, namely the CIM Sync protocol. Support-
ing content-based filtering with a fluid synchronization
topology while ensuring eventual filter consistency and
knowledge singularity requires novel per-replica meta-
data as well as new techniques for acquiring and discard-
ing items as the collection is updated and replicas possi-
bly change their filters.

5.1 Metadata

The sync protocol relies on a variety of per-item and per-
replica metadata. Each collection and each item in the
collection has a unique identifier, as does each replica
of the collection. Each version of an item also has a
unique identifier called itsversion-id. Whenever an item
is created, updated, or deleted, the replica on which this
operation is performed creates a new version-id for the
item consisting of the replica’s identifier coupled with
a counter of the number of update operations that have
been performed by that replica. Deleted items are simply
marked as deleted; such items are referred to astomb-
stones.

For each item in a replica, the Cimbiosys item
store maintains the item’s unique identifier, version-
id, XML+file contents, and other information used to
detect whether different versions of the item are in

conflict (similar to the made-with knowledge used in
WinFS [11]). Only the latest known version of each item
is retained in the item store. Older versions are consid-
ered obsolete.

Each replica maintainsknowledgeindicating the set
of versions that are known to the replica. Conceptually,
a replica’s knowledge is simply a set of version-ids. It
contains identifiers for any versions that (a) match the
replica’s filter and are stored in its item store, (b) are
known to be obsolete, or (c) are known to not match the
replica’s filter. Including this third class of versions,out-
of-filter versions, and using a novel representation called
item-set knowledgedistinguishes the knowledge used in
CIM Sync from that of other replication protocols like
Bayou that do not support partial replication.

Knowledge consists of one or more fragments where
each fragment is a version vector [12] and an associated
explicit set of item ids. The version vector component
indicates, for each replica that has updated any item in
the collection, the latest known version-id generated by
the replica. Semantically, if a replica holds a knowl-
edge fragmentS:V then the replica knows all versions
of items in the setS whose version-ids are included in
the version vectorV . Note that the version vector may
include versions of items whose ids are not in the associ-
ated set, but those versions have no significance. When
a replica’s knowledge contains multiple fragments, the
replica’s overall knowledge is the union of the version-
ids from each fragment.

A knowledge fragment may specify “*” as the item-
set, meaning that the set includes all items in the col-
lection. Such fragments are calledstar-knowledge. In a
system consisting entirely of full replicas, each replica’s
knowledge is always a single star-knowledge fragment.
Partial replicas introduce the need for item-set knowl-
edge fragments in addition to star-knowledge. For in-
stance, when synchronizing from a partial replica, the
requesting replica obtains item-set knowledge reflecting
the set of items stored by the partial replica.

5.2 Basic protocol

Cimbiosys uses a one-way, pull-style synchronization
protocol. A replica, called thetarget replica, initiates
synchronization with another replica, called thesource
replica, by sending a SyncRequest message. This mes-
sage includes the target’s knowledge and its filter. The
source replica then checks its item store for any items
whose version-ids are not known to the target replica and
whose XML contents match the target’s filter. The XML
contents, file contents, and metadata for each of these
items are returned to the target. If possible, as discussed
below in Section 5.4, the source replica also informs the
target replica of items that no longer match its filter. Fi-
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nally, the source replica responds with a SyncComplete
message including one or more knowledge fragments
that are added to the target’s knowledge. At the very
least, thislearned knowledgeincludes knowledge per-
taining to items transmitted during this synchronization
session but may include additional versions as discussed
in Section 5.3. All of the messages received by the target
replica result in updates that are applied to its item store
as a single atomic transaction.

Figure 3 illustrates a synchronization session in which
the digital photo frame (replicaB) requests items from
the laptop (replicaC) in our previously discussed photo
sharing scenario. The state shown for each device is the
metadata and item storebeforesynchronization. The ar-
rows show the messages that are sent during synchro-
nization. Note that the photo frame’s knowledge that is
sent in the SyncRequest message indicates that it knows
about four items, but has not seen any updates from the
laptop since versionC:1. The laptop returns a more re-
cent version of itemr and a new items. The laptop
also had updated itemk to reduce its rating, and hence
notifies the photo frame that this item is no longer of
interest. The final message informs the photo frame of
the knowledge it learned from the laptop. The following
sections present in more detail the protocol features re-
sulting from the need to support partial replicas and refer
back to aspects of this figure.

5.3 Acquiring knowledge

As replicas receive items during synchronization, they
add the items version-ids to their knowledge, but need
some other means of learning about obsolete and out-of-
filter versions. The SyncComplete message at the end
of the synchronization protocol conveys knowledge that
the target replica learned during this sync session. The
target replica adds this learned knowledge to its own
knowledge, generally as new knowledge fragments. This
knowledge can include any version-ids for items cur-
rently stored by the source replica as well as any ids for
versions that the source knows to be obsolete. It may
not, however, include versions that are out-of-filter at the
source replica but could match the target replica’s filter
as this would cause the target replica to fail to receive
such versions from other replicas.

The learned knowledge, therefore, depends on the re-
lationship between the filters of the synchronizing repli-
cas. If the source replica’s filter is no more restrictive
than the target’s filter, that is, if any item that matches
the target’s filter also matches the source’s filter, then
the source replica can send its complete knowledge in
the SyncComplete message. The reason is that any out-
of-filter versions included in the source’s knowledge are
also out-of-filter with respect to the target replica. In

other cases where the target has a broader filter or an
incomparable filter compared to the source, the source
replica must restrict the conveyed learned knowledge to
those items that it actually stores. For example, this is the
case in Figure 3 where the photo frame wants 5-star pho-
tos while the laptop holds photos that have been tagged
with the “family” keyword.

5.4 Move-out notifications

A partial replica not only needs to receive newly created
and updated items that match its filter but also wants to
be informed when currently stored items have later ver-
sions that no longer match its filter. Such items are said
to havemoved outof the replica’s interest set. During
synchronization, the target replica may receivemove-out
notificationsfrom the source replica, causing the target
to remove specified items from its item store. In Figure
3, for instance, the laptop sends such a notification for
item k, which it had updated. There are two conditions
under which the source returns move-out notifications.

If the source replica stores an item whose version is
not known to the target replica and whose contents does
not match the target’s filter, the source can send a move-
out notification for this item. However, a target replica
would receive move-out notifications for items that it
does not store whenever those items are updated and con-
tinue to not match the target’s filter, a potentially com-
mon occurrence. Such spurious messages will simply be
ignored by the receiving replica, but they do consume
network and processing resources.

To avoid spurious move-out notifications, a SyncRe-
quest message may optionally include a set of identi-
fiers for items that are stored by the requesting replica.
The source replica only sends move-out notifications for
items that are in this set. Replicas cache this item set
for their regular synchronization partners, allowing these
partners to send deltas, that is, to send just the set of
newly acquired items.

Sending move-out notifications for items that are
stored at the source replica is insufficient. Consider the
case of a replicated customer relationship database in
which a server holds the complete database, Bob’s lap-
top holds items for all California customers, and his cell
phone stores items for customers that live in Los An-
geles. Bob’s cell phone synchronizes periodically with
his laptop but never directly with the server database.
Suppose that a customer moves from Los Angeles to
Chicago. When Bob’s laptop synchronizes with the
server, it receives a move-out notification causing the
laptop to drop this customer from its local replica. But
then how does Bob’s cell phone learn that it also should
discard this item?

The second condition for sending a move-out notifi-
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Figure 3: Example synchronization between two replicas

cation for an item is as follows: the target replica stores
the item, the source replica does not store the item, the
source replica’s filter is no more restrictive than the tar-
get’s filter, and the source’s knowledge for this item is
greater than the target’s knowledge. In other words, if
the source is interested in all items of interest to the target
and is more knowledgeable than the target, it can deduce
that any items it does not store should also be removed
from the target’s item store. Once again, this relies on the
source being informed of the set of items that are stored
by the target.

Since replicas are allowed to change their filters at any
time, a target replica may receive move-out notifications
based on a previous filter that no longer apply. To guard
against processing out-of-date notifications, a replica in-
crements a counter whenever it updates its filter. Es-
sentially, this counter serves as a version identifier for
the replica’s filter. The filter version is included in each
synchronization request and is returned in each move-out
notification. Move-out notifications that include old filter
versions are simply ignored by the receiving replica.

5.5 Out-of-filter updates

When updating a locally stored item, an application may
cause that item to no longer match the local replica’s
filter. For example, consider a cell phone whose filter
selects unread e-mail messages. After displaying a mes-
sage, the cell phone updates the corresponding item to set
the read-flag. Eventually, the cell phone should discard
this item, but it cannot be discarded immediately since
other replicas need to learn of this update. Operations
that produce new versions of items that do not match the
local replica’s filter are calledout-of-filter updates.

To preserve versions produced by out-of-filter updates,
the updated items are placed in a special portion of the
updating replica’s item store called thepush-out store.

Items in the push-out store are not visible to applications,
but are treated like any other item during synchroniza-
tion. In particular, such items are sent to a synchroniza-
tion partner if they match its filter, and may be overwrit-
ten by items received from a sync partner, possibly caus-
ing the item to move back into the regular item store.

Unfortunately, a replica may not have any synchro-
nization partner whose filter matches the items in its
push-out store. Thus, when synchronizing with any
replica with an equal or less restrictive filter, a replica
sends all items in its push-out store, and then optionally
discards these items once it learns that they were success-
fully received by the target replica. This partner accepts
these items even if they don’t match its filter. Such items
may end up in the target replica’s push-out store, from
where they are passed to another replica. However, this
could lead to situations in which two replicas play “hot
potato” by passing back and forth an item that matches
neither of their filters. Section 6 discusses restrictions
that Cimbiosys places on the synchronization topology
to avoid the hot potato problem and guarantee that out-
of-filter updates eventually reach all interested replicas.

5.6 Changing filters

When a replica changes its filter it may need to discard
items or knowledge or both depending on the nature of
the filter change. If the new filter is more restrictive than
the previous filter, that is, it matches fewer items, then
items that no longer match the filter are moved to the
replica’s push-out store. The replica cannot simply dis-
card such an item since it may be the only replica that
holds the latest version. As discussed above, items from
the replica’s push-out store will eventually be discarded
after they are passed to another replica (or it is deter-
mined that they are already stored by another replica).
Although some in-filter versions may become out-of-
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filter versions, the replica’s knowledge does not change.
If the new filter is less restrictive than the previous

filter, then out-of-filter versions may now match the
new filter. Such versions need to be removed from the
replica’s knowledge so that it will receive them during
future synchronizations. Unfortunately, the replica can-
not determine which versions in its knowledge are out-
of-filter and which are obsolete. So, conservatively, its
knowledge must be reduced to include only versions of
items that it already stores. Any star-knowledge frag-
ments are reduced to item-set knowledge.

If the new filter is neither less restrictive nor more re-
strictive than the previous filter, that is, if the old and
new filters are incomparable, then both cases apply. The
replica may need to move non-matching items to its
push-out store. The replica also needs to reduce its
knowledge.

As mentioned earlier, each replica maintains a counter
of the number of times that its filter has been changed.
During synchronization with regular partners, a replica
can send its filter version counter as a shorthand for
its actual filter, which could be a complicated and long
query. Replicas maintain soft-state mapping their part-
ners’ filter versions to the actual filter queries. If a replica
discards this soft-state, it responds to a sync request with
a special error code, causing the requesting replica to
send its full filter in a retransmitted sync request.

5.7 Compacting knowledge

Whenever a replica synchronizes with another replica, it
receives new knowledge fragments as described in the
previous section. To reduce the number of fragments in
its knowledge and the overall size, a replica can compact
its knowledge using a set of simple rules. For example,
suppose the replica’s knowledge includes two fragments,
S1:V1 andS2:V2. If the setS1 is a subset of setS2 and
the version vectorV2 dominatesV1, meaning that any
versions inV1 are also included inV2, then the fragment
S1:V1 is redundant and can be discarded. IfV1 andV2

are identical, then the setsS1 andS2 can be combined
into a single knowledge fragment. Figure 4 depicts these
and other compaction rules that can be applied any pair
of knowledge fragments.

While these knowledge compaction rules are effective,
they don’t always lead to compact knowledge in prac-
tice. Consider the case of Alice who edits photor on her
laptop (replicaC) producing a new version with version-
id C:1, then edits this same photo again to produce a
newer versionC:2. Alice also adds keywords to pho-
tos t, s, andk, producing versionsC:3, C:4, andC:5.
Suppose that these items all match replicaC ’s filter and
are never updated by other replicas. The state of replica
C on Alice’s laptop is as shown in Figure 3. When

89 8: ;9 ;:89 8:89 8:<=>?@ABC?
;9 ;: ;9 ;: <=>?@ABC?SD:VD SE:VEFGHIG FGHIGFGHIG FJHIJFJHIJ FJHIJFJHIJ FJKFGHIJFJHIJKIGFJHIJ LFGMFJHIG

FGHIG LFJMFGHIJ FGHIG LFJMFGHIJ
FJHIJKIG LFGMFJHIG FJHIJKIG LFJMFGHIJ FJHIJ LFGHIGFJHIJ LFGMFJHIG

Figure 4: Knowledge compaction rules

Alice’s home PC synchronizes from her laptop and re-
ceives some of these items, it will acquire the knowledge
fragment{k, r, s}:<C:5> indicating that it learned about
versionsC:1 throughC:5 for itemsk, r, ands. Unfor-
tunately, this knowledge fragment would never be com-
pacted with other knowledge fragments.

Key to reducing the number of fragments in a replica’s
knowledge is the notion of authority. A replica isauthor-
itative for a version of an item if it either stores the item
or knows the item to be obsolete. Recall from Section 5.3
that version-ids for any stored or obsolete versions can be
included in the learned knowledge acquired by a target
replica at the completion of the synchronization process.
The source replica, therefore, can return a learned knowl-
edge fragment in which the item-set is “*”, meaning all
items in the collection, and the associated version vector
includes identifiers for its authoritative versions. In other
words, during synchronization, the target replica learns
of any versions of any items for which the source replica
is authoritative. Moreover, when the target replica’s filter
is equal to or less restrictive than the source’s filter, the
target replica becomes an authority for all of the source
replica’s authoritative versions.

In our previous example, the laptop (replicaC) is au-
thoritative for all of the versions that it produced, that
is, for versionsC:1 throughC:5. Thus, replicaC sends
∗:<C:5> as learned knowledge when synchronizing to
any other replica. This knowledge fragment is merged
into the receiving replica’s star-knowledge, and hence
does not lead to an increase in the overall number of
knowledge fragments.

One practical issue remains, namely how to deal with
out-of-filter updates and filter changes. Such operations
cause items to be placed in a replica’s push-out store. The
replica will cease to be authoritative for its own versions
that are pushed to another replica and then discarded. Re-
quiring a replica to store indefinitely all of the items that
it creates would be unreasonable. For instance, a digi-
tal camera often offloads its photos to a laptop in order
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to free up storage space for new photos. In practice, the
system simply needs to maintain the invariant that there
exists at least one replica that is authoritative for every
version ever generated.

In Cimbiosys, when a replica sends the items in its
push-out store to replica with a less restrictive filter, the
receiving replica becomes authoritative for these items.
The sending replica can then discard such items without
violating the system-wide invariant. Each replica records
the version-id of the most recent version it has generated
for which it is no longer authoritative. The replica then
knows that it is authoritative for any versions it has pro-
duced with greater version-ids. The learned knowledge
sent by a replica is a star-knowledge fragment containing
the range of version-ids from the first version generated
after its last push-out to its most recently generated ver-
sion. A replica that has received multiple star-knowledge
fragments containing overlapping or contiguous version
ranges can combine these together into a single fragment.

For example, suppose Alice’s laptop (replicaC)
changes its filter so that it no longer wants items with
ratings below four. VersionC:5 of item k no longer
matches. After pushing this item to Alice’s home PC
(replicaA), as well as sending the latest versions of all
other items, the home PC will have learned∗:<C:5>.
At this point, the laptop discards itemk and records
C:5 as its last unauthoritative version. Now, suppose
that Alice performs three more updates from her laptop
producing versions with identifiersC:6, C:7, andC:8.
During synchronization to another replica, say Alice’s
photo frame (replicaB), C will pass∗:<C:6..C:8> as
learned knowledge. When the photo frame synchronizes
from the home PC, it will receive learned knowledge of
∗:<C:5> in addition to knowledge of other versions for
which Alice’s home PC is authoritative. The photo frame
then combines the knowledge received from the laptop
with that received from the home PC to get a knowledge
fragment of∗:<C:8>, which in turn is merged with its
other star-knowledge.

As a replica synchronizes from various other replicas
in the system, it acquires star-knowledge fragments from
each of these sync partners. Such fragments are com-
bined together into a single star-knowledge fragment that
is monotonically increasing (provided the replica does
not expand its filter). Given a synchronization topology
in which each replica regularly synchronizes with a set
of partners that collectively are knowledgeable about all
versions in the system, each replica will converge to-
wards singular knowledge. The following section de-
scribes how Cimbiosys ensures that replicas are config-
ured in such a topology.

6 Guaranteeing Synchronization Proper-
ties through Tree Topologies

The CIM Sync protocol presented in the previous sec-
tion performs correctly for any set of replicas with arbi-
trary filters and arbitrary synchronization patterns. When
a replica synchronizes with any other replica, it will re-
ceive all versions stored by its sync partner that match
its filter. Likewise, it will never receive items that do
not match its filter, and it will receive whatever move-out
notifications can be generated by the sync partner given
its current state. Moreover, a replica never receives the
same version from multiple sync partners (unless it en-
gages in parallel synchronizations or changes its filter).
But these guarantees are insufficient to ensure that Cim-
biosys performs appropriately in a range of real-world
situations; additional constraints must be placed on the
synchronization topology in order to achieve other de-
sired system properties, such as eventual knowledge sin-
gularity.

Cimbiosys forces replicas of a given collection to con-
figure themselves into a hierarchically filtered tree topol-
ogy. In particular, each replica has a single parent replica,
except for the replica at the root of the tree, and a
replica’s filter must be at least as restrictive as that of
its parent. In other words, a parent replica stores any
items that are stored by any of its children. The replica
at the root of the tree has the “*” filter that matches all
items; that is, it stores a full copy of the collection. This
root replica is called thereference replicafor the collec-
tion. Parent and child replicas are required to perform
synchronization in both directions, at least occasionally.

Constructing the tree is easy. When a new replica is
created for a collection, it asks an existing replica to be its
parent. If the filter of the requested parent is too restric-
tive, then the new replica walks up the existing tree until
it finds a replica that can serve as its parent. At the very
least, the reference replica can always serve as a parent
for any replica with an arbitrary filter. If a replica wishes
to retire gracefully from a collection, then this replica
should notify its children so they can select a new parent.
The retiring replica’s parent, for instance, can serve as
the new parent for its children, or, in some cases, one of
the existing children can be promoted to be the parent of
its siblings. A replica can change its parent at any time as
long as it chooses a new parent with a suitable filter and
does not violate the tree structure. For instance, a replica
may be required to find a new parent when it expands its
filter or its previous parent dies unexpectedly.

The tree synchronization topology provides five im-
portant benefits.

One, the synchronization topology is well-connected.
That is, groups of replicas for the same collection can-
not remain disconnected indefinitely, and hence cannot

9



prevent eventual convergence.
Two, each version of an item has a guaranteed path

by which it can travel from the originating replica to any
other replica whose filter matches the version. Specifi-
cally, when a new version is created, it can flow up the
tree from child to parent replicas until it reaches common
ancestors, including the reference replica. Any versions
held by the reference replica can flow to any other replica
over a path of replicas with increasingly restrictive filters.

Three, move-out notifications can be delivered by a
parent to any of its children. Recall from Section 5 that
move-out notifications can be sent only when the source
replica has a filter than is no more restrictive than the tar-
get. This is exactly the case for replicas with a parent-
child relationship. Thus, the tree topology guarantees
that all replicas are able to receive appropriate move-out
notifications. Essentially, such notifications flow down
the tree.

Four, out-of-filter versions in a replica’s push-out store
flow up the tree until they reach replicas that are in-
terested in those items. During synchronization from a
child replica to its parent, the child sends all of the items
in its push-out store, regardless of whether they match
the parent’s filter. The tree topology prevents replicas
from playing “hot potato” with out-of-filter versions.

Finally, the tree topology ensures eventual knowledge
singularity. As authoritative versions are passed up the
tree, a parent replica assumes authority for any versions
generated by any of its children or descendants. Even-
tually, all authoritative versions arrive at the reference
replica, which then produces a single star-knowledge
fragment containing all of these versions. This star-
knowledge fragment is then passed down the tree from
the reference replica to all other replicas during parent-
to-child synchronizations. In the absence of further up-
dates or filter changes, each replica’s knowledge will
eventually converge to that of the reference replica.

Although these benefits argue convincingly for hav-
ing a tree-structured synchronization topology, extended
synchronization patterns are not prevented. In Cim-
biosys, a replica can choose arbitrary synchronization
partners (in addition to its parent and children). The only
restriction is that the overall synchronization topology
must include an embedded tree with a reference replica.

All practical usage scenarios that we’ve envisioned
meet this condition, including the motivating scenarios
presented in Section 2. For example, in the photo shar-
ing scenario, Alice’s home PC serves as the reference
replica for her photo collection. Her laptop and digital
photo frame synchronize directly with this PC, and treat
it as their parent, as do the cloud-based services that con-
tain selected photos. However, Alice’s laptop might also
sync with such services on occasion or sync directly with
friends laptops. Services might replicate data among

themselves within the cloud, unbeknownst to the refer-
ence replica, such as for geographic scaling. The digital
camera, which only synchronizes with the laptop, uses
the laptop as its parent replica. The overlaid tree topol-
ogy ensures that Alice’s new photos will eventually find
their way into her master photo collection as well as onto
other devices with selective filters.

7 Evaluation

7.1 Simulation Results

We simulated a scenario consisting of10 replicas. Their
filter relationships form a three-level hierarchy of one
replica at the top, three in the middle, and six at the bot-
tom. A replica’s filter subsumes the filters of all replica
at lower levels and forms a DAG. The simulation work-
load had three serial phases: 1) 1000 inserts of new items
at randomly chosen replicas, 2) 400 syncs between ran-
domly chosen sync partners, and 3) another 400 random
syncs interleaved with 1000 updates to random items.
Even though the syncs were peer-to-peer, a replica syncs
as a child or a parent whenever the randomly selected
sync partner turns out to have a superior or an inferior
filter.

We compare the behavior of three related techniques to
represent knowledge: CIM, which is Cimbiosys; PIVV,
which maintains individual version vectors for each item
that matches a replica’s filter, sends this entire knowledge
during syncs, and receives in return version vectors per-
taining only to items in its filter; and CIM-PIVV, which
is a modified version of Cimbiosys in which item set
knowledge is fully expanded into per-item version vec-
tors but is discarded whenever the star knowledge sub-
sumes them. In other words, CIM-PIVV maintains per-
item version vectors but uses the notion of star knowl-
edge accumulated through the hierarchy to converge to a
single knowledge fragment.

Figure 5 shows the average size of knowledge kept at
each replica over simulation time. This figure confirms
our expectations about the behavior of the studied tech-
niques; size of knowledge in PIVV increases as items are
replicated and reaches a high value proportional to the
number of items stored in the replica; whereas, in CIM
and CIM-PIVV, knowledge is fragmented in the initial
stages but eventually converges to a small size not de-
pendent on the number of stored items; in other words, it
eventual knowledge singularity. This trend also holds for
the size of knowledge transmitted over the network (not
shown here) during synchronization.

In addition, Figure 5 illustrates the effect of workload
characteristics on the potential benefits of CIM. CIM
provides significant savings over CIM-PIVV when syn-
chronizing the initial phase of inserts (0 to 4000 time
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Figure 5: Average size of knowledge per replica vs. time
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Figure 6: Average inconsistent items per replica vs. time

units), whereas the savings is marginal when synchro-
nizing the updates in the third phase (4000 to 8000 time
units). The key reason for this behavior is that the initial
inserts were performed in batches, providing opportuni-
ties for CIM to compact knowledge into item sets. In
contrast, the subsequent updates are spread over multi-
ple rounds of syncs, leading to a highly fragmented state
close to CIM-PIVV. Yet, CIM and CIM-PIVV are far su-
perior to a vanilla version vector technique through the
use of star knowledge to expunge subsumed knowledge
fragments.

We next show the progress made by replicas in achiev-
ing eventual filter consistency. Figure 6 plots the average
number of inconsistencies in a replica’s store over sim-
ulation time. Here, an inconsistency at a replica R at a
certain time includes: a) an item in R’s filter but not in
R’s store, b) an item in R’s store that is obsolete, and c)
an item not in R’s filter but in R’s store. We used the
simulator’s global view of the system to count inconsis-
tencies.

Figure 6 confirms that all three simulated solutions for

partial replication eventually converge (at the same rate),
both after the insert and the update phases. Moreover, a
comparison of Figures 5 and 6 indicates that the system
could achieve filter consistency much earlier than knowl-
edge singularity.

7.2 Experimental Results

As a follow-on to our simulation, we ran experiments
with the Mace implemention to further compare the CIM
Sync protocol to traditional version vector schemes and
examine the effects of various tunable parameters of CIM
Sync. In particular, we answer the following questions
with respect to the goals of Cimbiosys:

• Are the knowledge storage requirements for CIM
Sync significantly smaller than those for per-item
version vector protocols?

• Does the bandwidth usage of CIM Sync leverage
the reduction in knowledge size?

• What are the benefits of requiring a filter hierarchy?

• How does the incorporation of non-hierarchical
synchronizations affect the knowledge size, band-
width usage, and time to convergence?

7.2.1 Experimental Environment

We evaluate the Mace implementation of the CIM Sync
protocol using ModelNet [18] to simulate a variety of
network topologies, and Plush [1] to deploy and run the
topologies and protocol code on a cluster of machines.
Each machine in the cluster is a Dell PowerEdgeSC1425
with dual Intel Xeon 2.8GHz processors and 2GB of
RAM, running Linux 2.6.9-22. For these tests, we use
a system of 10 replicas, and a collection size of 10,000,
which reflects the average size of a collection for our mo-
tivating scenario, photo sharing. Using ModelNet, we
emulate a clique of 10 routers, each connected to a single
replica. The link speed between all routers and replicas
is set to 100 Mbps so that large experiments complete
within a reasonable time frame. The trends in the exper-
imental results are similar with lower bandwidths.

We vary the number of partial replicas in the system,
the hierarchy created by filters (where appropriate), and
the likelihood that a replica will synchronize with its par-
ent or children, or with a random peer during any given
synchronization operation.

Each experiment consists of 2 phases. During Phase 1,
replicas create items such that the total number of items
in the system at the conclusion of phase 1 is 10,000. Dur-
ing phase 2, synchronizations proceed until the knowl-
edge at all replicas converges to a stable state.
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Figure 7: Knowledge Size: Partial Replica
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Figure 8: Knowledge Size: Reference Replica

7.2.2 Knowledge Storage

Figures 7 and 8 compare the knowledge storage require-
ments of the CIM Sync representation to those of the per-
item version vector implementation, for a partial and ref-
erence replica, respectively. The system shown has 10
replicas, a collection size of 10,000, and a binary tree fil-
ter topology. Each replica is biased to send 50% of its
synchronization requests to a parent or child (if possi-
ble), and to send the remainder of requests to a random
peer.

During the initial synchronizations, the CIM Sync rep-
resentation shows spikes in the knowledge storage re-
quirements; these spikes demonstrate the significance
of the knowledge compaction process. As the target
replica receives knowledge about individual items from
the source replica, it generates item set fragments to
add to its knowledge. However, once it receives learned
knowledge at the completion of the synchronization, the
target compacts its knowledge. The target may not be
able to completely compact its knowledge, as it may be
synchronizing with a source replica that cannot speak au-
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Figure 9: Bandwidth Usage: Reference Replica

thoritatively about all versions sent. Once the target has
synchronized with enough peers and has received enough
learned knowledge, it can compact its knowledge into a
single star-knowledge fragment. Contrastingly, the per-
item version vector representation requires that a version
vector be stored per item in the system. Therefore, the
knowledge stored for this representation remains on the
order of the number of items in the system.

Additionally, as is apparent during the initial synchro-
nizations, especially those of the reference replica, the
CIM Sync protocol incurs overhead as a result of stor-
ing the authoritative version set, but this penalty is on the
order of the number of replicas in the system, which is
expected to be much smaller than the number of items.

7.2.3 Bandwidth Usage

The experiment that measures cumulative bandwidth us-
age of the two systems with respect to synchronization
iteration is identical to the one used to study knowledge
storage requirements. Figure 9 shows the result of this
experiment, where bandwidth is measured as the sum of
all data as it is queued into the transport layer. Each data
item for this experiment is a 6 character string and there-
fore data content does not contribute significantly to the
amount of bandwidth used. Since the reference replica
has the largest filter, synchronizations in which the ref-
erence replica is the source generally result in the trans-
mission of more data than do synchronizations between
replicas with arbitrary filter overlap. As such, we com-
pare bandwidth usage for the two systems at the refer-
ence replica.

During early synchronizations, the two knowledge
representations are comparable, as information must be
sent for each item which is new to the target replica.
However, once the system reaches a stable state, the
bandwidth usage of the CIM Sync knowledge representa-
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Figure 10: Effect of Topology Restrictions

tion are reduced drastically. This is because at this point,
the knowledge for any given replica has been reduced to
a single version vector. When the target of a synchroniza-
tion operation sends knowledge to the source replica, it
needs only send this single version vector, whereas the
per-item version vector implementation requires that a
version vector per item be sent.

7.2.4 Topology Restrictions

We examine the effects of the restriction that Cimbiosys
replicas should have a hierarchy, overlaid upon the net-
work topology. For these experiments, we measure Cim-
biosys with 10 replicas and a collection size of 10,000, a
binary tree filter topology, and an identical set of filters
to that of the previous experiments. For one of the ex-
periments depicted in Figure 10, each replica treats every
sync as though it occurs with a peer outside of its filter hi-
erarchy, whereas the filter relationships are leveraged in
the second experiment, with a 50% bias toward synchro-
nization with a replica’s parent or children as opposed to
synchronization with an arbitrary peer.

This experiment shows the benefits of leveraging
parent-child relationships between replicas. Replicas can
accept knowledge from their parents and can then di-
rectly merge this knowledge with their own, as they know
at the completion of a synchronization with a parent that
all versions included in the parent’s knowledge should
be included in their own. Similarly, replicas can become
authoritative on versions authored by their descendents,
and this information can flow up the hierarchy until it
reaches a reference replica, at which point it flows down-
ward in compact form. Without a hierarchy, replicas can
only claim authority over versions they themselves have
authored, and therefore, even if a replica R hears about
a particular version authored by a replica S, until R syn-
chronizes with S, R is unable to compact its knowledge.
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Figure 11: Effects of Out-of-Hierarchy Synchronization

Thus, while we can still achieve eventual knowledge sin-
gularity even without a filter hierarchy, convergence time
does improve with the use of a hierarchy.

7.2.5 Out-of-Hierarchy Synchronizations

Finally, we examine the effects of allowing for synchro-
nizations with peers outside of a replica’s filter hierarchy.
Figure 11 compares a system in which replicas only syn-
chronize with their parents and children with a system in
which replicas select synchronization peers at random.

As is clear from the figure, restricting synchroniza-
tions to parents and children allows knowledge to con-
verge much more quickly. This is because knowledge
tends to flow within a hierarchy in a more compact form,
as discussed above. However, synchronizations with ar-
bitrary peers do allow knowledge about data items to po-
tentially flow more quickly between replicas, at the cost
of less compact knowledge for a period of time.

8 Conclusion

Cimbiosys, a new platform that provides filtered repli-
cation of content through peer-to-peer synchronization,
was motivated by the needs of loosely-organized com-
munities and of individuals managing multiple devices.
The chief contributions of the protocol and architecture
lie in the platform’s ability to support efficient partial
replication using a compact representation of accumu-
lated per-replica knowledge. By using metadata that de-
scribes obsolete items and items that no longer match a
replica’s filter (move-outs and push outs) in addition to
metadata that describes the replica’s in-scope item up-
dates, Cimbiosys guarantees efficient delivery of items
and that each collection replica achieves eventual consis-
tency. Our evaluations demonstrate the key property of
eventual knowledge singularity, that is, the ultimate con-
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vergence of knowledge to a form that supports a minimal
exchange of data at synchronization time, especially in
comparison to other version vector replication methods.

Although we have evaluated Cimbiosys using artifi-
cial workloads that reflect real-world conditions (e.g. we
used the current capacity of a popular player to esti-
mate the size of consumer music and photo collections),
we feel it is important to deploy an initial set of Cim-
biosys applications to test the platform’s real-world per-
formance and to explore the utility of our approach. De-
velopment and fielding two complementary applications
will also allow us to assess any possible gaps in our as-
sumptions (e.g. about collection characteristics, device
synchronization patterns, and update frequency) and to
identify the practical strengths and weaknesses of our ap-
proach.
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