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Abstract

A great opportunity exists to fuse information from pop-

ulations of privately-held sensors to create useful sensing

applications. For example, GPS devices, embedded in cell-

phones and automobiles, might one day be employed as

distributed networks of velocity sensors for traffic monitor-

ing and routing. Unfortunately, privacy and resource con-

siderations limit access to such data streams. We describe

principles of community sensing that offer mechanisms for

sharing data from privately held sensors. The methods take

into account the likely availability of sensors, the context-

sensitive value of sensor information, based on models of

phenomena and demand, and sensor owners’ preferences

about privacy and resource usage. We present efficient and

well-characterized approximations of optimal sensing poli-

cies. We provide details on key principles of community

sensing and highlight their use within a case study for road

traffic monitoring.

1. Introduction

Privately owned sensors such as cameras, GPS devices,

cell-phones, and home weather stations are bountiful in the

world. In principle, the data from large populations of such

sensors could be harnessed to provide valuable services.

For example, GPS devices, which are becoming popular

as integral components of smartphones and automobiles,

could provide real-time traffic monitoring services with ex-

tensive coverage. In practice however, privately-held sensor

data is rarely shared because of privacy concerns of the

sensor owners or others whose privacy might be violated by

such sensing. Beyond privacy considerations, applications

depending on authorization via real-time requests for data

could be disruptive and annoying to owners. Furthermore,

owners may not wish to donate battery and networking

resources required for sensing and transmitting data.

We focus on principles of community sensing that are

aimed at unlocking the wealth of data and inferences avail-

able via privately held sensors and content. Our methods

provide the machinery that allows sensing applications to

1This work was performed during an internship at Microsoft Research.

make contracts with users about the resources used on their

devices and the frequency and nature of incursions in pri-

vacy. We seek optimal sensor polling policies given the

characteristics of the target phenomenon being sensed, the

demands of the application, and availabilities of sensors,

based on privacy preferences and expected locations.

By building on and extending structural results of sensor

selection problems [12], we show how we can compute a

well-characterized approximation to optimal sensing poli-

cies by acting in accordance with the preferences of sensor

owners and considering the overall utility of sensed data

for the sensing application. In our approach, sensed data

is drawn from a population of sensors by computing the

context-sensitive value of information, given statistical in-

ferences about the availability and informativeness of dif-

ferent sensors. Personal data sharing policies are overlaid

on the expected value as costs and constraints, allowing for

mechanisms that exchange sensed data with tangible reim-

bursements of value to providers, such as access to aggre-

gated data and inferences.

To motivate the core concepts of community sensing, we

shall focus on a case study on the challenge of using pri-

vately held location sensors for traffic monitoring. Traffic

sensing systems are growing in popularity in major cities

via the use of fixed sensors deployed on major highways

at significant expense. Beyond sensing and routing based

on current traffic conditions, applications have been devel-

oped to characterize traffic [31] and perform forecasts about

future traffic situations [8] contextual. Unfortunately, even

when traffic sensing is available for key aspects of a high-

way system, there is typically little coverage of flows on im-

portant arterials and sidestreets. Several research and com-

mercial prototypes have harnessed mobile probe data to ob-

tain real-time or historical GPS flow information, often via

special studies [17] or via contracts with the operators of

GPS-monitored fleets [30]. Some services have attempted

to leverage cell-tower signals for coarse positioning with

mixed success [29].

GPS devices are becoming more popular as part of car-

based and portable navigation systems and cellphones. The

data collected by these GPS receivers are becoming increas-

ingly more available via on-demand network connectivity.



In the absence of concerns about privacy and network re-

sources, data about the driver’s location and velocity might

be readily shared with applications, via infrastructures such

as SenseWeb [9]. However, privacy concerns are expected

and reasonable [24, 30, 29, 20]. Beyond general anxieties

about the sharing of location and velocity data, studies have

demonstrated that, even with significant attempts at obfus-

cation, home and work locations of drivers can be inferred

from GPS tracks [16]. Based on this consideration, in our

case study we will focus on location privacy, i.e., favor

sensing policies which avoid continuous monitoring of a

user’s location. Further, a sensor owner may wish to limit

the amount of system resources used for such sensing and

sharing, e.g., to conserve battery power.

We develop community sensing methods that promise to

unleash privately owned sensors for multiple sensing appli-

cations. Our main contributions are:

• An integrated approach to community sensing that

jointly employs computations of the context-sensitive

value of information for modeling phenomena, a

model of the distribution of needs in a population, a

forecast of the configuration of sensors, and constraints

based on sharing preferences.

• A theoretical analysis of community sensing, which al-

lows us to devise provably near-optimal sensing poli-

cies, maximizing the utility of the acquired informa-

tion, while satisfying resource and privacy constraints.

• A case study applying those principles to a traffic mon-

itoring problem.

• An empirical evaluation based on data from a deployed

prototype.

2. Community Sensing Challenge

The key goal of community sensing is to continue

to select the best subset of privately owned sensors so

as to estimate a complex spatial phenomenon, in strict

accordance with constraints on sensor usage. We consider

the following tightly integrated factors to identify the

best subset of sensors: We construct a model for the

phenomenon being sensed. We rely on existing information

about the phenomenon to make context-sensitive sensor

selections that promise to provide the maximal value of

information. Second, we consider the ultimate uses of data

or inferences, and take a utilitarian approach: we assert

that a sensing application should weight its information

needs based on the expected demand for information by

multiple people and organizations. Thus, we seek sets

of observations which most improve those aspects of the

phenomenon model that have the highest demand. Third,

the availability and reliability of sensors may vary signifi-

cantly, especially since the sensors are privately held rather

than owned by the sensing application. Thus, we employ

a principled approach for taking advantage of uncertain

sensor availability. Finally, we overlay with care a model

of user preferences about sensor access and resource usage.

2.1. Formalization of Community Sensing

Phenomenon modeling. We model the spatiotemporal

phenomenon by a stochastic process, with a random vari-

able Xs for each location2 s ∈ V . After observing values

at a small number of locations XA = xA, this process

allows us to predict the phenomenon values at the unob-

served locations V \ A, e.g., by using conditional expecta-

tions E[XV\A | XA = xA]. Hereby, for A′ ⊆ V , we shall

use the notation XA′ in order to refer to the vector (Xs)s∈A′

of random variables. As predictions are uncertain, we use

our model to predict the variance at each location s ∈ V\A,

Var(Xs |XA=xA) = E[(Xs−E[Xs |XA=xA])2 |XA=xA].

To quantify the value of the sensor locations, we use the

reduction in the predicted variance,

Var(Xs) − Var(Xs | XA = xA),

after observing XA = xA. Based on the phenomenon

model alone, we could select a set A of locations which

maximally reduce the variance at the unobserved locations.

Demand modeling. Instead, in order to ensure that pre-

dictions are most accurate where they are needed most [29],

we take a utilitarian approach to compute the information

value of sensing at any set A of locations. Hence, we aim

to achieve the highest reduction in variances at locations s
which are most frequently queried. More formally, we de-

fine a non-negative spatial process, Ds, called the demand

process, over all locations s ∈ V . We can then consider the

expected demand-weighted variance reduction,

R(A) =
∑

s∈V

E [Ds(Var(Xs) − Var(Xs | XA))]

The expectation is taken with respect to the observations

XA = xA and the demands Ds = ds.

Models of availability and privacy. When making deci-

sions about polling the community of sensors, we will gen-

erally not be able to sample the phenomenon at locations

A directly, as we may not have access to sensors at these

locations because of uncertainty regarding the current sen-

sor locations. Thus we must additionally learn and integrate

models of the uncertainty in sensor availability, which will

be a key focus of this paper.

Instead of choosing locations to observe, we assume that

we will have a set W of possible observations we can

choose among. Each observation might, e.g., correspond to

a person porting a GPS system walking through a city, or

a GPS-ready car traveling through a road network. Hence,

2In the case of spatiotemporal planning, we would associate a random

variable with each location-time pair for a set of time points (c.f., [21]).
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each observation w ∈ W corresponds to a distribution

over possible sensor locations, and any particular subset

B ⊆ W , induces a distribution P (A | B) over subsets A.

The model of sensor availability incorporates a notion of

selection noise. Also, note that we distinguish between the

possible observations W we can select from, and the mea-

surements obtained after a subset B ⊆ W of observations

has been selected.

Our final informational objective to maximize is

F (B) = EA|B[R(A)] =
∑

A

P (A | B)R(A),

i.e., the expected demand-weighted variance reduction,

where the expectation is taken over the set of observed lo-

cations A, the measurements at these locations XA = xA,

and the demands DV at all locations3. This utility function

F (B) effectively quantifies the expected value of informa-

tion of the observations B, which is context-sensitive and

specific to the particular application at hand.

In addition to uncertainty which is inherent in the com-

munity sensing application (e.g., the location of a car and

GPS sensor is uncertain at query time), we will explore

methods for artificially introducing selection noise in order

to achieve privacy. Since privacy is a highly application spe-

cific notion, we will not attempt to define a general notion of

privacy for community sensing. Instead, in Section 4.3, we

describe a privacy-aware community sensing approach for

the traffic monitoring problem. We explore two notions of

achieving privacy through injection of selection noise. The

first approach achieves location privacy by spatial obfusca-

tion, a technique that introduces selection noise. The second

approach is based on sparse querying, where the number of

queries to each sensor owner is minimized.

Models of resource usage and preferences. Central in a

model of community sensing is the coupling of the overall

information utility to an application, with constraints de-

fined by users on sensor sharing prefences and resource us-

age. We achieve this coupling by introducing a cost function

C which associates each set B of observations with a non-

negative cost C(B).
For example, resource usage can be modeled by associ-

ating a nonnegative cost c(s) with each observation s ∈ W ,

and defining

C(B) =
∑

s∈B

c(s).

When we consider each reading to have unit cost, i.e.,

c(s) = 1, the cost C(B) = |B| is equal to the number of se-

lected sensors. This cost model aims to minimize the num-

ber of collected readings over the whole community sensor

network, or effectively, the network load.

3Note that this formulation implies the assumption that the selection

noise is independent of demand and phenomenon, which we make for clar-

ity of presentation in this paper.

By defining more complex cost functions, we can make

community sensing conform to more general, expressive

policies, including individualized preferences. Such poli-

cies can include specification about the minimal inter-probe

interval, the maximum number of probes per unit of time,

and the allowed times or locations of probes (e.g., sensor

device ignores probes when the owner is within specified

range of some location, such as their home or office). Other

preferences might include the requirement that the owner

authorize probes before information is transmitted.

For example, we might limit the number of queries to in-

dividual users based on their preferences. In this case, we

can partition the set of possible observations W into a col-

lection of subsets W1 ∪ · · · ∪ Wm, each Wi corresponding

to all possible observations which could be made by contin-

uously monitoring user i. We can then, for example, model

cases where the cost of querying a user increases as more

and more observations are made:

C(B) =
∑

i

gi(|B ∩Wi|), (2.1)

where gi are monotonically increasing convex functions

with gi(∅) = 0, and gi(ℓ) models the cost of querying

user i exactly ℓ times. We can also require that each user

be queried at most ℓ times by setting

gi(j) = 0 if j ≤ ℓ, ∞ otherwise. (2.2)

2.2. Problem Specification

Based on the components detailed above, our goal is to

select a set of observations B∗ such that

B∗ = argmax
B

F (B) subject to C(B) ≤ L. (2.3)

Hereby, L specifies the budget that we can spend on obser-

vations (e.g., applications “pay” owners on a per probe ba-

sis). The solution set B∗ could, for instance, determine the

set of GPS-equipped automobiles considered by the system.

By requiring that the cost satisfies the constraint C(B) ≤ L
(or other constraints or cost functions per more general pref-

erence models for probing), contracts are implemented be-

tween the sensing application and the sensor owners.

For clarity of presentation, we will focus on the static se-

lection problem. In this setting, we only consider the state of

the world (such as road speeds) at the current time step, and

do not plan ahead to select observations which may become

useful in the future. However, techniques similar to those

presented by Meliou et al. [21] can be used to extend our

approach to the dynamic, spatiotemporal planning setting.

3. Optimizing Community Sensing

We now present algorithms for the community sensing

optimization problem specified in Section 2.2. Our goal will
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be to obtain measurements from a subset of the available

observations to optimize value of information subject to

preference and resource constraints discussed earlier. Prob-

lem (2.3) requires solving a difficult (NP-hard) discrete op-

timization problem, and finding the exact solution is typi-

cally intractable. In this section, we will prove that Prob-

lem (2.3) carries structure, which will allow us to obtain

provably near-optimal solutions.

Let us first consider Problem (2.3) for the unit cost case

C(B) = |B| and the budget L = k. We shall later discuss

how more complex constraints can also be handled in the

optimization. Rather than search through all prohibitively

many
(
n
k

)
subsets, we use a greedy algorithm for selecting

the k best observations:

Algorithm 3.1. Start with the empty set of selected obser-

vations, B0 = ∅. In the j-iteration, find the observation

wj = argmax
w∈W

F (Bj−1 ∪ {w}),

and then set Bj := Bj−1 ∪ {wj}. Continue to iteratively

expand the set Bj until |Bj | = k. Output BG = Bk.

Performance Guarantee. We can show that this algo-

rithm is guaranteed to find a set BG which is close to the

optimal solution. The key to analyzing the performance of

the greedy algorithm is the following intuition: adding an

observation helps more if we have made few observations

so far, and less, if we already have made many observa-

tions. This intuition is formalized by the combinatorial con-

cept of submodularity. A set function f : 2W → R is called

submodular, if for all B ⊆ B′ ⊆ W and w ∈ W \ B′ it

holds that f(B ∪ {w}) − f(B) ≥ f(B′ ∪ {w}) − f(B′).
Also, f is called nondecreasing, if for all B ⊆ B′ ⊆ W
it holds that f(B) ≤ f(B′) ≤ f(W). A fundamental re-

sult by Nemhauser et.al. [22] states that the set BG of size

k obtained by the greedy algorithm applied to some nonde-

creasing submodular function f is guaranteed to achieve at

least a constant fraction (1 − 1/e) ≈ 0.63 of the optimal

solution:
f(BG) ≥ (1 − 1/e) max

|B|≤k
f(B).

This performance guarantee will apply to Algorithm 3.1 if

the objective function F (B) used in the algorithm is sub-

modular. In the literature, submodularity has been estab-

lished for several important objective functions (c.f., [12]

for an overview). In [4], it was shown, that under a natural

condition of conditional suppressor-freeness, which is often

satisfied in practice, the expected local variance reduction

E[Var(Xs)−Var(Xs | XA)] is nondecreasing and submod-

ular in A. The key question is thus whether the complex

objective function F (B), integrating phenomenon, demand

and availability models, is still submodular. In the follow-

ing, we establish this result, which will allow us to unlock

a wealth of techniques for optimizing submodular functions

for the community sensing domain.

We first observe that, since the class of submodular func-

tions is closed under nonnegative linear combinations, the

demand-weighted variance reduction R(A) is nondecreas-

ing and submodular as well. Now, to establish submodular-

ity of F (B), the key step is to ensure that the introduction of

uncertainty in sensor availability, i.e., taking the expectation

of R(A) over locations A, does not diminish submodularity

of F (B). The following lemma establishes this result.

Lemma 3.1. Whenever R(A) is submodular and nonde-

creasing, then F (B) = EA|B[R(A)] is submodular and

nondecreasing.

The proof of this Lemma is provided in our technical re-

port [15]. Lemma 3.1 proves that the introduction of selec-

tion noise does not destroy submodularity. However, even

though our value of information objective F (B) is submod-

ular, it is not clear how we can efficiently implement the

Algorithm 3.1: First of all we need to be able to efficiently

evaluate the demand weighted variance reduction R(A). In

Section 4, we show how this computation is possible in

closed form in many important applications. However, even

if we can efficiently compute R(A), in order to evaluate

F (B), we need to compute the expectation

EA|B[R(A)] =
∑

A

P (A | B)R(A),

which is a sum over an intractable number of terms. How-

ever, we can approximate this expectation by Monte Carlo

sampling. For any set B of observations, we draw N inde-

pendent samples A1, . . . ,AN from the distribution4 P (A |
B), and approximate F (B) by its sample average, i.e.,

F (B) ≈
1

N

N∑

i=1

R(Ai).

As R(A) is bounded between 0 and 1, we can use Hoeffd-

ing’s inequality to bound the number of samples we need

in order to approximate F (B) to required precision ε with

probability at least 1 − δ:

Lemma 3.2. For any ε > 0 and δ > 0, we need
⌈

1

2ε2
log

1

δ

⌉

samples in order to ensure that

P

(∣∣∣∣∣F (B) −
N∑

i=1

R(Ai)

∣∣∣∣∣ ≤ ε

)
≥ 1 − δ.

Using a similar analysis as presented in [11], we can

show that the result of Nemhauser et.al. about the perfor-

mance of the greedy algorithm still holds, even if the objec-

tive function F is evaluated with small additive error ε:

4For many practical settings, e.g., if the locations of each sensor is in-

dependent, this sampling is tractable.
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Theorem 3.3. For any ε > 0 and δ > 0, under the con-

ditions described in [4] (or with any submodular, nonde-

creasing objective function R(A) bounded above by 1) and

k allowed observations:

Accuracy: The greedy solution BG satisfies

F (BG) ≥ (1 − 1/e) max
|B|=k

F (B) − ε,

with probability at least 1 − δ.

Computation Load:The greedy algorithm finds this solu-

tion BG using at most

O

(
k3n

1

ε2
log

kn

δ

)

independent samples of R(A).

The proof of this Theorem is provided in our technical

report [15]. Note, that the number of independent samples

of R(A) needed for estimating the objective F (B) (c.f.,

Lemma 3.2) grows only as O(n log n) with the number

n = |W| as possible observations to select from. In prac-

tice, as seen in the next section, k is much smaller than

n, and only a small number of observations are typically

needed to satisfy the sensing application.

Handling more complex cost functions. In the above

discussion, we focused on the challenge of selecting the best

k observations. In practice, we can use the submodularity

of our value of information objective F (B) as established

in Lemma 3.1 to near-optimally solve much more complex

optimization problems.

In practice, different observations could have different

costs. For example, one might be able to choose between

placing high-quality fixed sensors at a higher cost, or query

via the community sensing system at lower cost, but at the

risk of uncertain availability, as considered in Section 5.4.

Similarly, requesting different types of contributions from

privately held sensors (e.g., audio, video imagery, etc.)

might require providing different incentives to users. In this

case, the cost c(w) of each observation would vary, and the

system would have a constraint on the budget which can

be spent on observations. An algorithm similar to the one

presented in [19] can be used to solve this more complex

optimization problem.

As discussed in Section 2, we can employ more general

user preferences, such as a policy that asserts that each user

can be queried only ℓ times within a specified time window

(c.f., Eqn. (2.2)). In this case, the optimization problem is

B∗ = argmax
B

F (B) s.t. |B| ≤ k and ∀i : |B ∩Wi| ≤ ℓ,

where Wi is the set of observations which could potentially

be made by continuously monitoring user i. It can be shown

that the set I ≡ {B ⊆ V : |B| ≤ k and ∀i : |B ∩ Wi| ≤ ℓ}
defines independent sets of a matroid. In [6], it is shown that

a greedy algorithm provides a 1
2 approximation even in this

more general setting, i.e., the greedy solution BG satisfies

F (BG) ≥
1

2
max
B∈I

F (B).

In Section 2, we also considered the case where the cost

of querying a user can increase nonlinearly in the number

of queries (2.1). Notice that, in contrast to the diminishing

returns property of our value of information objective, this

cost function has an accelerating cost property: Adding a

new observation increases the cost the more observations

we have already made. In fact, we can show:

Lemma 3.4. The cost function (2.1) is supermodular.

A set function C(A) is called supermodular if and only

if −C(A) is submodular. This observation allows us to use

techniques described by Krause and Horvitz [14] for finding

a near-optimal solution to the community sensing problem.

4. Case Study: Traffic Monitoring

Let us now consider in more detail the community sens-

ing application for traffic introduced in Section 1. In or-

der to instantiate the community sensing problem for traf-

fic, we need to choose appropriate models for the measured

phenomenon, application demand, sensor availability, and

probing cost. The application goal is to provide normal-

ized road speeds (i.e., average speed of vehicles across road

segments, divided by the posted speed limits for those seg-

ments) over road segments within the sensed road network.

4.1. Phenomenon Model

We model the joint distribution of the normalized road

speeds Xs for all locations s ∈ V using a Gaussian Pro-

cess (GP, c.f., [25]), defined over the road network5. Such a

model is fully specified by a mean function M(s) and co-

variance function K(s, t). For each set A = {s1, . . . , sn} ⊆
V of locations, this GP induces a multivariate normal dis-

tribution XA ∼ N (µA; ΣAA), where µA is the prior

mean vector µA = (M(s1), . . . ,M(sn)), and ΣAA =
(K(si, sj))i,j is the prior covariance matrix, obtained by

evaluating the kernel function at all pairs of points. In Sec-

tion 5, we study the fit of the GP to the traffic data, and

explain how we can estimate the kernel from training data.

Based on this phenomenon model, we can evaluate the vari-

ance reduction in closed form [25]:

Var(Xs) − Var(Xs | XA = xA) = ΣsAΣ−1
AAΣAs (4.1)

Here, ΣsA = (K(s, s1), . . . ,K(s, sn)) is the vector of

cross-correlations between Xs and XA. Note that (4.1) does

not depend on the observed values xA, an interesting prop-

erty of GPs. The expected variance reduction E[Var(Xs) −
Var(Xs | XA = xA)] can thus be evaluated in closed form.

5Normal distributions have been considered for traffic modeling by [2].
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4.2. Demand Model

For each road segment s ∈ V , we define its demand Ds

by the number of cars traveling over each road segment and

model it using a Poisson random variable, with mean λs.

Even though, in practice, demand and phenomenon are cor-

related, for computational considerations, we shall assume

independence. Hence,

R(A) =
∑

s∈V

E [Ds] E [(Var(Xs) − Var(Xs | XA))]

=
∑

s∈V

λsΣsAΣ−1
AAΣAs,

which can be computed efficiently in closed form, in time

O(nk2 + k3), where k = |A| and n = |V|. Note, that

when selecting observations, k is much smaller than n. It

can be shown that R(A) is nondecreasing in A, i.e., for

A ⊆ A′ ⊆ V , it holds that R(A) ≤ R(A′) ≤ R(V). We

can thus normalize R(A) to be between 0 and 1 by dividing

by R(V). Based on this objective, we can identify the ob-

servations of road segments that promise to most efficiently

improve the demand-weighted prediction accuracy.

4.3. Models of Availability and Privacy

Due to the nature of the traffic monitoring application,

selection noise is inherent in the community sensing prob-

lem. Even if we continuously monitor a user (car), there

is uncertainty in their motion and location. For each pos-

sible observation b ∈ B (such as each car we can query),

we model its availability distribution (e.g., distribution over

the car’s location) as a multinomial distribution. In princi-

ple, we could estimate such a distribution from training data

gathered from continuously monitoring the users. However,

such monitoring would raise reasonable privacy concerns.

Instead, our goal is to devise sensing policies which guard

against such possible incursions in privacy.

Several different models of privacy have been proposed

in prior work (c.f., [28, 5]). Rigorously formalizing privacy

requires strong assumptions about the capabilities of the ad-

versary who attempts the intrusion in privacy. In the traffic

monitoring domain, our goal is to develop a privacy-aware

community sensing approach which guards against incur-

sions in location privacy (e.g., identification of a person’s

home) through inference attacks as considered by Krumm

[16]. In his study, Krumm found that such inference at-

tacks can be made difficult by artificially introducing a large

amount of noise to the sensor locations. Motivated by these

findings, we explore techniques for introducing selection

noise (i.e., artificially increase the uncertainty in the avail-

ability distributions P (· | b)). We give two concrete exam-

ples for such availability distributions. Both sample avail-

ability models are sensitive to privacy considerations as they

avoid constant monitoring of all sensor locations.

Spatial obfuscation: In a spatial obfuscation approach,

we minimize privacy intrusion by giving up the ability to

specifically select and address an individual sensor. Instead,

we divide the space into a set of cells, and only specify

which region we want to query. The sensor is then se-

lected according to a probability distribution defined over

all sensors associated with the cell. Once selected, the sen-

sor would reveal its exact location as well as its measure-

ments, but it would not reveal any identifying information.

In addition to being sensitive to privacy considerations, the

spatial obfuscation approach has computational advantages,

in that optimization is computed for a smaller set of poten-

tial observations.

In the traffic monitoring application, such an approach

could be realized by employing a trusted arbitrator. A pos-

sible example would be a cell phone network provider, who

is already required by law to monitor locations for emer-

gency response purposes. This arbitrator could perform the

sampling (i.e., the random selection of a car in a network

cell), and then, via cryptographic techniques, transmit the

obtained measurements without any identifying information

to the traffic monitoring service.

Sparse querying: Another approach is to directly keep

track of a pool of drivers volunteering to participate in the

traffic service. However, instead of constantly monitoring

each driver, which would be highly privacy invasive, we

only very sparsely and infrequently pose queries. In this

model, we do not initially know where a car is located when

it is queried. Once it receives the query, it will provide its lo-

cation along with its measured road speed. Based on previ-

ous queries and the provided location information, for each

driver a time-dependent availability distribution can be es-

timated. This distribution can then be used to inform the

decision of which cars should be queried. Alternately, own-

ers of sensors may allow a service to monitor them for a

predefined monitoring phase and, thus, learn a predictive

model in advance. Techniques such as those described in

[14] could be employed in order to avoid sampling which

would lead to too accurate predictive models of the loca-

tion, by requiring a minimum amount of uncertainty in the

availability distribution P (· | B).

Such a sparse monitoring approach could be imple-

mented by allowing the user to specify preferences about

access to their sensor data (i.e., a limit on the number of

queries per week as described in Section 2, and the ex-

clusion of sending measurements in proximity to certain

private locations using a spatial cloaking approach as de-

scribed by Krumm [16]).

5. Experiments

The following data sets were used for the traffic moni-

toring case study.
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Phenomenon Data: In our experiments, the phenomenon

being measured by the sensing application is the set of road

speeds on Greater Seattle Area highways. We use real traf-

fic data from 534 highway segments distributed across in-

terstates I-5, I-405, I-90 and state highways 520, 518, 167

and 525, using sensors deployed by Washington Dept. of

Transportation. Our goal is to model the normalized road

speeds. For each road segment, the normalized road speed

is defined as the ratio of average speed measured by sensors

on that road segment to the posted speed limit. We use sen-

sor data logged between October 2006 to December 2006,

in 15 minute time steps. We use the first 2/3 of the data as

training set, and the remaining 1/3 as a test set. Based on

the training data, we used the sample mean and covariance

to define our covariance model. In Section 5.4, we explain

how a model can be learned from less training data as well.

In our analysis, we limited ourselves to highway segments

as historical speed data is available for them, and we can

compare the phenomenon model generated by our sensing

algorithm to the ground truth.

Demand Data: In order to estimate the demand model,

we use 3166 route planning requests obtained from users

of a context-sensitive routing prototype used by volunteers

at Microsoft during 2006 and 2007. Users input a start and

destination and the system provides a best route. We ran-

domly split the route requests using 2/3 of the data as a

training library and holding out 1/3 of the data for test-

ing. We decompose each recommended route into a set of

highway segments. For each of the 534 chosen highway

segments, we count the number of recommended routes in

which it is contained, for both the training and test sets.

Based on these counts, we estimate the parameters of the

demand distribution. Figure 2(c) presents an example of the

demand process during rush-hour.

Availability Data: As explained in Section 4.3, we con-

sider two separate availability models. For the spatial ob-

fuscation model, we discretize the road network into a set

Wc of cells of varying diameter ∆, according to their ge-

ographic location (latitude / longitude). Potential observa-

tions correspond to the possible cells w ∈ Wc. For each

cell, we define the availability distribution P (· | w) as the

uniform distribution over all road segments contained in w.

Our sparse querying model is based on three years of

GPS traces from the Microsoft Multiperson Location Sur-

vey (MSMLS) [17]: 252 voluntary drivers used a Garmin

Geko 201 GPS receiver to record 10,000 timestamped GPS

location readings when driving. We considered only those

traces intersecting with the 534 chosen highway segments.

Furthermore, we only considered traces from users for

whom data is available for at least 6 days, 85 in total. For

each user, we select the first 2/3 of the days as training, and

hold out the last 1/3 for testing. For the training and test set,

we estimate the multinomial parameters of the availability

distributions by counting how often a given user was present

on each road segment.

5.1. Experimental Setup and Evaluation

To evaluate the community sensing algorithm, we use

the following methodology. We first train the phenomenon,

demand, and availability models based on the training data,

as described above. These models are then provided to the

sensing algorithm 3.1. The algorithm is then executed for

each time step for which the ground truth data is available,

i.e., the time instances corresponding to the last 1/3 of each

data set involved in the experiment. The algorithm yields a

set B of sensors selected for observation. A real-world com-

munity sensing infrastructure for collection and aggregation

of sensor data would seek to probe these sensors. However,

the actual readings obtained would depend on sensor avail-

ability. For each set B ⊆ W of selected observations, for a

given test sample xV describing the normalized speeds of

all road segments at the current time step of the highway

data, we draw a set A of road segments according to the

availability distribution P (A | B) estimated from the avail-

ability test set. The set A forms the set of road speed sensor

readings actually obtained.

To evaluate the performance of the sensing algorithm

based on the actual demand and sensor availability, we

compare the phenomenon values predicted (using the phe-

nomenon model) based on the small number of observations

obtained through the sensing algorithm with the ground

truth phenomenon values. The sensor probe budget is var-

ied by changing the number of observations that our algo-

rithm is allowed to make. The error metric used for the com-

parison is the demand-weighted expected RMS error, com-

puted as follows: We predict the normalized road speeds

on the unobserved road segments using the phenomenon

model, and, for each road segment, then compute the resid-

ual rs = xs − E[Xs | XA = xA] as the difference between

true and predicted speeds. We then compute the demand-

weighted root mean squared error,

DRMS =

√
1

n

∑

s

λ′
sr

2
s ,

where λ′
s are the demands estimated from the test set. Fi-

nally, we report the mean DRMS error where we average

over all test samples (i.e., all of time steps in the hold-out

set), and use F̂ (B) to refer to the reduction of this average

error.

5.2. Experiments without selection noise

In our first set of experiments, we explore the phe-

nomenon and demand modeling only. We choose the road

segments deterministically, i.e., we set A = B, and hence,

F (B) = R(B).
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Figure 1. Experiments without selection noise. (a) compares predicted with measured error as more

observations are selected. (b) compares the scores for greedily chosen sets of increasing size,

when optimizing uniform vs. demand-weighted variance reduction. Both objectives show strong

diminishing-returns behavior. (c) compares reduction of demand-weighted error if road segments

are chosen at random and when optimizing uniform and demand-weighted variance reduction.

Evaluation of model accuracy: In the first experiment,

we verify how well the predicted scores F (B) match the

test set error F̂ (B). We generate observation selections B
of increasing size. Figure 1(a) presents the results of this ex-

periment, where the observations are selected naı̈vely: uni-

formly at random (the red curves, using 1000 independent

trials) and using our optimized sensing algorithm. We can

see that in both cases, the predicted error F (B) (indicated

by the solid lines) and the measured test set error F̂ (B) (in-

dicated by the dotted lines) match very well. This result in-

dicates, that our models do not overfit the training data, and

the objective function F (B) models the generalization error

F̂ (B) effectively.

We also observe that the optimized selection reduces the

prediction error significantly more quickly than the uniform

sampling. Using optimized selection, the error is reduced by

50% compared to the baseline when using only 5 observa-

tions. Uniform sampling requires 40 observations in order

to achieve the same performance.

Demand-weighted vs. uniform coverage: In our next

experiment, we compare the effects of including demand

on the coverage metric. We optimize one sequence of ob-

servation selections of increasing size using the training set

demands, and another sequence setting the demands uni-

formly to 1 over all road segments. Figure 1(b) presents the

corresponding production curves. Both curves are normal-

ized between 0 and 1, where 1 means that the error has been

reduced to zero. We can see that, for the demand-weighted

objective, the coverage approaches its maximum far more

quickly. This is encouraging, as it implies that far fewer ob-

servations are needed to achieve a specified level of cover-

age. For example, in the demand-weighted model, 10 obser-

vations achieve 80% reduction in error. Under the uniform

metric, 30 observations are needed to achieve the same re-

duction in error. The concavity of the curves in Figure 1(b)

also empirically corroborates the submodularity of the vari-

ance reduction: the scores F (B) initially increase rapidly,

and then quickly flatten out.

We also compare how well the demand-weighted error

is reduced when optimizing for the uniform variance reduc-

tion as specified in Equation (4.1) instead of for F (B). Fig-

ure 1(c) shows, that, although optimizing for the uniform

variance reduction, shown by curve Opt. (unit weighted),

reduces the demand-weighted error more quickly than ran-

dom sensor selection, it decreases the error far more slowly

than when using the demand model for sensor selection,

shown by curve Opt. (demand weighted). The biggest dif-

ference appears in the initial part of the curve, in which the

error is reduced most quickly. This suggests that, for this

application, demand models should be used if available.

5.3. Experiments with selection noise

In the next series of experiments, we consider the differ-

ent sources of selection noise, as introduced in Section 4.3.

Spatial obfuscation: We first consider the spatial obfus-

cation model. In this model, we discretize the space into

a collection of cells, and we decide which cells we should

query. The availability distributions are chosen as uniform

over all road segments intersecting with each cell. Note, that

a long road segment can be contained in several cells.

We first generated discretizations of varying granular-

ity, by varying the diameter of the cells. The different ver-

sions of the problem contain 13 (most coarse), 53 (inter-

mediate), and 146 (finest) cells. For each granularity, we

generate sequences of observation selections, where we al-

low for querying the same cell multiple times, in which case

multiple road segments are selected uniformly and indepen-

dently. Figure 2(a) presents the results of this experiment.
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Figure 2. (a) shows of the influence of the spatial obfuscation on error reduction. Even relatively

coarse discretization allows drastic improvements over purely random selection. (b) shows impact

of sparse querying, i.e., compares selecting cars vs. road segments. (c) Example of demands during

rush hour (higher intensity indicates higher demand).

As we decrease the amount of spatial obfuscation, the per-

formance of the optimized observation selection changes

from the uniform random sampling (corresponding to the

case of 1 single cell) to fully optimized selection (corre-

sponding to 534 cells, one for each road segment). We can

see, that, while coarse discretization (13 cells) does not per-

form much better than random, even the intermediate dis-

cretization (53 cells) performs quite well. In the important

steep initial part of the curve, the spatial obfuscation scheme

performs only slightly worse than the fully optimized selec-

tion. The analysis with the finest discretization (146 cells)

does not perform significantly better than the one using the

intermediate discretization. We believe the reason for this

effect is that road segments are contained in multiple cells

according to their spatial extent, and hence, in the finer dis-

cretizations contain a significant amount of randomness.
The results of these experiments have several implica-

tions. First of all, the results indicate that, for this sam-

ple application, the computationally more intensive reason-

ing at the road-segment level of granularity does not pro-

vide much benefit over reasoning over a coarser spatial dis-

cretization. This is encouraging, as it indicates that the ap-

proach presented can likely be scaled up to consider signif-

icantly larger geographies. Secondly, from a privacy point

of few, a priori knowledge about precise locations of cars is

not necessary, and strong spatial obfuscation (as suggested

in [16] as one possible countermeasure to inference attacks

on GPS traces), does not severely limit the value of these

sensors for traffic monitoring applications.

Sparse querying: Our second model for availability im-

plements the notion of sparse querying. Here, each obser-

vation w ∈ Wp corresponds to a participant of the MSMLS

study. For each participant (“car”), we estimate a training

and test availability distribution P (v | w) over all road seg-

ments v ∈ V . Based on the training distributions, our goal

is to select a subset of the participants to query. Figure 2(b)

shows how the test set error decreases, as we select more

and more cars. We compare optimized selection vs. uni-

form random selection, both of cars and specific road seg-

ments. Figure 2(b) shows that, in the initial, steep part of the

curve, the difference between optimized selection and ran-

dom sampling is most drastic. For example, in order to re-

duce the error by 50% over the baseline, we need 10 queries

when optimizing the selection, and 30 queries when sam-

pling at random. We also notice that random selection of

cars performs better than randomly selecting road segments.

The reason for this effect is correlation between demand and

availability—on roads with higher demand, users are more

likely present. Furthermore, as we increase the number of

observations, the discrepancy between selecting roads and

cars increases, and the discrepancy between optimized and

random selection of cars decreases. We speculate that the

reason for this effect is that the availability models are lim-

ited by the MSMLS data.

5.4. Further experiments
Learning curve: In the previous experiments, we used

historical data from all 534 highway sensors in order to es-

timate the phenomenon model. In many community sens-

ing scenarios, such dense instrumentation is not available,

and a model would have to be learned from a small amount

of training data. In order to understand how the predic-

tion performance of chosen observations depends on the

amount of training data used to learn the phenomenon

model, we performed an experiment. Intuitively, the corre-

lation of road speeds at segments s and t should depend

on the geodesic (i.e., shortest path) distance of these seg-

ments with respect to the road network topology. In spatial

statistics, such models in which correlation only depends

on geographic distance are called isotropic. In order to take

the graph topology into account, we performed multidimen-

sional scaling (MDS) [18]. In this approach, a set of points

S = {x1, . . . , xn} with pairwise dissimilarity d(xi, xj) are
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embedded in a low-dimensional Euclidean space such that

||ρ(xi) − ρ(xj)|| ≈ d(xi, xj). The mapping ρ : S → R
d is

chosen as to minimize the squared loss (“stress”),

ρ∗ = argmin
ρ

∑

i,j

|d(xi, xj) − ||ρ(xi) − ρ(xj)|||
2

We then defined our isotropic process with respect to the

Euclidean embedding of the road segments, by using a

Gaussian kernel,

Σ(iso)
sisj

= θ1 exp

(
−

(ρ(si) − ρ(sj))
2

θ2
2

)
,

with respect to the Euclidean embedding ρ(s) of the road

segments s ∈ V6. We trained the hyperparameters θ1 and

θ2 by maximizing the marginal likelihood [25].

We first compared the uninformed, isotropic kernel

Σ(iso) with the rich correlation structure Σ(full) of the his-

torical training data. In order to compare the two kernels,

we repeatedly randomly sampled sets of 10 road segments

to observe, and used the kernel to predict the road speeds at

the unobserved locations. In both cases, we used the mean

velocities estimated from the training set to define the Gaus-

sian process. Figure 3(a) displays a comparison of demand-

weighted prediction accuracy for both kernels. Although the

fully informed kernel Σ(full) leads to an error of 0.27, the

uninformed kernel Σ(iso) shows much higher error of 0.43.

In practice, it would be unrealistic to assume knowledge

about the full correlation structure of all road segments.

However, some knowledge is typically available about how

specific parts of the road network are correlated. For exam-

ple, a small number of fixed sensors (such as traffic cameras,

etc.) might be permanently deployed, and their data can be

used for training the phenomenon model. In order to under-

stand the benefit of partial knowledge about road speed cor-

relations, we performed the following experiment. We re-

peatedly randomly picked a set A of road segments of fixed

size k. Our goal was then to learn a kernel Σ(k) which ob-

serves the correlation structure of A, i.e., Σ
(k)
AA should cor-

respond to the empirical covariance Σ
(full)
AA of the selected

sensors A. Locally however, the kernel should behave sim-

ilarly to the isotropic kernel Σ(iso), i.e., the pairwise cor-

relation should decay according to the geodesic distances

on the road network graph. Hence, by varying k from 0

to 534, we would effectively interpolate between the un-

informed isotropic kernel and the fully informed empirical

covariance. In order to achieve this interpolation, we use an

approach described by Nott and Dunsmuir [23]. There, it is

shown that the (nonstationary) kernel defined by

Σ
(k)
st = Σ

(iso)
sA Σ

(iso)
AA

−1
(
Σ

(full)
AA Σ

(iso)
AA

−1 − I
)

Σ
(iso)
At +Σ

(iso)
st

6We also experimented with a class of graph kernels called diffusion

kernels [10] based on the pairwise or adjacency matrices. This approach

however resulted in slightly worse generalization error.

satisfies the desired property. Figure 3(a) shows the de-

crease in prediction error as more data is used for training

(i.e., k is increased from 0 to 534), when using only 10 ran-

domly chosen observations for prediction. We can see that

there is a rapid initial drop—even if only k = 16 training

sensors are available, the error is reduced from 0.43 to 0.36.

Hence, a small number of initial sensors greatly helps to

“coordinate” the correlation.

Stationarity vs. mobility: As we have seen in the previ-

ous experiments, the ability to select individual road seg-

ments (the case of no selection noise) results in lower error

than when selection noise is present. The case of no selec-

tion noise corresponds to a static deployment of sensors at

a specified set of locations. The situation of only placing

static sensors, or only querying moving objects are two ends

of a spectrum. We performed an additional experiment to

explore this spectrum in more detail. In this experiment, we

fix the cost of the community provided “mobile sensors” to

1, and additionally allow applications to maintain dedicated

fixed sensors at a cost c ≥ 1. For a fixed budget L = 50, we

then try to find the optimal balance between static and mo-

bile sensors, maximizing the error reduction, while spend-

ing at most our budget L. We use the CELF algorithm de-

scribed in [19] to find this balance. This algorithm also ex-

ploits submodularity, and is guaranteed to find a solution

achieving at least a constant fraction of 1
2 (1 − 1/e) of the

optimal score.

Figure 3(b) presents the results of this experiment. For

each cost multiplier c, we plot the fraction of static sen-

sors contained in the approximate solution, as well as the

demand-weighted error incurred by this solution. For c = 1,

only static sensors are selected. However, even for c = 2,

only a small fraction of static sensors are selected, which

indicates that the mobile sensors very quickly become more

cost-effective. For c ≥ 4, no static sensors are selected.

Spatiotemporal querying: In our last experiment, we

consider the spatiotemporal observation planning problem.

Here, our goal is not just to decide which car to query,

but also when. More specifically, we consider an autore-

gressive model for three timeslices, 15 minutes apart. In

this setting, our phenomenon model captures the correla-

tion of road speeds across both space and time. Formally,

we associate a random variable Xs,t with each road seg-

ment s and each timestep t. We train our phenomenon

model by grouping subsequent triples of training exam-

ples (x
(t)
V ,x

(t+1)
V ,x

(t+2)
V ), and consider the empirical co-

variance of this data as the kernel of our GP. Because of the

sparseness of data, we consider demand Ds,t = Ds and

availability distributions as constant over time, and iden-

tical to the single time step variant. Similarly to the road

segments, we replicate the possible observations W for

each timestep: a single observation now is a pair (w, t) of

cell/user w and timestep t. When selecting an observation
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Figure 3. (a) Accurate phenomenon models can be learned just using topology information of the

road segment and knowledge about the correlation of only a few road segments. (b) cost-benefit

analysis between purely static sensors (no selection noise) and mobile sensors (selection noise). If

more than twice as expensive, static sensors become less cost-effective. (c) random and optimized

selection of cars and road segments in the spatiotemporal setting (0, 15 and 30 minutes timeslices).

(w, t), we effectively select a distribution P ((s, t) | (w, t))
over road segments at the same time step t.

We modify our objective function F (B) in order to ig-

nore observations made in the future. To ensure this, we

modify our objective R(A) in the following way:

R(A) =
∑

(s,t)∈V

E
[
Ds(Var(Xs,t) − Var(Xs,t | XA≤t

))
]

where A≤t ⊆ A refers to the subset of A corresponding to

road segments observed before or at time step t. Note that

the submodularity of F (B) holds just as in the single time

step variant.

Based on this modified objective, we now use the

greedy algorithm to select a set of observations B =
{(w1, t1), . . . , (wk, tk)} across sensors and time. We first

consider the restriction that we may query the same sen-

sor only once. Figure 3(c) presents the results of this ex-

periment. We can again observe that the optimized selec-

tion of sensors drastically improves over random sampling,

reducing the error from .43 to .29 in only 10 observa-

tions, whereas random sampling requires 40 observations to

achieve the same reduction in error. However, the discrep-

ancy between selecting cars and selecting road segments

gets larger in the spatiotemporal setting.

6. Discussion

Other applications: A great variety of community sens-

ing applications are feasible, beyond traffic monitoring.

Promising services include applications in fitness and recre-

ation, where community sensors such as cellphone cameras

can monitor the influence of construction and weather on

roads, paths, and trails. Physiological sensors such as heart

rate monitors can help model the current and forthcoming

effort required on biking trails. In other applications,

consumers may share imagery or audio of updated window

displays, restaurant quality, or service provider interactions.

Business headquarters may use community sensors to infer

customer interests, urban moods, franchisee performance,

and teen cultures. Real-time coverage of newsworthy

events and citizen concerns can also be achieved through

such systems.

For many applications the benefits of receiving shared

data (e.g., drivers 500 yards back on the freeway receive an

alert, “Get ready to stop—there’s been an accident ahead!”)

can provide sufficient incentive for sharing. For other ap-

plications, people may be provided with a variety of eco-

nomically sound reimbursements for contributing data. Im-

plementing means to comfortably share data lowers the cost

and can thus change the cost-benefit equation.

Related work: Some applications using privately owned

sensors are already being deployed in systems such as Sen-

sorBase.org, Weather Underground7, SlamXR8, and Mo-

tionBased.org. However, these systems purely rely on con-

tributed data, with no facility of actively soliciting data, as

considered in this paper. The SenseWeb system [9] has been

developed as a platform for sharing sensor data, and could

potentially be used as an infrastructure for integrating ob-

servations obtained using techniques described in this pa-

per. In [7] spatial dynamic voting (SDV) is proposed to in-

fer data demand, similar to our demand model. However,

they do not present techniques for integrated modeling of

phenomenon, demand, sensor availability and preferences

as done in this paper.

The problem of selecting observations for monitoring

spatial phenomena has been investigated extensively in geo-

statistics (c.f., [3] for an overview), and more generally

(Bayesian) experimental design (c.f., [1]). Heuristics for ac-

tively selecting observations in GPs in order to achieve uni-

form variance reduction have been proposed by [26]. Sensor

selection considering both the value of information together

7http://www.wunderground.com/
8http://www.msslam.com/slamxr/slamxr.htm
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with the cost of acquiring the information in the context of

sensor networks was first formalized in [32]. Submodular-

ity has been used to analyze algorithms for placing a fixed

set of sensors [12, 13] and coordinate mobile robots [27].

These approaches neither consider the case of highly uncer-

tain sensor availability nor address privacy concerns, such

as notions of selection noise, and user preferences about

data access as done in this paper.

7. Conclusions
We presented an approach to collect in an active manner

observations from privately held sensors by making data

sharing more acceptable. We developed formal models that

integrate sharing preferences with probabilistic models for

determining the value of probing different sensors to predict

a phenomenon, application demand for sensing accuracy,

and sensor availability. We described an algorithm to select

a near-optimal subset of observations, using the demand-

weighted error reduction as a measure of context-specific

value of information. We demonstrated the feasibility of our

approach on a realistic traffic monitoring application. For

this scenario, we estimated models for phenomena (road

speeds), demand (route-planning requests), and sensor

availability (likely presence of cars on road segments) from

real traffic data and driving traces. Our results indicate

that optimized selection of observations can significantly

reduce the number of queries needed to achieve a specified

level of accuracy. We believe that the community sensing

methodology and potential extensions hold promise for

unlocking streams of data from privately held sensors for a

wide spectrum of spatiotemporal phenomena. We hope that

the approach we have described will stimulate other efforts

to employ distributed sensors in a utilitarian manner while

observing preferences about privacy.
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