
Unifying Type Checking and Property Checking
for Low-Level Code

Jeremy Condit
Microsoft Research

jcondit@microsoft.com

Brian Hackett
Stanford University

bhackett@cs.stanford.edu

Shuvendu K. Lahiri
Microsoft Research

shuvendu@microsoft.com

Shaz Qadeer
Microsoft Research

qadeer@microsoft.com

Abstract
We present a unified approach to type checking and property check-
ing for low-level code. Type checking for low-level code is chal-
lenging because type safety often depends on complex, program-
specific invariants that are difficult for traditional type checkers
to express. Conversely, property checking for low-level code is
challenging because it is difficult to write concise specifications
that distinguish between locations in an untyped program’s heap.
We address both problems simultaneously by implementing a type
checker for low-level code as part of our property checker.

We present a low-level formalization of a C program’s heap and
its types that can be checked with an SMT solver, and we provide
a decision procedure for checking type safety. Our type system is
flexible enough to support a combination of nominal and structural
subtyping for C, on a per-structure basis. We discuss several case
studies that demonstrate the ability of this tool to express and check
complex type invariants in low-level C code, including several
small Windows device drivers.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Type safety, property checking

Keywords SMT solvers, decision procedures, low-level code

1. Introduction
Despite the availability of safe, high-level languages, many of our
most critical software systems are still written in low-level lan-
guages such as C and C++. Although these languages are very ex-
pressive and can be used to write high-performance code, they do
not enforce type and memory safety, which makes them much less
robust and much harder to analyze than higher-level languages.

Existing approaches to this problem, including type checking
and property checking, have encountered a number of key chal-
lenges. Sound type checking for low-level code is challenging be-
cause type safety often depends on subtle, program-specific invari-
ants. Although previous low-level type systems can be quite ex-
pressive [12, 23, 25], they are typically designed for a fixed set of
programming idioms and are hard to adapt to the needs of a partic-
ular program. Likewise, property checking tools for low-level code

[Copyright notice will appear here once ’preprint’ option is removed.]

can be quite powerful and quite general, but they either ignore types
for soundness [10, 16] or rely on unproven type safety assumptions
in order to achieve the necessary level of precision [4, 18].

In this paper, we address these challenges by implementing a
unified type checker and property checker for low-level C code.
The type checker can use the full power of the property checker to
express and verify subtle, program-specific type and memory safety
invariants, well beyond what the native C type system can check.
Meanwhile, the property checker can rely on the type checker to
provide structure and disambiguation for the program’s heap, en-
abling more concise and more powerful type-based specifications.
Our approach makes use of a fully automated Satisfiability Modulo
Theories (SMT) [30] solver, which means that the programmer’s
only duty is to provide high-level type and property annotations as
part of the original program’s source.

The core idea behind our unified type and property checker is
that we provide an explicit, low-level model of types and the type
safety invariant. Our tool models the C program’s heap using two
maps that represent the data in the program’s heap and the types at
which each heap location was allocated:

Mem : int→ int
Type : int→ type

Our checker also defines a predicate called HasType, which
indicates whether a given value corresponds to a given type, and
we use this predicate to state the type safety invariant for the heap:

∀a : int.HasType(Mem[a],Type[a])

By asserting and checking this simple invariant at each program
point, we can use the property checker to verify type safety in a
flow-sensitive and path-sensitive manner. We also provide a deci-
sion procedure for the resulting type safety assertions.

This low-level representation of types and type safety has many
benefits. First, the programmer can provide additional information
about program-specific type invariants using the language of the
property checker. Second, we can allow the programmer to define
custom types as appropriate for a given program. Third, we can
refine the types stored in the Type map in order to identify and
distinguish structure fields that are important for checking higher-
level properties of the code. In fact, when checking C structures, we
can effectively choose between a nominal and a structural definition
of type equivalence on a per-structure basis. Finally, because we
encode the meaning of types directly in our translated program
instead of relying on rules for deriving type judgments, our system
does not require a complex, offline proof of soundness.

We implemented this technique as part of the HAVOC property
checker [2], and we have applied it to a number of microbench-
marks and to several Windows device drivers of up to 1,500 lines
of code, which can be verified, modulo a handful of unchecked as-
sumptions, in about one minute each. This technique has allowed

1 2008/8/7

data1

next

prev

data2

data1

next

prev

data2

r

p

struct list { list *next; list *prev; }
struct record { int data1; list node; int data2; }

#define container(p) ((record*)((int*)(p) - 1))

void init_record(list *p) {
record *r = container(p);
r->data2 = 42;

}

void init_all_records(list *p) {
while (p != NULL) {
init_record(p);
p = p->next;

}
}

Figure 1. Example C code. The diagram shows two record struc-
tures in a linked list, with the embedded list shown in gray.

us to check complex spatial type and memory safety properties
(i.e., safety in the presence of pointer arithmetic, casts, and linked
data structures) that previous tools were incapable of expressing
or checking; in addition, our property checker is now capable of
exploiting concise, type-based annotations in proving properties of
low-level code.

The contributions of this paper are:

• A low-level encoding of a C program’s heap and types that
allow a property checker to verify strong type safety properties.

• A semantics for C types that can be used in specifications for a
sound property checker.

• A decision procedure for the type safety assertions generated
by our encoding.

• Case studies evaluating the effectiveness of this technique on
real C code, including small Windows device drivers.

In the next section, we present an example that demonstrates our
technique in more detail. Then, we present the formal translation,
our decision procedure for the resulting type safety assertions, and
extensions that handle additional C features. Finally, we present
case studies, discuss related work, and conclude.

2. Overview
In this section, we provide an overview of our technique using the
sample code shown in Figure 1, which demonstrates a C language
idiom commonly found in code such as the Windows kernel. The
structure list represents a doubly-linked list with prev and next
pointers, and it is intended to be embedded in the middle of a
larger structure, such as the record structure. When initializing
the elements of the list (init record and init all records),
the programmer must use pointer arithmetic and trusted type casts
to compute the address and type of the enclosing record for each
list node (as encapsulated by the container macro).

let Mem : int→ int
let Type : int→ type

let ctor Int : type
let ctor Ptr : type→ type
let ctor List : type
let ctor Record : type

let Match : int× type→ bool
Match(a, Int) , Type[a] = Int
Match(a,Ptr(t)) , Type[a] = Ptr(t)
Match(a, List) ,

Match(a,Ptr(List)) ∧Match(a+ 1,Ptr(List))
Match(a,Record) ,

Match(a, Int) ∧Match(a+ 1, List) ∧Match(a+ 3, Int)

let HasType : int× type→ bool
HasType(v, Int) , true
HasType(v,Ptr(t)) , v = 0 ∨ (v > 0 ∧Match(v, t))

pre (∀a : int.HasType(Mem[a],Type[a]))
pre (HasType(p,Ptr(List)))
post (∀a : int.HasType(Mem[a],Type[a]))
fun init record(p : int) : unit =

let r : int in
r := p− 1;
assert ∀a : int.HasType(Mem[a],Type[a]);
assert HasType(p,Ptr(List));
assert HasType(r,Ptr(Record));
Mem[r + 3] := 42;
assert ∀a : int.HasType(Mem[a],Type[a]);
assert HasType(p,Ptr(List));
assert HasType(r,Ptr(Record));

Figure 2. Translated BPL code for init record.

The diagram at the top of Figure 1 illustrates a typical use of
these data structures. In the diagram, we have two record objects
in a list, with their embedded list objects shown in gray. Note
that next and prev point to the embedded list objects, not the
containing record objects. The init record function computes
the pointer r from the pointer p using the container macro.

There are two challenges presented by this example:
1. Type checking. Because of the arithmetic performed by the

container macro, it is not obvious to a naive type checker
that this code is well-typed; in fact, the well-typedness of this
code relies on an unstated precondition about the lists that can
be passed to init all records. Existing tools for enforcing
type safety in C programs would have difficulty reasoning about
this code because it relies on a program-specific invariant.

2. Property checking. If a property checker wanted to prove that
init all records does not alter the contents of field data1,
it would need to prove that the data1 and data2 fields of two
structures can never be aliased. This fact is hard to prove with-
out enforcing a strong type invariant throughout the program.
This section will present a step-by-step example showing how

we address these challenges. Our technique translates the original C
code (plus some optional user-supplied annotations) into a lower-
level language called BPL that is suitable for input to a property
checker. BPL has no notion of a heap or of C types, so this trans-
lation must model these constructs explicitly in BPL. Once gen-
erated, the BPL code can be passed to a property checking tool,
which attempts to verify all assertions in this code.

2 2008/8/7

2.1 Translating from C to BPL
Figure 2 shows the BPL translation produced for the init record
function. BPL has four built-in sorts: int, which represents values in
the original C program, type, which represents types in the original
C program, bool, which represents formulas, and unit, which is
used by functions that do not return a value.

The core of our translation involves the maps Mem and Type,
which are defined at the top of Figure 2. As mentioned in Section 1,
Mem models the C program’s heap as a mapping from integer ad-
dresses to integer values, and Type models the program’s allocation
state as a mapping from integer addresses to types. Our translation
will enforce type safety by explicitly asserting the following type
safety invariant at every program point:

∀a : int.HasType(Mem[a],Type[a])

This type safety invariant says that for every address a in the
program’s heap, the value at Mem[a] corresponds to the type at
Type[a] according to the predicate HasType.

In order to define HasType, we must first discuss how our trans-
lation models C types. As shown in Figure 2, our translation defines
nullary type constructors Int, List, and Record, which correspond
to the built-in integer type and the user-defined list and record
types. We also define the unary type constructor Ptr, which is used
to construct pointer types such as Ptr(Int). Each type expression
created by applying these constructors has a unique value.

Some of these type constants represent types that consume one
word in memory (Int and Ptr(t)), whereas others consume more
than one word in memory (List and Record). Since Type gives
the type for each individual word in memory, we define a new
predicate, Match(a, t), that holds if and only if the values of Type
starting at address a match the layout of type t. In other words,
Match lifts Type to types that may span multiple addresses.

In our model, integers and pointers span only a single address
in the heap, so Match for integers and pointers simply checks that
Type has the appropriate value at address a. For List and Record,
we define Match inductively by checking each field of the structure
using its declared type. For example, Match(a,Record) holds if
and only if the values of Type[a] through Type[a + 3] correspond
to the declared types for the fields of the structure record.

Finally, we must define HasType itself. Since HasType only
applies to types that span a single address, we define it only for Int
and Ptr. For integers, all values are considered valid values of type
Int. For pointers, the valid values include zero (the null pointer)
and positive heap addresses that match the pointer’s base type, as
defined by Match.

Now that we have formalized the program’s heap, the pro-
gram’s types, and our notion of type safety, we can translate the
init record function itself. The translated function has two pre-
conditions: first, the type safety invariant holds on entry to the func-
tion, and second, the argument variable p has its declared type. This
function also has a single postcondition, which simply says that the
type safety invariant holds on exit as well.

Inside the body of the function, we declare a variable r corre-
sponding to the variable in the original C program, and we translate
the arithmetic and assignments in the C program into the corre-
sponding operations on r and Mem. Note that all type casts have
been eliminated during this translation. However, at every program
point, we re-assert the type safety invariant, and we also assert that
our local variables, r and p, still have their declared types.

2.2 Checking the Program
Now that we have a complete translation, we use a standard Floyd-
Hoare verification condition generator, and we pass the verification
condition to our SMT solver. Unfortunately, the code shown in
Figure 2 has a problem: after executing the statement r := p−1, the

assertion HasType(r,Ptr(Record)) does not hold. Moreover, the
next statement, which assigns to Mem[r+3], would violate the type
safety invariant, since we cannot deduce a value for Type[r+3] and
thus cannot prove that HasType(42,Type[r + 3]).

To address this problem, the programmer needs to provide more
type information in the form of an extra precondition in the C code:

pre(hastype(container(p), record*) &&
container(p) != 0)

This precondition is then translated into BPL as the following
additional precondition on init record:

pre (HasType(p− 1,Ptr(Record)) ∧ p− 1 6= 0)

Note that this precondition is completely consistent with the
existing preconditions, because the record type contains a list
type at offset 1. With this precondition, we can prove that r has
type Ptr(Record) after it is initialized. In addition, we can prove
that HasType(r + 3, Int) using the type safety invariant and the
definition of Match for Record.

So, by allowing the programmer to supply additional type in-
formation in the form of a precondition that refers to our HasType
predicate, we have allowed the user to explain why their code is
type-safe, and we have mechanically proven that type safety holds
when given this precondition.

Although this example uses a very simple precondition, our
technique exposes the full power of the SMT solver to the type
checker. For example, when annotating init all records, we
must not only state that the argument p points to a list embedded
inside a record, but that all list objects reachable from p by
following a next pointer also have this property. We can state this
precondition in the C program as follows:
pre(forall(q, reach(p, next),

q != 0 ==> hastype(container(q), record*) &&
container(q) != 0))

Essentially, our technique allows us to describe complex program-
specific invariants that are needed to prove the code to be type-safe.

2.3 Field Sensitivity
So far, we have focused on type safety alone; however, this tech-
nique also has many advantages for the property checking tool it-
self. Let’s say that we want to prove that the data1 fields of the
record structures are untouched by init all records.

Unfortunately, because we represent C’s heap as a single array
of integers, such assertions are notoriously difficult to prove. For
example, our theorem prover has no way to prove that the data1
field does not happen to overlap with data2 of some other record,
and since data2 is modified by init record, we might inadver-
tently modify another record’s data1 field as well.

To address this problem, we allow the programmer to use a field-
sensitive translation that introduces a new type constant for each
word-sized field in the program. Our translation in Figure 2 would
be extended with the following definitions:

let ctor Data1 : type
let ctor Data2 : type

Match(a,Data1) , Type[a] = Data1
Match(a,Data2) , Type[a] = Data2
Match(a,Record) ,

Match(a,Data1) ∧Match(a+ 1, List) ∧Match(a+ 3,Data2)

HasType(v,Data1) , HasType(v, Int)
HasType(v,Data2) , HasType(v, Int)

Now we have two new type constants, Data1 and Data2, which
represent the two integer fields of the record structure. Their

3 2008/8/7

HasType definition is the same as the definition for Int, so they
can still hold the same set of values. However, the Match definition
for Record is altered so that Type must specify Data1 and Data2
at the appropriate offsets instead of just Int. The next and prev
fields could also be made field-sensitive in the same way.

With this change, we can now prove that Data1 is not modified
by these functions, because we can show that the only heap loca-
tions that are updated are locations a such that Type[a] = Data2.

This level of precision is extremely important for proving
higher-level properties of C programs. For languages such as Java,
disambiguation by field is taken for granted; our technique makes
field disambiguation feasible in C programs as well. Furthermore,
by tying disambiguation to our type safety invariant, we have a
convenient way to enforce our invariant throughout the program,
making use of the programmer’s original type declarations.

From the type safety point of view, field sensitivity represents
nominal type equivalence as opposed to structural type equiva-
lence. In our original translation, any structure with the same layout
as record would have matched that location, which corresponds to
structural type equivalence; however, in the field-sensitive transla-
tion, only record structures may match that location. Both disci-
plines have their uses in C programs, and our technique allows the
user to select the appropriate one on a per-structure basis.

Now that we have provided an overview of our technique and
the associated contributions, the rest of this paper will define our
translation formally, show that the resulting verification conditions
are decidable, and provide extensions that can help the programmer
address many common idioms in real C programs.

3. Translation
In this section, we will formally define our translation from C to
our property checker’s input language, BPL.

3.1 Languages
First, we define our input and output languages. The input lan-
guage, shown in Figure 3, is a simplified version of the C language.
The key C features modeled by this language are pointer types,
structure types, the address-of operator (&), pointer arithmetic on a
pointer to a type of size n (⊕n), and type casts ((τ) e).

We have three primitive types: integer types (int), pointer types
(σ∗), and named structure types (t). The non-terminal τ stands
for all types whose run-time representation fits in a single word
(integers and pointers), and the non-terminal σ represents all types.
For simplicity, we assume that the size of a word is 1.

Next we have l-expressions1 and expressions, which include
pointer dereference, field reference, address-of, pointer arithmetic,
and casts. The symbol op represents binary operations, including
both arithmetic and boolean operations. Commands include alloca-
tion, function call, assignment, and variable declaration.

At the top level, we have type definitions and procedures. Type
definitions allow users to create named structure types that can
be referenced within σ. Procedures take a single argument with a
word-sized type, and they return a single value with a word-sized
type. We annotate procedures with preconditions and postcondi-
tions that use expressions drawn from the same language; postcon-
ditions can refer to the return value via a special variable, r.

For the time being, we omit several other C features, such
as scalar types of various sizes (e.g., char, short), union types,
function pointers, and memory deallocation. We will revisit these
features in Section 5. We disallow taking the address of local
variables; in practice, our front-end replaces any local variables

1 L-expressions are expressions that evaluate to locations and can therefore
appear on the left-hand side of an assignment.

Types (one word) τ ::= int | σ∗
Types (general) σ ::= τ | t

L-expressions l ::= ∗e | l.f
Expressions e ::= x | n | l | &l

| e1 op e2 | e1 ⊕n e2 | (τ) e

Commands c ::= skip | c1; c2 | x := new σ
| x := f(e) | x := e | l := e
| if e then c
| while e do c
| let x : τ in c | return e

Type definitions d ::= type t = {f1 : σ1; . . . ; fn : σn}
Procedures p ::= pre e1 post e2

f(x : τx) : τf = c

Figure 3. Our C-like input language.

Sorts ŝ ::= int | bool | unit | type
| ŝ1 × ŝ2 | ŝ1 → ŝ2

Expressions ê ::= x | x[ê] | n | C(ê1, . . . , ên) | ê1 binop ê2

Formulas b̂ ::= true | false | ê1 relop ê2
| P(ê1, . . . , ên) | ¬b̂ | b̂1 ∧ b̂2 | ∀x : ŝ.b̂

Commands ĉ ::= skip | ĉ1; ĉ2
| x := call f(ê) | x := ê | x[ê1] := ê2
| if ê then ĉ | while ê do ĉ
| let x : ŝ in ĉ | return ê

| assert b̂ | assume b̂ | havoc x

Procedures p̂ ::= pre b̂1 post b̂2
fun f(x : ŝ) : ŝ = ĉ

Figure 4. BPL, our output language.

whose address is taken with a heap allocation. We do not mention
global variables, but they are a trivial addition to our translation.

Our output language, BPL, is shown in Figure 4. This language
has four built-in sorts, the most important of which are int and type.
We also include product sorts and function sorts.

Expressions in BPL are of sort int or type, and include variable
reference, map lookup (x[ê]), integer constants (n), type construc-
tors (C), and binary operations on integers. Type constructors (C)
typically include nullary type constants such as Int as well as the
unary type constructor Ptr.

Formulas are of sort bool and contain relational operators on in-
tegers, predicate symbols (P), negation, conjunction, and universal
quantification. Predicate symbols P typically include HasType and
Match, which are used to define our notion of type safety. This lan-
guage allows relatively unrestricted use of quantifiers, but in prac-
tice, our translation will be limited to a subset of these uses.

Commands contain assignment and control flow, plus assume b̂,
assert b̂, and havoc x, the latter of which scrambles the value of x.

The most important differences between C and BPL are:

1. BPL has no notion of heap allocation. Thus, we model the C
heap as a map Mem from integer addresses to integer values,
and we use select-update reasoning to model reads and writes
to the heap.

4 2008/8/7

T (int) = Int
T (τ∗) = Ptr(T (τ))
T (t) = T

L(∗e) = E(e)
L(l.f) = L(l) + Offset(f)

E(x) = x
E(n) = n
E(l) = Mem[L(l)]

E(&l) = L(l)
E(e1 op e2) = E(e1) op E(e2)
E(e1 ⊕n e2) = E(e1) + n ∗ E(e2)

E((τ) e) = E(e)

C(Γ, skip) = skip
C(Γ, c1; c2) = C(Γ, c1);C(Γ, c2)

C(Γ, x := new σ) = havoc x;
assume HasType(x,Ptr(T (σ)))

C(Γ, x := f(e)) = x := call f(E(e));
assert HasType(x, T (τf))

C(Γ, x := e) = x := E(e);
assert HasType(x, T (Γ(x)))

C(Γ, l := e) = Mem[L(l)] := E(e);
assert ∀a:int.HasType(Mem[a],Type[a])

C(Γ, if e then c) = if E(e) then C(Γ, c)
C(Γ, while e do c) = while E(e) do C(Γ, c)
C(Γ, let x : τ in c) = let x : int in C(Γ[x 7→ τ], c)

C(Γ, return e) = return E(e)

P

pre e1 post e2
f(x : τx) : τf

= c

 =

pre (E(e1) ∧ HasType(x, T (τx))∧
∀a : int.HasType(Mem[a],Type[a]))

post (E(e2) ∧ HasType(r, T (τf))∧
∀a : int.HasType(Mem[a],Type[a]))

fun f(x : int) : int = C(∅[x 7→ τx], c)

Figure 5. Translation from C to BPL.

2. BPL has no notion of pointer types or structure types. Instead,
BPL provides the sorts int and type, which we use to represent
the original program’s values and types, respectively. That is,
all word-sized values in the original program map to values of
sort int, and all C types in the original program map to values
of sort type.

Figure 5 shows our translation from C to BPL. The translation
involves five functions, as follows. First, T maps C types to BPL
expressions of sort type. Note that each named type t in the C
program is mapped to a distinct constant T in the BPL program.
L andE map l-expressions and expressions to BPL expressions

of sort int. L yields integers that stand for heap locations, so E
translates the expression l as a memory reference and &l as the lo-
cation itself. Note that C’s binary operations map to a BPL operator
in op = binop ∪ relop. Field references and pointer arithmetic are
compiled down to integer arithmetic; casts are compiled away en-
tirely. Offset(f) is a compile-time function giving the offset of field
f in its structure; we assume field names are unique.
C and P map commands and procedures in C to their respec-

tive constructs in BPL. C takes an additional argument, Γ, that
maps C variables to C types. Also, we assume that τf is the de-
clared return type of function f , that the variable r in a postcondi-
tion refers to the function’s return value, and that procedure calls
scramble all of Mem. Ignoring the assumptions and assertions in
gray boxes, which will be discussed in the next section, this transla-

Definitions for Int
Match(a, Int) , Type[a] = Int (A)

HasType(v, Int) , true (B)

Definitions for Ptr(t)
Match(a,Ptr(t)) , Type[a] = Ptr(t) (C)

HasType(v,Ptr(t)) , v = 0 ∨ (v > 0 ∧Match(v, t)) (D)

Definitions for type t = {f1 : σ1; . . . ; fn : σn}
Match(a,T) ,

∧
i Match(a+ Offset(fi), T (σi)) (E)

Figure 6. Definition of HasType and Match for a, v of sort int
and t of sort type.

tion is a straightforward modeling of C’s operational semantics. For
simplicity, allocation is modeled conservatively by scrambling the
value in x; however, our implementation models allocation more
precisely, as discussed in Section 5.5.

After this translation, we can compute a verification condition
from the BPL program using standard techniques [7, 14]. Then we
can pass it to our SMT solver, which indicates whether the program
fails any of the assertions.

3.2 Modeling Type Safety
We now discuss our approach to enforcing type safety, which in-
volves the assumptions and assertions shown in gray boxes in Fig-
ure 5. First, however, we must discuss our representation of the
heap and of C types in BPL.

We assume the presence in BPL of the following two maps:

Mem : int→ int
Type : int→ type

As described earlier, Mem[a] represents the value in the heap at
address a, and Type[a] represents the type at which address a was
allocated. Although Mem is mutable, Type is fixed at allocation
time and cannot later be changed.

C types are modeled in BPL as inductive data types with sort
type. We have a nullary constructor Int for integer types as well
as a unary constructor Ptr(t) for pointer types. We also introduce
nullary constructors T for every user-defined type name t.

Now, we must assign a meaning to these types, and we do so by
introducing two new predicates:

Match : (int× type)→ bool
HasType : (int× type)→ bool

As described earlier, the Match predicate lifts Type to types
that span multiple addresses. Formally, for address a and type t,
Match(a, t) holds if and only if the Type map starting at address
a matches the type t. The HasType predicate gives the meaning
of a type. For a word-sized value v and a word-sized type t,
HasType(v, t) holds if and only if the value v has type t.

The definitions of Match and HasType are given in Figure
6. For Match, the definitions are straightforward: if a given type
is a word-sized type, we check Type at the appropriate address,
and for structure types, we apply Match inductively to each field.
For HasType, we only need definitions for word-sized types. For
integers, we allow all values to be of integer type, and for pointers,
we allow either zero (the null pointer) or a positive address such
that the allocation state (as given by Match) matches the pointer’s
base type. HasType is the core of our technique, since it explicitly
defines the correspondence between values and types.

5 2008/8/7

Now that we have defined HasType, we can state our type safety
invariant for the heap:

∀a : int.HasType(Mem[a],Type[a])

In other words, for all addresses a in the heap, the value at
Mem[a] must correspond to the type at Type[a] according to the
HasType axioms. We can also extend this type safety invariant to
local variables by saying that for all locals xwith compile-time type
τx, then HasType(x, T (τx)) must hold, where T is our translation
from C types to BPL terms.

Our translation enforces this invariant at all program points
via the gray boxes shown in Figure 5. P adds the type safety
invariant to the preconditions and postconditions of each procedure.
C asserts the type safety invariant after every update to a local
variable or a heap location, and it assumes the type safety invariant
for any newly allocated heap location.

3.3 Field Sensitivity
In addition to proving type safety for our input program, we would
also like to check properties that are specified by the user as pre-
conditions and postconditions for each function. Property checking
in the presence of heap-allocated structures often requires us to be
able to distinguish between two fields of a structure; for example,
in Figure 1, we would like to be able to show that writing to data2
does not affect the values in the next, prev, and data1 fields of
other records in the program’s heap.

As described in Section 2, our approach to this problem is
to introduce a new type constant for every word-sized structure
field in the program. In effect, we refine the types stored in Type
so that it captures information about specific structure fields in
addition to the types of those fields. For example, we introduce
constants Data1 and Data2, and we use these constants in Type
to correspond to the data1 and data2 fields. The definition of
HasType for these fields is the same as that of the underlying type,
Int, which means that the type safety invariant provides the same
amount of information about the values stored in these fields as it
did before. However, because the Type map now differs for these
two fields, our property checker knows that the data1 and data2
fields of two different structures cannot overlap in memory. We can
perform the same refinement on next and prev as well.

Using this field-sensitive translation involves a trade-off be-
tween precision and flexibility. On the one hand, field sensitivity
provides a stronger invariant to the theorem prover, which can of-
ten be useful in distinguishing one heap location from another. On
the other hand, field sensitivity restricts the ways in which two C
structures can overlap in the heap.

This trade-off corresponds to the trade-off between nominal and
structural type systems. In the field-sensitive translation, equiva-
lence between structure types is determined by the name of that
structure (or, more precisely, by the names of its fields). In the
original field-insensitive translation, equivalence is determined by
structure—that is, by the types of the fields alone.

Note that our translation does not require the user to choose
field-sensitive or field-insensitive behavior for the entire program.
Rather, the programmer is free to choose a field-sensitive or field-
insensitive translation on a field-by-field basis. This flexibility is
often quite useful when checking C programs, since many C pro-
grams use a combination of these two approaches. In our experi-
ence, the majority of structures in C programs are handled using
nominal type equivalence, where overlapping structures must be of
the exact same named structure type; structural type equivalence
is only used in relatively rare cases where the programmer delib-
erately overlaps two distinct structures types that share a common
header. Thus, our implementation uses the more precise and more
common field-sensitive translation by default, and it allows the pro-

b ∈ BoolConst = {false, true}
c ∈ IntConst = {. . . ,−1, 0, 1, . . .}
t ∈ ITypeConst = {Int, List,Record, . . .}
d ∈ TypeConst ⊃ ITypeConst

w ∈ BoolV ar
x ∈ IntV ar
y ∈ TypeV ar

ϕ ::= b | w | p < p | p = p |Match(p, q) | HasType(p, q) |
¬ϕ | ϕ ∧ ϕ

p ::= c | x | p+ p | p− p |Mem[p]
q ::= d | y | Ptr(q) | Type[p]

Figure 7. Grammar for verification conditions generated by our
translation.

grammer to specify the fields and structures that should be handled
using the field-insensitive translation instead.

4. Decision Procedure
In this section, we describe the decision procedure used to check
the verification conditions generated from the output of the transla-
tion described in Section 3. The verification condition corresponds
to a formula that encodes the partial correctness of a loop-free and
a call-free code fragment annotated with a precondition and a post-
condition, where the annotations can optionally refer to quantifier-
free assertions apart from the type safety assertion. Each verifi-
cation condition is represented by a formula in the logic of Fig-
ure 7. Without loss of generality, we assume that updates to Mem
have been compiled away by introducing case-splits to model the
select-update reasoning for arrays. Our logic contains three sorts:
bool, int, and type. Terms of these sorts are generated by the non-
terminals ϕ, p, and q, respectively. BoolConst, the set of constants
of sort bool and IntConst, the set of constants of sort int are de-
fined in the usual way. ITypeConst is the set of (interpreted) type
constants that occur in the program and which are referred to in the
definitions of the predicates Match and HasType in Figure 6. For
example, ITypeConst = {Int, List,Record} for our running ex-
ample from Figure 2. TypeConst is the set of all type constants of
sort type and is a countably infinite set that contains ITypeConst.

A formula in our logic is evaluated in a model that provides
a domain for each sort bool, int, and type. The domains for the
sorts bool and int are standard. The domain for the sort type is
the unique infinite set whose elements are in one-to-one corre-
spondence with the least set of terms containing all type constants
in TypeConst and closed under the application of Ptr. In this
interpretation, each type constant in TypeConst is interpreted
as a distinct type value and Ptr is interpreted as a one-one map
from type into type whose range is disjoint from the interpreta-
tions of the type constants in TypeConst. Let PtrTypeV als =
type\TypeConst be the set of all type values that are in the range
of Ptr. Let UTypeConst = TypeConst \ ITypeConst be the
set of (uninterpreted) type constants that do not occur in the pro-
gram. Then, the disjoint union ITypeConst] UTypeConst]
PtrTypeV als equals type.

In addition, a model also provides an interpretation for con-
stants, variables, and functions. The interpretation of the arithmetic
and Boolean terms is standard. Functions Mem and Type are in-
terpreted as arbitrary maps from int to int and int to type, respec-
tively. Predicates Match and HasType are interpreted as maps from
int × type to bool. Given a model Γ, we denote the interpretation
of a symbol s in the signature of our logic as Γ(s). For ease of ex-

6 2008/8/7

position, we often use s rather than Γ(s) for those symbols, such as
+, whose interpretation does not vary from one model to another.

A model Γ is well-typed if the following conditions are satisfied:

1. Γ(Match) and Γ(HasType) are consistent with the definitions
of Match and HasType in Figure 6.

2. For all a ∈ int, the evaluation of HasType(Mem[a],Type[a])
in Γ returns true.

A model Γ satisfies a formula ϕ if ϕ evaluates to true in Γ.
The logic in Figure 7 is the quantifier-free combination of three

theories—uninterpreted functions, arithmetic, and inductive data
types—with disjoint sets of symbols. Each of these theories is sta-
bly infinite2 and individually decidable. Hence, their combination
is also decidable using the Nelson-Oppen method [27] of theory
combination. Satisfiability Modulo Theories (SMT) solvers such
as Z3 [13] can be used to efficiently check whether there exists
a model of ϕ. However, deciding the existence of an arbitrary
model of ϕ does not suffice; instead we need to determine whether
there exists a well-typed model of ϕ. Conjoining the type-invariant
and the definitions of Match and HasType to ϕ as universally-
quantified axioms is unlikely to work well because the performance
of SMT solvers on formulas with quantifiers is unpredictable and
typically bad. To get good performance, we have designed a new
decision procedure that conjoins a small number of instantiations
of the universally-quantified facts to ϕ to get a quantifier-free for-
mula ψ with the following property:

There is a well-typed model satisfying ϕ iff there is a model
satisfying ψ.

Thus, it suffices to feed ψ to an SMT solver. We now show how to
construct ψ.

4.1 Quantifier Instantiation
Let P (ϕ) denote the set containing the constant 0 and every term p
inϕ such that for some term q either HasType(p, q) or Match(p, q)
is present in ϕ. Let Q(ϕ) denote the set containing ITypeConst
and every term of the form Ptr(q′) in ϕ. We will use the terms in
P (ϕ) and Q(ϕ) to instantiate the definitions A,B,C,D,E from
Figure 6.

First, we preprocess each definition E so that every use of
Match on the right side of the definition is expanded out by the
application of other such definitions. Note that this expansion will
terminate because the definition of Match follows the hierarchi-
cal structure of types in a C program and is consequently non-
recursive. After each definition of Match has been expanded out,
we proceed to conjoin the following formulas with ϕ:

1. HasType(Mem[p],Type[p]) for each term Mem[p] in ϕ.

2. Instantiations of definitionsA,B, andE on each term in P (ϕ).

3. Instantiations of definitionsC andD for each term p and q such
that p ∈ P (ϕ) and Ptr(q) ∈ Q(ϕ).

Let the resulting formula be ψ. Since the size of P (ϕ) and Q(ϕ)
is bounded by |ϕ|, we generate at most |ϕ|2 conjuncts, each of
constant size. Therefore |ψ| ∈ O(|ϕ|2). If the solver concludes that
ψ is unsatisfiable, then ϕ does not have a well-typed model because
we only added facts related to the characterization of well-typed
models to ϕ to get ψ. We now argue that if the solver concludes
that ψ is satisfiable, then ϕ has a well-typed model. The following
property of ψ is crucial for the correctness of this claim:

LEMMA 1. If either Match(p, q) or HasType(p, q) is a term in ψ,
then p ∈ P (ϕ).

2 A theory is stably infinite if any satisfiable formula in the theory has a
countably infinite model.

4.2 Model Construction
A satisfying assignment of ψ is a map W from terms in ψ to a
value of the appropriate sort—bool, int, or type—such that eval-
uating ψ according to W returns true. A satisfying assignment
W of ψ is minimal if for all terms q of sort type in ψ, either
W (q) ∈ TypeConst or W (q) = W (Ptr(q′)) for some term
Ptr(q′) in ψ. We assume that if the SMT solver returns satisfiable,
it provides a minimal satisfying assignmentW for ψ. This assump-
tion essentially requires the solver to not create any fresh Ptr terms
while creating a model for ψ, which is reasonable because typical
SMT solvers only create fresh constants during model generation.
We will extend W to a well-typed model Γ satisfying ϕ.

Consider the set of integers a ∈ int such that W does not pro-
vide an assignment to Type[a]. There exists a one-to-one map from
this set into UTypeConst because UTypeConst is countably in-
finite. We use this map to complete the assignment of Type in Γ.

The interpretation of Match depends only on the interpre-
tation of Type. For all integers a and for all type values t ∈
ITypeConst ∪ PtrTypeV als, we evaluate Match(a, t), start-
ing from t ∈ PtrTypeV als and then for the t ∈ ITypeConst
in a bottom up fashion. To complete the assignment for Match, for
all integers a and for all type values t ∈ UTypeConst, we assign
true to Match(a, t) everywhere it is not defined by W .

The definition of HasType depends only on the definition of
Match. For all integers v and for all type values t ∈ {Int} ∪
PtrTypeV als, we evaluate HasType(v, t) bottom up, as with the
evaluation of Match. To complete the assignment for HasType, for
all integers v and for all type values t ∈ TypeConst \ {Int}, we
assign true to HasType(a, t) everywhere it is not defined by W .

Our method of extending HasType yields the following lemma:

LEMMA 2. For each t ∈ type, there exists v ∈ int such that
HasType(v, t) is assigned true.

This property will help us complete the assignment for Mem. If
Mem is not defined for some a ∈ int, extend the assignment of
Mem at a to some integer v such that HasType(v,Type[a]) is
assigned true.

LEMMA 3. Γ is a model satisfying ψ and hence satisfies ϕ.

PROOF. To prove this lemma, it suffices to show that the assign-
ments to Match and HasType in Γ are consistent with the assign-
ments in W . The assignments to Type and Mem in Γ simply ex-
tendW by our definition of Γ. Here we present the proof for Match
only, omitting the proof for HasType, which is similar.

We prove by contradiction that the assignment to Match(a, t)
obtained under Γ is consistent with W . If not, then there ex-
ists a term Match(p, q) in ψ such that W (p) = a, W (q) =
t, and W (Match(p, q)) is inconsistent with the evaluation of
Γ(Match(a, t)). Since W is a minimal satisfying assignment, ei-
ther W (q) ∈ TypeConst or W (q) = W (Ptr(q′)) for some
term Ptr(q′) in ψ. Since Γ extends W for any t ∈ UTypeConst
(by definition), we can strengthen the first case to W (q) ∈
ITypeConst. In either case, we get q ∈ Q(ϕ). Since Match(p, q)
is present in ψ, we also get p ∈ P (ϕ). Therefore ψ contains an in-
stantiation for the definition of Match(p, q). Because Match(p, q)
is defined in ψ and W satisfies ψ, Γ(Match(a, t)) must be con-
sistent with W (Match(p, q)), which is a contradiction; thus Γ
satisfies ψ. Since ϕ is a conjunct in ψ, Γ satisfies ϕ too. �

Γ is also well-typed, which yields our main theorem:

THEOREM 1. Γ is a well-typed model satisfying ϕ.

The complexity of checking the satisfiability of ψ is NP-
complete [27]. Since the translation from ϕ to ψ results in at most
a quadratic blowup, the complexity of checking whether ϕ has a
well-typed model is also NP-complete.

7 2008/8/7

5. Extensions
In this section, we discuss a number of extensions to our translation
that address additional features of the C language or additional
requirements for verifying type safety in existing C code. Except
where noted, these extensions were implemented and used in the
case studies described in Section 6.

5.1 Unions
C’s union types allow fields of several unrelated types to be stored
at the same location in memory, with only one such field in use at a
given time. Unfortunately, C does not provide any mechanism for
keeping track of which field is currently in use, which means that
the programmer could easily violate type safety by storing a value
in one field and retrieving it from another field of a different type.

The use of unions varies widely from program to program. In
some cases, each instance of a given union type uses only one field
for the entire lifetime of the union; that is, the dynamic type of the
union is fixed at allocation time. In other cases, a given instance
of a union type uses many fields over its lifetime, and the dynamic
type of that union cannot be fixed at allocation time.

Because the use of unions varies so widely, our approach is to
leave unions completely undefined during translation. That is, our
default translation says nothing about the meaning of HasType or
the value of Type for a union type. If the programmer wishes to use
unions safely, they must introduce additional assertions that state
the appropriate invariants explicitly.

For example, consider the following C code:
union foo { int n; int *p; }
int getnum(foo *f, tag t) {

return (t == 1) ? f->n : *f->p;
}

In this example, we have a union containing two types, int and
int*, which means that the foo* argument is either an int* or
an int**. Our default translation does not indicate which field is
selected, so the user must specify a precondition on this function,
such as:

pre((t == 1) ==> hastype(f, int*)) &&
(t != 1) ==> hastype(f, int**)))

Here, we have extended C’s syntax with an implication operator
(==>) and a predicate hastype that will be translated into HasType
in the input to the theorem prover. This precondition provides
enough information to verify that the body of getnum is well-typed.

5.2 Function Pointers
The translation described in Section 3 only allows calls to known
functions; however, most C programs use function pointers to in-
voke functions indirectly. Many property checking tools model
function pointers by associating each function in the program with
a distinct integer value, and then they model function pointer invo-
cation as a case split on the integer representing the function pointer
or as nondeterministic choice. However, when checking large C
programs, it is often difficult, if not impossible, to know at compile
time all functions that might be invoked at a given call site. Instead,
we address this problem by adding a function type to our language.

We extend our input language with a function type and an
indirect function call:

τ ::= . . . | τ1e1 → τ2e2
c ::= . . . | x := y(e)

The function type τ1e1 → τ2e2 represents a function from
type τ1 to type τ2 that has precondition e1 and postcondition e2.
Naturally, the precondition e1 can refer to the argument x, and the
postcondition e2 can refer to the argument x and the return value

r. Note that by allowing the programmer to refer to expressions in
function types, we have introduced a form of dependent type. In the
indirect call, we invoke a function stored in the variable y.

We extend BPL with a new data type constructor:

Func : (type× int× type× int)→ type

We also extend the translation as follows:
T (τ1e1 → τ2e2) = Func(T (τ1), φ(E(e1)), T (τ2), φ(E(e2)))

C(Γ, x := y(e)) = x := call stubτ (E(e))
where y has type τ

The first part of this translation maps an annotated C function
type to its BPL representation. The φ function is a one-to-one func-
tion from BPL expressions to integers, which is created by assign-
ing a unique integer to every expression in the program text; this
function allows us to encode the precondition and postcondition of
a BPL function as integer arguments to Func.

The second part of the translation implements a call to y by call-
ing the stub corresponding to y. If the type of y is τ = τ1epre →
τ2epost, then stubτ is declared as follows:

pre E(epre) ∧ HasType(x, τ1)
post E(epost) ∧ HasType(r, τ2)
fun stubτ (x : int) : int

This stub summarizes the entire class of functions represented
by the function type τ1epre → τ2epost. Thus, by calling this stub,
we will check the preconditions given the argument e2, and we will
assume the postcondition on the caller’s return variable x. Note that
we do not need to perform any checking on stubτ itself; it exists
solely to represent function pointer invocations.

A subtle but important point is that the translation of function
pointer invocations depends upon the types assigned by the orig-
inal (unsound) C type system. However, because we enforce the
declared type of y in our translation, we can use it to translate this
function call.

The final piece of the translation is the HasType and Match
axioms for the Func constructor. In order to define HasType, we
associate a unique integer with every function in the program. For
a given function type Func(. . .), we define HasType as the set
of integers corresponding to all functions of that type. This set
necessarily includes all such functions that are visible in the current
compilation unit; however, it is not limited to those functions, since
we may be calling a function of that type in a different compilation
unit. For Match, we provide a definition that corresponds directly
to the definitions for other word-sized types, since the function type
is itself a word-sized type.

So, by associating preconditions and postconditions with C
function types, and by using these preconditions and postconditions
in the translation of C function calls, we can correctly translate
and type-check C programs that use function pointers, even without
knowing all possible values for every function pointer.

5.3 Parametric Polymorphism
Many existing C programs can be more effectively type-checked
if the programmer is allowed to indicate code that uses parametric
polymorphism. Consider the following example program:

typedef void *arg_t; // Type variable!
typedef void (*fn_t)(arg_t a);
void create_thread(fn_t f, arg_t a);

void thread1(int n) { ... }
void thread2(foo *p) { ... }

foo *p = ...;
create_thread(thread1, 42); // arg_t = int
create_thread(thread2, p); // arg_t = foo*

8 2008/8/7

In this example, we declare a function called create thread
that takes two arguments: a pointer to a function that should be ex-
ecuted on the new thread, and an argument to pass to that function.
We then define two additional functions, thread1 and thread2,
which represent the main functions for two different threads. Fi-
nally, we invoke create thread on each of these functions with
different arguments; one takes an int and the other takes a foo*.

Although the type of arg t is given as void* in this example,
this type is actually being treated as a type variable. That is, for
a particular call to create thread, the programmer can consider
arg t to be any word-sized type, as long as the thread function
and its argument have consistent types. This code is an example
of how C programmers frequently use concepts from higher-level
type systems even in lower-level code.

In our translation, we can provide polymorphism by explicitly
passing the type for any type variables involved in the function call.
For example, the above code would be translated into:

pre HasType(f,Func(t, . . .))
pre HasType(a, t)
fun create thread(t : type, f : int, a : int) = . . .

assume HasType(thread1,Func(Int, . . .))
assume HasType(thread2,Func(Ptr(Foo), . . .))

assume HasType(p,Ptr(Foo))
call create thread(Int, thread1, 42)
call create thread(Ptr(Foo), thread2, p)

Note that both calls to create thread satisfy the two precondi-
tions on the types. In the first call, we pass a function thread1 that
has a type whose first argument is Int, and we pass 42, which can
be determined to have type Int according to the HasType axioms.
The second call satisfies the preconditions for a similar reason.

In practice, our translator allows the programmer to identify
types that should be treated as type variables. When these types
appear in the arguments or return types of a function being invoked,
we compare the formal types to the actual types to determine an
appropriate substitution, and then we pass the substituted types as
arguments to the translated function. Similarly, when translating a
function with arguments of polymorphic type, we add a suitable
number of formal type parameters to the translated function.

As with function pointers, we have found this feature to be quite
useful in establishing type safety for existing C code due to exam-
ples like the one above. This example is particularly noteworthy be-
cause our type invariant allows us to state an important fact about
the arguments to create thread (i.e., that f will only be called
with a as an argument) that would be difficult to state succinctly in
a more traditional property checking tool.

Finally, note that our decision procedure can be extended to
handle polymorphic types by treating the type variable t as a new,
opaque type constant.

5.4 User-Defined Types and Dependent Types
In addition to the above extensions, we also allow the programmer
to introduce new type constants with user-provided HasType defi-
nitions. For example, a programmer could use this feature to define
a non-null type. Although this invariant could also be expressed
by writing preconditions and postconditions on functions, it is of-
ten convenient to be able to add such global invariants to the type
safety invariant, which is implicitly enforced at each program point.

When providing user-defined types, it is often convenient to
have HasType depend upon Mem in addition to Type. Types that
are defined in this manner can be considered a form of dependent
type, since their meaning depends upon values stored in the heap.
For example, consider the following structure:

struct string { char *buf; int len; }

This structure represents a string, where len is the number of
characters appearing in char. However, our default type definition
does not express this invariant:

HasType(v,Ptr(String)) , v = 0 ∨ (v > 0 ∧Match(v,String))

However, if HasType can depend on Mem, we can write a much
stronger definition:

HasType(v,Ptr(String),Mem) ,
v = 0 ∨ (v > 0 ∧Match(v,String)∧

∀i : int.0 ≤ i < Mem[v + 1] =⇒
HasType(Mem[v] + i,Ptr(Char),Mem))

This new definition is more powerful than the previous one, but
it also places an additional burden on the theorem prover, and we
must rely on the programmer to create type definitions that preserve
the completeness guarantees discussed in Section 4.

5.5 Allocation and Sub-Word Access
Currently, our translation models memory allocation by scrambling
the target variable and assuming the appropriate type. We can im-
prove precision by introducing two additional maps: Alloc, which
keeps track of whether each word of memory has been allocated or
deallocated, and Base, which maps each allocated word to the base
address for that allocation. These maps provide additional preci-
sion for our property checker, and they also allow us to express and
check temporal type and memory safety properties, such as the lack
of dangling pointers.

Another imprecision is our assumption that each word in mem-
ory is of size 1. To model a 32-bit machine, we can set the word
size to 4 and allow Mem to map byte addresses to values. We
maintain an additional map, Span, to keep track of how many byte
addresses a given value spans. For example, when writing word-
sized values to address a, we will assert that Span(a) = 4 and that
Span(a+ 1) = Span(a+ 2) = Span(a+ 3) = 0.

Our current prototype implements Alloc and Base, but it does
not implement Span, and we do not check for dangling pointer
errors. These features are explained in more detail in the appendix
and will be explored further in future work.

6. Evaluation
Here we present several case studies that demonstrate the effective-
ness of our technique on real code, including property examples
and experiments with type checking in Windows device drivers.

We implemented the combined type and property checking tool
described in this paper inside HAVOC [2], a property checker for C
code that plugs into Microsoft’s Visual C compiler. After HAVOC
translates C code to BPL, we use Boogie [5] to generate a verifi-
cation condition, which we check using the Z3 SMT solver [13].
HAVOC previously supported reasoning about linked lists [20] and
arrays using SMT solvers.

6.1 Property Checking
To evaluate the usefulness of adding types to a property checker, we
have applied our tool to a set of small to medium-sized C bench-
marks in the HAVOC regression suite [20]. These examples range
between 10 and 100 lines of code, and they include various low-
level list algorithms (e.g., adding or removing elements from a dou-
bly linked list, reversing or sorting a list) and various array sort-
ing algorithms (e.g., insertion sort, bubble sort). The list routines
use the list structure from Figure 1. For each of these examples,
we proved partial correctness properties (e.g., bubble sort yields a
sorted array, reversing a list preserves the list), in addition to the
type safety assertions. The runtimes ranged from a few seconds on

9 2008/8/7

cancel event kbfiltr vserial headers total
Lines of code 1186 1259 1174 1452 5071
Procedures checked 13 9 12 22 56
Time to check (sec) 57 61 49 52 219
Function pre & post 22 17 20 15 1 75
Loop invariants 1 1 3 4
Field sensitivity (§3.3) 2 3 3 8
Custom types (§5.4) 24 12 36
Type variables (§5.3) 3 3
Type changes 14 2 1 5 5 27
Code changes 4 5 7 2 17 35
Assumptions 9 15 8 3 1 36
Total changes 76 55 36 30 27 224

Table 1. Results from our Windows device driver experiments.

the smaller examples to around 8 minutes on the largest example. In
the absence of types, earlier verification of these examples included
ad-hoc annotations to obtain disambiguation.

We use one of the examples list appl to illustrate the benefits
of using types in the annotations. The example (about 100 lines)
contains two circular doubly-linked lists hanging off a parent ob-
ject; each node in the two lists has a pointer to the parent. The
objects in the two lists have distinct C types and have different data
structure invariants. The example performs various operations such
as initialization, insertion/deletion from the lists, and updating the
data values in the lists. The data structures in the example are fairly
representative of low-level systems code.

The main challenge in this example is to preserve the global
invariants of the lists despite updates to the heap. To do so, we
must ensure that the set of addresses in the two lists are disjoint,
and we must have field-based disambiguation in order to show that
certain fields are not updated. Previously, stating these invariants
required us to construct a set for the addresses of each of the
fields in the two lists and specify pairwise disjointness of these
sets. These specifications were very cumbersome and required a
quadratic number of annotations in the number of fields.

In contrast, our field-sensitive type safety assertion ensures that
the fields of two different types do not alias. To state that the
two lists are disjoint, we simply state an invariant for each list
describing the type of the object in which the list is embedded.
The specifications are local to each list and hence grow linearly in
the number of lists. The conciseness of specification is crucial for
verifying larger systems programs where multiple lists hang off a
parent object with a few hundred fields.

We are currently working on using type safety assertions to
improve the soundness of property checking for real-world code.
Among these, we are working towards justifying the field disam-
biguation that was assumed when HAVOC checked complex syn-
chronization protocols in a 300 KLOC Windows component [3].

6.2 Device Drivers
We applied our tool to several Windows device drivers for the pur-
pose of verifying type safety. These device drivers (cancel, event,
kbfiltr, and vserial) are publicly-available sample drivers in-
cluded with the Windows Driver Kit (WDK) 1.7 [22] that demon-
strate several common idioms in Windows device drivers.

The process of annotating a driver is iterative, much like the
traditional edit-compile-debug cycle. We ran our tool on the un-
modified driver, and we added annotations, introduced new types,
or otherwise modified the code in order to resolve the reported type
errors. We also modified the WDK header files where appropriate,
and we had HAVOC automatically add non-null assumptions for
all pointers. Each conversion took approximately 1-2 hours.

The flexibility of the technique described in this paper was cru-
cial for checking these drivers successfully. The most prominent
example is the LIST ENTRY structure, which is embedded in struc-
tures to form a linked list as demonstrated in Figure 1. This id-
iom appears commonly in Windows code, including two of the four
drivers tested. We were able to annotate and check these linked lists
without specifically customizing our tool for this case; this exam-
ple demonstrates the ability of our technique to capture program-
specific invariants that are important for enforcing type safety.

Another common example that demonstrates the usefulness of
our technique is the dispatch mechanism that the kernel uses to
invoke drivers. A simplified version of the code is as follows:
void MyRead(Driver *driver) {

MyContext *ctx = (MyContext*) driver->ctx;
...

}
void MyWrite(Driver *driver) {

MyContext *ctx = (MyContext*) driver->ctx;
...

}
void MyInit(Driver *driver) {

MyContext *ctx = ...;
driver->ctx = (void*) ctx;
driver->read = MyRead;
driver->write = MyWrite;

}

In this example, our driver defines two dispatch routines,
MyRead and MyWrite, and an initialization function, MyInit. Each
routine is called with a kernel object of type Driver* representing
the driver. This kernel object contains a ctx field of type void*
that is used by each driver to store the driver’s private data. In the
MyRead and MyWrite functions, the driver casts this pointer to a
MyContext* in order to access its private data.

We would like to prove this cast safe, but we cannot simply
add a precondition to MyRead and MyWrite saying that the type
of the ctx field is MyContext*, since the caller (i.e., the kernel)
does not know about the internals of each driver and could not
prove this precondition. In fact, the real precondition for MyRead
is driver->read == self, where self is a special keyword
representing the current function (i.e., MyRead). In other words,
the invariant is that the kernel will only call the driver->read
function with driver itself as an argument, which is a common
invariant in low-level type systems for object-oriented code. Since
we can prove that driver->read == MyRead, we can use the
read field as a tag indicating the run-time type of ctx; that is, we
add a global invariant that says that a driver whose read field is
MyRead must also have a ctx of type MyContext*.

A final example where we made use of this technique is in the
vserial driver. Several complicated routines that read and write
buffers of data required preconditions and loop invariants in order
to prove that all array references were in bounds. Because we can
express the necessary invariants directly using the property checker,
we did not require any customized type annotations, as other type
checking tools would require.

The results of our driver experiments are shown in Table 1. The
columns in this table show the results for each driver, the results for
the common header files, and the totals.

The first two rows show the number of lines of code in each
example as well as the time it took for each example to be checked.
Each driver is slightly over 1,000 lines of code and takes about 1
minute to be checked using our tool. Because our tool is completely
modular, we expect this figure to scale in proportion to the number
of lines of code; however, more complex annotations may result
in more significant slowdowns. At these speeds, it is feasible to
run our type checker occasionally during development, though

10 2008/8/7

not at every compilation; however, we believe that there is still a
significant amount of room for optimization.

The next section of Table 1 shows the number and kind of
changes to the program, roughly amounting to the number of lines
changed or added. Changes are broken down according to the
features used, with a reference to a section of the paper where
relevant. “Type changes” refers to any refinement of the program’s
existing types (e.g., changing void* to something more specific),
and “code changes” refers to any changes to the code itself.

The first six lines represent “good” annotations that add more
precision to the existing C code. The most frequently used anno-
tations are the function annotations, which specify function types
and contracts. The type extension feature is also used frequently
in cancel and event, primarily for specifying private device data
structures containing linked lists. Overall, there are 153 such anno-
tations for 5,000 lines of code, or 3.0%.

The last two lines represent “bad” or undesirable annotations,
including changes to the code and unchecked assumptions. Most
code changes were the result of gaps in our C analysis infrastruc-
ture, and assumptions were typically made when types were deter-
mined by obscure rules that were difficult to formalize succinctly
without deep knowledge about driver invariants. An example of the
latter case is the IRP data structure’s Tail.Overlay.ListEntry
field, which is part of a union that has no obvious tag indicating its
current type. These assumptions, though unchecked, serve a valu-
able purpose in flagging code for future review. We also believe that
further annotation effort could reduce the number of unchecked
assumptions significantly. These “bad” changes accounted for 71
annotations, or 1.4% of the lines of code, and do not include the
automatically-generated non-null pointer assumptions.

Overall, these results demonstrate that our translation is an ef-
fective tool for expressing and checking important type invariants
in C code without customizing the tool to a particular code base.
There is still additional room for improvement in terms of infer-
ence and expressiveness so that we minimize the need for explicit
“good” annotations and eliminate the “bad” ones.

7. Related Work
7.1 Proof Carrying Code
Proof Carrying Code [24] combined type checking for Java-like
languages with an SMT solver. For example, Touchstone [26] com-
piles Java into native x86 code along with a proof that the result-
ing code is type and memory safe, which is generated by an SMT
solver with specially-designed decision procedures. However, the
type system formalized in PCC was based on a set of axiomatized
type rules, whereas our lower-level approach explicitly defines the
set of values that correspond to each type. Also, we provide a much
lower-level model of the program’s semantics (e.g., using the Mem
map instead of more abstract objects), and we expose a significant
portion of this model to the programmer by allowing the program-
mer to write preconditions, postconditions, and custom types. Fi-
nally, we show these features can improve the precision of property
checking on low-level code.

Further work on PCC has attempted to minimize the trusted
computing base for these verifiers to the model of the underlying
hardware [9, 15]. These tools are typically quite powerful, and
they allow the user to apply many different proof techniques in the
context of a single program. Our work focuses on type checking
legacy C code using an SMT solver, which allows us to build a
more scalable and more automated system.

7.2 Type Checking for C
CCured [25] provides strong type checking for C by inferring re-
fined pointer “kinds” and instrumenting the program appropriately,

and Deputy [12] uses dependent types in place of CCured’s pointer
annotations. Both systems use compile-time and run-time checks
to enforce type safety. Unfortunately, CCured and Deputy provide
only a fixed set of types, so it is difficult to check programs that
make use of C idioms not covered by these types. We provide a
much more flexible annotation system that is based on our property
checking tools; as a result, it is often easier for users to “explain” to
the type checker why an existing program is safe. We have found
that stating preconditions, postconditions, and type invariants can
often be simpler and more flexible than using dependent types.

The type systems for CCured and Deputy provided the inspira-
tion for the low-level types described in this paper. By implement-
ing these types in the context of an SMT solver, we gain additional
expressiveness that was not available in either of these tools, and
we allow the SMT solver to leverage the existing C types.

Cyclone [19] provides a sound C-like type system that can
handle a wide range of existing C idioms. Our approach requires
less porting effort and has more expressive types, but we are also
less scalable. Semantic type qualifiers [11] allow C types to be
refined using type rules whose soundness is checked at compile
time. As with our system, this approach allows the user to extend C
types to express common program invariants. Our approach gains
additional expressiveness at the cost of some scalability.

7.3 Dependent Types
Dependent ML [33] and Xanadu [32] provide dependent types for
functional and imperative programs, respectively. These types pro-
vide a clean mechanism for refining ML types to provide additional
information about properties such as array bounds. However, these
type systems do not reason about updates to mutable state. Our
approach overcomes the problem of mutable state by modeling it
directly in our translation; our SMT solver handles these updates
cleanly through the use of standard select-update reasoning. Also,
we have found that specifying preconditions and postconditions of
functions can be a useful alternative to specifying these properties
using dependent types.

Liquid types [29] use property checking tools to infer dependent
types for DML programs. This approach is complementary to ours;
the same techniques that can be used to infer refinements for ML
types could conceivably be used to infer important type-based
invariants in our system as well.

7.4 Property Checking
ESC/Java [17] and Spec# [6] add checked contracts to Java and
C# in the same style as our work. However, such contracts are
more difficult to write in C due to its lower-level memory model.
Enforcing type safety in C bridges this gap, enabling higher-level
property checking even in the context of a low-level language.

Property checking tools for C fall under two categories. Sound
verifiers for C such as Compcert [21] and VCC [31] take a low-
level view of C’s memory model ignoring types, and use higher-
order theorem provers (e.g., Coq [1]) in conjunction with SMT
solvers to discharge the verification conditions. Although these
tools offer more expressiveness compared to our work for the
property language, they place significant annotation burden on the
users to express disambiguation of the heap and also guide the
theorem prover to construct the proofs. Calcagno et al. [8] check
memory-safety of low-level code manipulating linked-lists using
separation logic [28], but have limited expressivity to check the
properties we check in this work.

On the other hand, several property checking tools for C as-
sume type safety to perform scalable analysis of low-level code,
thereby introducing unsoundness in the analysis. SLAM [4] and
BLAST [18] use predicate abstraction to check control-oriented
properties (e.g., lock usage) on device drivers. Caduceus [16] is

11 2008/8/7

a modular verifier for C that assumes field disambiguation to par-
tition the heap. Yang et al. [34] prove memory-safety of programs
manipulating linked lists, but require unsound assumptions for ar-
rays and pointer arithmetic. Our work shows that these tools require
a field-sensitive type safety invariant to justify the field disambigua-
tion used in these tools. Most of these works are aimed at inferring
annotations and can be seen complementary to our work. Using
these techniques in the context of our low-level memory model
would reduce the annotation burden in our tool.

8. Conclusion
This paper has presented a technique for checking types and prop-
erties in tandem on low-level code. Using a property checker to
implement a type checker gives us the power to express and check
program-specific type invariants. In addition, proving type safety
for low-level code allows us to provide disambiguation between
heap locations that is required by the property checker. Our results
suggest that this approach is an effective way to improve the power
and expressiveness of verification tools for low-level code.

References
[1] The Coq proof assistant. http://coq.inria.fr/.

[2] The HAVOC property checker. http://research.microsoft.
com/projects/havoc/.

[3] T. Ball, B. Hackett, S. K. Lahiri, and S. Qadeer. Annotation-based
property checking for systems software. Technical Report MSR-TR-
2008-82, Microsoft Research, 2008.

[4] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Programming Language
Design and Implementation (PLDI), 2001.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal Methods for Components and Objects (FMCO), 2005.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming
system: An overview. In Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS), 2004.

[7] M. Barnett and R. Leino. Weakest-precondition of unstructured
programs. In Program Analysis for Software Tools and Engineering
(PASTE), 2005.

[8] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond
reachability: Shape abstraction in the presence of pointer arithmetic.
In Static Analysis Symposium (SAS), 2006.

[9] B.-Y. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck.
The open verifier framework for foundational verifiers. In Types in
Language Design and Implementation (TLDI), 2005.

[10] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A
reachability predicate for analyzing low-level software. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2007.

[11] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In
Programming Language Design and Implementation (PLDI), 2005.

[12] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. Necula. Dependent
types for low-level programming. In European Symposium on
Programmig (ESOP), 2007.

[13] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008.

[14] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communcations of the ACM, 18, 1975.

[15] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for
foundational proof-carrying code. In Types in Language Design and
Implementation (TLDI), 2007.

[16] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform
for deductive program verification. In Computer Aided Verification
(CAV), 2007.

[17] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proceedings
of the ACM Conference on Programming Language Design and
Implementation, 2002.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Principles of Programming Languages (POPL),
2002.

[19] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical
Conference, 2002.

[20] S. K. Lahiri and S. Qadeer. Back to the future: Revisiting
precise program verification using SMT solvers. In Principles of
Programming Languages (POPL), 2008.

[21] X. Leroy. Formal certification of a compiler back-end, or: Program-
ming a compiler with a proof assistant. In Principles of Programming
Languages (POPL), 2006.

[22] Microsoft. Windows driver kit. http://www.microsoft.com/
whdc/devtools/wdk/default.mspx.

[23] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. Transactions on Programming Languages
and Systems (TOPLAS), 21:3, 1999.

[24] G. C. Necula. Proof-carrying code. In Principles of Programming
Languages (POPL), 1997.

[25] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: Type-safe retrofitting of legacy software. Transactions on
Programming Languages and Systems (TOPLAS), 27(3), May 2005.

[26] G. C. Necula and P. Lee. The design and implementation of
a certifying compiler. In Programming Language Design and
Implementation (PLDI), 1998.

[27] G. Nelson and D. C. Oppen. Simplification by cooperating decision
procedures. Transactions on Programming Languages and Systems
(TOPLAS), 1(2), 1979.

[28] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science (LICS), 2002.

[29] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In
Programming Language Design and Implementation (PLDI), 2008.

[30] Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

[31] W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpse of a verifying
C compiler. In C/C++ Verification Workshop, 2007.

[32] H. Xi. Imperative programming with dependent types. In Logic in
Computer Science (LICS), 2000.

[33] H. Xi and F. Pfenning. Dependent types in practical programming. In
Principles of Programming Languages (POPL), 1999.

[34] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. O’Hearn. Scalable shape analysis for systems code. In Computer
Aided Verification (CAV), 2008.

12 2008/8/7

A. Additional Extensions
This section provides further details on some of the extensions
proposed in Section 5. Only some portions of these extensions
have been implemented and tested, and they were not used in the
experiments described in Section 6.

A.1 Deallocation
The translation described in Section 3 mentions memory alloca-
tion but does not mention memory deallocation. In this section,
we extend the translation to allow us to verify correct deallocation.
Specifically, we would like to verify that the program never ac-
cesses deallocated memory and never frees memory twice. These
properties are sometimes referred to as temporal memory safety.
(Bounds checks, which largely fall under spatial memory safety,
are covered by the type safety assertions discussed earlier in this
paper.)

To add the appropriate assertions, we need two new maps:

Alloc : int→ {unallocated, allocated, deallocated}
Base : int→ int

The first map, Alloc, keeps track of the allocation state for each
address in memory, which can be unallocated (i.e., never allocated),
allocated (i.e., in use), and deallocated. The second map, Base,
maps integer addresses to the first word of the allocated object that
contains it. For example, if we allocate a pointer p to an object of
size n, then Base(p) through Base(p + n − 1) will be equal to p.
The Alloc map is mutable, but the Base map is not.

Our translation refers to these maps as follows:

• When we allocate an object of size n at address p, our transla-
tion inserts an assumption stating that Alloc is unallocated at
addresses p through p + n − 1, and then it sets these values to
allocated. We also insert an assumption stating that the Base
map is set to p for all addresses in this range.

• When we deallocate an object p, we verify that Base(p) = p,
which says that p was allocated at some point in the past. We
also check that Alloc(p) = allocated, which means that it has
not already been freed, and we set Alloc(p) to deallocated.

• When we dereference a memory address a, we assert that
Alloc[Base(a)] is allocated.

This formalization allows us to check that all memory locations
accessed by the program were properly allocated and have not
yet been deallocated. Note that deallocation only changes the first
memory address to deallocated, but because we check the status
of the base address on each memory reference, this one change is
sufficient to mark the entire object as freed.

Note that checking these assertions is considerably more chal-
lenging than verifying the type safety assertions discussed in this
paper. Although we can verify temporal memory safety for small
examples, our large experiments currently do not use this portion
of the translation.

Finally, there is still one source of imprecision in this approach:
we assume that deallocated memory is never subsequently reallo-
cated, which is not the case in real C programs. To relax this as-
sumption, we can change the translation of deallocation to set the
Alloc map back to unallocated. However, we must also make Base
and Type mutable, since their values can be changed when memory
is reallocated. These changes can make verification of the program
even more challenging.

A.2 Sub-Word Access
Our translation currently assumes that all pointers and integers are
of size 1. However, modern processors can access integer data of
multiple sizes, so we must handle memory accesses that affect

multiple addresses in memory. For example, if we write a 32-bit
integer to address p, we actually change the values at byte addresses
p, p+ 1, p+ 2, and p+ 3.

For the sake of efficiency, we wish to avoid modeling writes at
such a low level wherever possible. For example, if the program
never accesses p + 1, p + 2, and p + 3 directly, we can store
the integer value in p only. However, if any of these addresses are
accessed by the program, we would like our translation to model
these sub-word reads and writes faithfully.

To further illustrate this challenge, consider this example:

int *p = ...;
*p = 1337;

char *q = ((char *) p) + 2;
*q = 42;

assert(*p != 1337);

Even though p and q have different values, the write to q alters
the value of *p. If we model these pointer writes as updates to
the Mem map at distinct locations (e.g., Mem[p] := 1337; q :=
p + 2; Mem[q] := 42), then we will not correctly model the
behavior of the real C program.

To address this problem, we introduce an additional map:

Span : int→ int

For a given address a, Span(a) indicates the number of ad-
dresses spanned by the value stored at a. For example, if we write
a four-byte value to address a, we will assert that Span(a) = 4 and
that Span(a+ 1) = Span(a+ 2) = Span(a+ 3) = 0. A span of
zero indicates that that address is invalid because it is spanned by a
lower address.

In the common case, every address will be given a span that is
determined by the type allocated at that address. For example, int
types will be assigned span 4, and short types will be assigned
span 2. However, for addresses that are accessed at multiple sizes
and offsets (as in the example above), we can assign each address
in the relevant range a span of 1. Writes to these addresses are
then modeled using separate updates to each address; for example,
writing a short to an address a that is modeled with byte-level
access would result in an update to addresses a and a+ 1.

In essence, we use Span to indicate whether a location in mem-
ory should be treated with byte-level precision or with a higher-
level representation, and we assert as part of the translation that
each memory location accessed has been modeled at an appropri-
ate level of precision.

Due to time constraints, we have left the implementation and
evaluation of this scheme to future work.

13 2008/8/7

