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Abstract

Routing protocols in multi-hop networks typically find
low cost paths by modeling the cost of a path as the sum
of the costs on the constituting links. However, the in-
sufficiency of this approach becomes more apparent as
new lower layer technologies are incorporated. For in-
stance, to maximize the benefit of multiple radios, ide-
ally we should use routes that contain low interference
among the constituting links. Similarly, to maximize the
benefit of network coding, we should ideally use routes
that create more coding opportunities. Both of these are
difficult to accomplish within the conventional routing
framework because therein the links are examined in iso-
lation of each other, whereas the nature of the problem
involves interdependencies among the links.

This paper aims at revealing a unifying framework for
routing in the presence of inherent link interdependen-
cies, which we call “context-based routing”. Through
the case studies of two concrete application scenarios in
wireless networks, network coding–aware routing and
self-interference aware routing in multi-radio systems,
we highlight the common key pillars for context-based
routing and their interplay: a context-based path metric
and a route selection method. We implement context-
based routing protocols in Windows XP and Linux and
evaluate them in detail. Experiments conducted on 2
testbeds demonstrate significant throughput gains.

1 Introduction
Routing in wireless mesh networks is a well studied
problem. A common practice is to model the cost of a
path as the sum of the costs on the constituting links,
where the link cost reflects the link quality, e.g., the per-
hop round-trip time (RTT) [1], the expected transmis-
sion count (ETX) [2], and the expected transmission time
(ETT) [4]). Routing then aims at finding the path offer-
ing the lowest total cost. However, the inadequacy of
this widely used approach becomes evident as new lower
layer technologies appear.

For example, a promising technique for improving the
capacity of wireless mesh networks is to use multiple ra-
dios. With multiple radios, more concurrent communica-
tions can be packed in spectrum, space and time. To max-
imize the benefit of multiple radios, ideally we should

use routes that contain low interference among the con-
stituting links. Another example is link layer network
coding, a recent advance [6] that exploits the broadcast
nature of the wireless medium. Network coding, on its
own, can improve the link layer efficiency. The gain of
this technique, however, critically depends on the traffic
pattern in the network, and hence the routing decisions.
To maximize the benefit of network coding, ideally we
should use routes that create more mixing opportunities.
In these scenarios, the conventional routing framework
does not perform well because therein the links are ex-
amined in isolation of each other. To fully leverage the
lower layer advances, we need advanced routing tech-
niques that can properly model the inherent interdepen-
dencies of the links in order to identify good routes.

Related Work: For multi-radio systems, some
progress has been made in selecting interference aware
routes. The WCETT [4] (Weighted Cumulative Ex-
pected Transmission Time) metric penalizes a path that
uses the same channel multiple times, thus modeling link
interference to some extent. However, WCETT assumes
that all links on a route that use the same channel in-
terfere, which does not incorporate the phenomenon of
spatial reuse and may miss high-throughput routes that
reuse channels carefully at links sufficiently apart (see
Figure 4). Moreover, [4] uses Dijkstra’s shortest path
algorithm. Although Dijkstra’s algorithm is optimal for
the conventional path metric, i.e. a sum of link costs, it
is not optimal for WCETT. Another proposal for interfer-
ence aware routing is the MIC (metric of interference and
channel-switching) metric [13, 14] and the authors also
showed how to find the optimal route under this metric
in polynomial time. However, to ensure finding the op-
timal path in polynomial time, the metric is forced with
some constraints (decomposability, fixed memory) that
may not match well with the nature of the underlying
link interdependencies. This can cause issues in model-
ing the costs of routes (see Figure 5), and as a result, the
path found can be inefficient.

Network coding–aware routing has been studied in
[8, 11] from theoretical perspectives. These papers pre-
sented theoretical, flow-based formulations for comput-
ing the throughput with network coding and network
coding–aware routing, assuming centralized control in
routing and scheduling. To characterize the gain of net-
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work coding, these theoretical studies showed that it is
necessary to examine two consecutive hops jointly, be-
cause of the link interdependency.

Overview: These previous studies have offered in-
sight in dealing with link interdependencies. This paper
aims at revealing a unifying framework for routing under
inherent link interdependencies, which we call “context-
based routing”. We proceed by studying two concrete ap-
plication scenarios: network coding–aware routing, and
self-interference aware routing. Through these case stud-
ies, we highlight the common key pillars for context-
based routing and their interplay, and provide a more
systematic treatment of these pillars. In particular, we
show how to overcome the shortcomings of the afore-
mentioned approaches for self-interference aware rout-
ing in multi-radio systems and also apply the techniques
more generally to other scenarios.

The first pillar is the concept of context-based link met-
rics, which can model the interactions among different
links in a route. Context refers to examining the cost of
each link based on what links are used prior to the cur-
rent link. Having such context allows us to evaluate the
“goodness” of routes by considering the impact of the
links on each other. More specifically, the conditional
link costs allow us to conveniently characterize effects
such as: (i) the self-interference caused by other links of
the same flow, and (ii) the reduction of channel resource
consumption due to the use of network coding.

The second pillar is an optimized route selection mod-
ule, which can search for good paths under a context-
based link metric. The interdependencies among the
links in a context-based link metric make it challenging
to search for a good path. To make things worse, some-
times the context-based link metric is by nature globally
coupled, meaning that the cost of a link can depend on
as far as the first link. We propose a general context-
based path pruning method (CPP). To model the context
of a partial path while avoiding the exponential growth
in the number of partial paths, CPP maintains a set of
paths that reach each node, corresponding to different lo-
cal contexts. Each local context can be viewed as a con-
cise summary of the dominating history of all the partial
paths that end with that local context1, based on the ob-
servation that older history usually has less impact on the
future. The best path under each local context is main-
tained and considered further for possible expansion into
a source–destination path.

The use of local contexts in path pruning is synergis-
tic with the use of contexts in cost modeling. Together,
these two pillars form a context-based routing protocol
(CRP), which outperforms existing approaches in sce-
narios where modeling link-interdependencies is critical.

1e.g. sequence of channels or links used in the previous l hops

The essence and key technical contribution of CRP lies
in (i) properly modeling the link interdependencies (via
the context-based metric) and (ii) handling the ensuing
algorithmic challenges in route optimization (via CPP).

We have implemented CRP on Windows XP and
Linux. While our current implementation assumes link-
state routing, other generalizations are also possible. Our
evaluations show that CRP provides TCP throughput
gains up to 130% and on average around 50% over state-
of-the-art approaches for multi-radio networks and gains
of up to 70% over state-of-the-art approaches for wire-
less network coding.

The rest of the paper is organized as follows: Section 2
defines context-based routing metrics and their applica-
tion to two scenarios. Section 3 describes a general tech-
nique of context-based path pruning for finding routes
under context-based routing metrics. Section 4 evaluates
the performance of the overall context-based routing so-
lution. Finally, Section 5 concludes the paper.

2 Context-Based Routing Metrics
In this section, we discuss what context-based routing
metrics are and how they help in modeling link interde-
pendencies. The common defining feature of context-
based metrics is that the cost of a link is context-
dependent (dependent on what links are already part of
the route). To make things concrete, we consider two
specific systems: multi-radio multi-channel networks
and single-radio networks equipped with network coding
and show how context-based metrics can better match the
nature of the problems.

2.1 ERC: Context-based metric for ex-
ploiting network coding

In this section, we define a context-based metric that can
help make better routing decisions in wireless networks
equipped with network coding.

In network coding, a node is allowed to generate out-
put data by mixing (i.e., computing certain functions of)
its received data. The broadcast property of the wire-
less medium renders network coding particularly useful.
Consider nodes v1, v2, v3 on a line, as illustrated in Fig-
ure 1. Suppose v1 wants to send packet x1 to v3 via v2

and v3 wants to send packet x2 to v1 via v2. A con-
ventional solution would require 4 transmissions in the
air (Figure 1(a)); using network coding, this can be done
using 3 transmissions (Figure 1(b)) [12]. It is not hard
to generalize Figure 1 to a chain of nodes. For packet
exchanges between two wireless nodes along a line, the
consumed channel resource could potentially be halved.

Katti et al. [6] recently presented a framework for net-
work coding in wireless networks, in which each node
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Figure 1: Network coding example.
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Figure 2: An example mesh network. There are 9 mesh access
points and v1 is a gateway to the wired network.

snoops on the medium and buffers packets it heard. A
node also informs its neighbors which packets it has
overheard. This allows nodes to know roughly what
packets are available at each neighbor (i.e., “who has
what?”). Knowing “who has what” in the neighborhood,
a node examines its pending outgoing packets and de-
cides how to form output mixture packets, with the ob-
jective of most efficiently utilizing the medium. These
prior studies result in a link layer enhancement scheme
in the networking stack. The network coding engine sits
above the MAC layer (e.g., 802.11) and below the net-
work layer. Given the routing decisions, the network
coding engine tries to identify mixing opportunities. The
gain of this technique, however, critically depends on the
traffic pattern in the network. This motivates the follow-
ing question: Can intelligent routing decisions maximize
the benefits offered by network coding?

A natural thought is to modify the link metrics to ac-
count for the effect of network coding in reducing trans-
missions. This, however, is not straightforward. Con-
sider the example setting illustrated in Figure 2. There
are two long-term flows in the network, v3 → v2 → v1

and v1 → v4 → v7. We want to find a good routing
path from v1 to v9. Due to the existence of the network
coding engine, the route v1 → v2 → v3 → v6 → v9

is a good solution because the packets belonging to this
new flow can be mixed with the packets belonging to the
opposite flow v3 → v2 → v1, resulting in improved re-
source efficiency. To encourage using such a route, can
link v2 → v3 announce a lower cost? There are some is-
sues in doing so, because a packet from v5 that traverses
v2 → v3 can not share a ride with a packet from v3 that
traverses v2 → v1, although a packet from v1 that tra-
verses v2 → v3 can.

Thus, in the presence of the network coding engine,
assessing the channel resource incurred by a packet

transmission requires some context information about
where the packet arrives from. For example, we can
say that given the current traffic condition, the cost for
sending a packet from v2 to v3, that previously arrives
from v1, is smaller. The key observation here is the need
to define link cost based on some context information2.
Specifically, for this application, we model the cost of
a path P = v0 → v1 → . . . → vk as the sum of the
conditional costs on the links:

cost(P)
∆
=cost(v0 → v1) + cost(v1 → v2|v0 → v1) + . . .

+ cost(vk−1 → vk|vk−2 → vk−1). (1)

Here cost(b → c|a → b) denotes the cost of sending a
packet from b to c, conditioned on that the packet arrived
from a. The central issue is to properly define the link
costs and compute them. Let us begin by reviewing a
conventional (unconditional) link metric. A popular link
quality metric in the literature is the expected transmis-
sion count (ETX) [2]. This metric estimates the num-
ber of transmissions, including retransmissions, needed
to send a unicast packet across a link. The ETX metric
is a characterization of the amount of resource consumed
by a packet transmission.

We now describe how to define a conditional link met-
ric to model the resource saving due to network coding.
With network coding, several packets may share a ride
in the air. Naturally, the passengers can share the air-
fare. In effect, each participating source packet is get-
ting a discount. Such a discount, however, cannot be
accurately modeled by an unconditional metric such as
ETX, because the applicability of the discount depends
on the previous hop of the packet. We propose a condi-
tional link metric called the expected resource consump-
tion (ERC), which models the cost saving due to network
coding. Consider a packet sent in the air. If it is a mixture
of k source packets, then each ingredient source packet
is charged 1

k
the resource consumed by the packet trans-

mission. The resource consumed could be measured in
terms of, e.g., air time, or consumed energy.

Computation of Expected Resource Consumption
(ERC) We now explain how to concretely compute the
ERC. Each node maintains a WireInfoTable. Each
row of the table contains the measured statistics about a
wire. A wire is a virtual link that connects an incoming
and outgoing link from a node (connected the past and
future hop), e.g. ei,j → ej,k, which crosses the current
node vj . A cost of a wire ei,j → ej,k represents the con-
ditional cost cost(j → k|i → j). The packets forwarded
by the current node can be classified into categories asso-
ciated with the wires. A packet that is received along ei,j

and sent along ej,k falls into the category “ei,j → ej,k”.

2For network coding, limiting context to the previous hop suffices.
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For each wire category, we collect the total number of
packets sent and the total resource consumed in a slid-
ing time window. The total resource consumption is ob-
tained by adding the resource consumption for each sent
packet. A simple charging model is used in our current
implementation. For example, if a source packet across
wire ei,j → ej,k is sent in a mixture of 3 packets, we set
the resource consumption of this source packet as 1/3 of
the ETX of link ej,k. (We could also use ETT [4] in lieu
of ETX.)

To implement the sliding window computation effi-
ciently, we quantize the time axis into discrete slots of
equal length. We use a sliding window of N slots. For
each wire, we maintain a circular buffer of N bins; at any
time, one of the N bins is active. At the start of each slot,
we shift the active bin pointer once and clear the statistics
in the new active bin. Each time a packet is transmitted
in the air, we update the statistics in the current active bin
accordingly. We use N = 10 slots, each of length 0.5s.

To evaluate the conditional link metric for a certain
wire ei,j → ej,k, we first obtain the ERC for each slot,
say n, as: ercn := Resource consumed by pkts sent in slot n

# of packets sent in slot n
. Then

we compute the ERC for the wire as the weighted aver-
age of the ERCs for the slots:

ERC :=

N−1
∑

n=0

αnercn; αn = αN−1−n

(

1 − α

1 − αN

)

.

(2)

Here the parameter α is the forgetting factor for old ob-
servations. Older observations receive lower weights. In
the simulations, we use α = 0.8.

The above measurement method generates an estimate
of the current ERC, which is the ERC seen by a flow
whose packets are currently being mixed. To bootstrap
new flows to favor routes that expose mixing opportu-
nities, in addition to the current ERC, we also collect
another statistic called the marginal ERC. The marginal
ERC reflects the potential new ERC, i.e., with discount,
for a wire if a new flow decides to use a route that con-
tains that wire. A flow decides on its initial route or
switches to a new route based on the marginal ERC. Af-
terwards, the current ERC for each wire in the chosen
route is updated and is used instead. If the existing flows
already use up most of the mixing opportunities, then
the marginal ERC will not have a high discount. Both
the current ERC and the marginal ERC are reported.
To compute the marginal ERC, a simple rule is applied
in our current implementation. Specifically, for a wire
eij → ejk in a given time slot, we examine the number
of unmixed packets y in the reverse wire ekj → eji. If
y ≥ 25, then we set the marginal ERC as 0.75 of the ETX
(25% discount); otherwise, we set the marginal ERC as
the ETX (no discount).

Dealing with oscillation ERC takes the traffic load
into account. Could this cause oscillation in the rout-
ing decisions? The advertised discounts are conditional
by definition; hence they typically only apply to a spe-
cific set of flows (those that can be mixed with the exist-
ing flows at a node). For example, node v2 in Figure 2
might advertise a smaller conditional cost, cost(v2 →
v3|v1 → v2) < cost(v2 → v3), to reflect that traffic go-
ing v1 to v2 and then v3 can be mixed with the existing
flows. Such conditional discounts can only be taken ad-
vantage by flows that uses the segment v1 → v2 → v3.
There is incentive for this specific set of flows to route
in a certain cooperative manner that are mutually bene-
ficial. Presumably, if the flows try such a mutually ben-
eficial arrangement for some time, they will confirm the
discounts and tend to stay in the arrangement. To pre-
vent potential route oscillations, we require each flow to
stay for at least Thold duration after each route change,
where Thold is a random variable. The randomization of
the mandatory route holding time Thold is used to avoid
flows from changing routes at the same time. In addi-
tion, after the mandatory route holding duration, the node
switches to a new route only if the new route offers a no-
ticeably smaller total cost.

In summary, using context conveniently represents
paths that benefit from network coding. We now show
another example of a context-based metric for networks
with multiple-radios.

2.2 SIM: Context-based metric for exploit-
ing multiple radios

In this section, we define a context-based metric that can
help make better routing decisions in wireless networks
equipped with multiple radios.

Consider a multi-hop wireless network equipped with
multiple radios. Similar to [4], we assume each radio
is tuned to a fixed channel for an extended duration; a
route specifies the interfaces to be traversed. We define a
context-based SIM (self-interference aware) metric, as a
weighted sum of two terms:

SIM(P)
∆
= (1 − β)

∑

k

ETT(ek) + β max
k

ESI(ek|Pk−1).

(3)

where ek is the k-th edge along the path P .
The first term is the sum of the expected transmission

time along the route. The ETT [4] metric aims at esti-
mating the average transmission time for sending a unit

amount of data. It is defined as: ETT ∆
= PktSize·ETX

Link Bit-Rate .

ETX [2] is computed as ETX ∆
= 1/(1−p), where p is the

probability that a single packet transmission over link e is
not successful. The link bit-rate can be measured by the
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technique of packet pairs and this method can produce
sufficiently accurate estimates of link bandwidths [3].

ESI of the Bottleneck Link The second term caculates
the estimated service interval (ESI) at the bottleneck link,
which reflects how fast the route can send packets in the
absence of contending traffic. Note that the max oper-
ation is used here instead of the sum operation. This
can be explained by a pipeline analogy. In a pipeline
system consisting of several processing stages, the long
term throughput is determined by that of the bottleneck
stage, rather than the average throughput of the stages.
Sending packets along a wireless route is similar. The
long term throughput of a flow is determined by that of
the bottleneck link.

The ESI of a link is defined as:

ESI(ek|Pk−1)
∆
= ETT(ek) +

∑

j<k

pjkETT(ej). (4)

Here Pk−1 is the partial path with k − 1 links, and pjk

is a binary number that reflects whether ej and ek in-
terfere. Characterizing the interference relations among
the links is itself a research challenge. For instance,
one method is to make use of actual interference mea-
surement; see, e.g., Padhye et al. [9] and the references
therein. Consider two links, A → B and C → D, using
the same channel. As suggested in [9], for 802.11 net-
works, the primary forms of interference are four cases:
(i) C can sense A’s transmission via physical or virtual
carrier sensing, and hence refrains from accessing the
medium, (ii) A can sense C’s transmission, (iii) trans-
missions of A and C collide in D, (iv) transmissions of
A and C collide in B. Based on this, we adopt a simpli-
fied approach in the experiments of this paper. We treat
the two links as interfering if A has a link to C or D with
sufficiently good quality, or C has a link to A or B with
sufficiently good quality.

The ESI expression (4) leaves out the interference
caused by other contending traffic. This is a simplifi-
cation in modeling. The ESI expression (4) considers the
self-interference from the previous hops of the route, by
adding up the expected transmission times of the previ-
ous links. The intuition is that the packets at the link
needs to share the channel with the interfering links on
the route. One might ask why we do not add the ETTs
from the subsequent links on the path, even though both
previous and subsequent links can create interference.
The following theorem provides an answer.

Theorem 1 (Interpretation of Bottleneck ESI)
Assuming ideal scheduling, sufficiently long flow,
absence of contending traffic, and an ideal binary
interference model dictated by a conflict graph, the
end-to-end throughput of 1/ maxk ESI(ek|Pk−1) is
achievable.

Time

e1

e2

e3
e4

e5

e6

Figure 3: An interference-free scheduling of links. Assume
ek interferes with ek−1,ek−2, ek+1, ek+2. A shaded region for
a link ek indicates that ek is using the medium.

Proof: Under the assumptions in the claim, finding the
optimal end-to-end throughput essentially amounts to
finding an optimal interference-free scheduling of the
uses of the constituting links. If we can schedule each
link to transfer B bits in T seconds, then the throughput
B/T can be achieved. It is well known that this prob-
lem can be viewed as a continuous version of the graph
coloring problem on the conflict graph.

In greedy coloring algorithms, nodes in a graph are
visited one by one. Each node tries to reuse some ex-
isting colors if possible. If not, the node selects a new
color. With this procedure, it is easy to see that the graph
can be colored in ∆(U) + 1 colors, where ∆(U) is the
maximum degree of a vertex. Notice that the greedy col-
oring algorithm always look at the already colored nodes,
but not future nodes. Hence in fact the upper-bound
can be tightened to one plus the maximum number of
already-colored neighbors for the nodes. We now apply
a greedy-coloring like algorithm for scheduling the links
on a route. This is illustrated in Figure 3 for a path with
6 links. We visit the links on the route sequentially, from
the first hop to the last hop. For each link ek, find one
or more intervals with a total length of ETT(ek) that do
not cause interference with any of the previous k − 1
links. Similar to greedy coloring, when assigning the
intervals to a link, we only need to examine the previ-
ous links, but not future links. With this greedy schedul-
ing process, we can finish the assignment in a total dura-
tion of maxk ESI(ek|Pk−1). If we repeat this scheduling
pattern for a sufficiently long time, then we can deliver
one packet end to end every maxk ESI(ek|Pk−1) (sec).
Hence the throughput is achievable.

The above theorem shows that the bottleneck ESI cor-
responds to a theoretically achievable throughput. Con-
versely, if a link ek interferes with a set F of previ-
ous links, then typically links in F ∪ {ek} would be
expected to mutually interfere (hence forming a clique
in the conflict graph). If that indeed is the case,
then we cannot deliver more than one packet end to
end every maxk ESI(ek|Pk−1) (sec). This argument
shows that the maximum throughput is roughly around
1/ maxk ESI(ek|Pk−1).
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Figure 4: (a) Chain topology. Each node has 3 radios on
orthogonal channels 1, 2, 3. (b) Route selected by using the
WCETT metric. (c) Route selected by using the SIM metric.

Related Work: Comparison with Other Metrics
The bottleneck ESI models self-interference. The pre-
viously introduced metrics, WCETT and MIC, also con-
sider self-interference. We now compare the proposed
SIM metric with WCETT and MIC.

The WCETT metric proposed by Draves et al. [4] is
defined as:

WCETT(P)
∆
=(1 − β) ·

∑

ek∈P

ETT(ek) + β · max
Channel j

Xj ,

Xj
∆
=

∑

ek is on channel j

ETT(ek). (5)

Here ek denotes the k-th hop on the path P and β is a
weighting factor between 0 and 1. The WCETT metric
is a weighted sum of two terms. The first term is the
sum of the ETT along the path. The second term aims at
capturing the effect of self-interference. A path that uses
a certain channel multiple times will be penalized.

Although WCETT considers self-interference, it has
some drawbacks. Consider the following example. Fig-
ure 4(a) shows a chain topology, where each node has
three radios tuned to orthogonal channels 1,2,3. We as-
sume two links within 2 hops interfere with each other
if they are assigned the same channel. We further as-
sume all links have similar quality. An ideal route in
this setting is then a route that alternates among the three
channels, such as the one illustrated by Figure 4(c), be-
cause it can completely avoid self-interference. Fig-
ure 4(b) shows a possible solution returned by WCETT.
This route suffers from primary interference as well as
secondary interference. This can be explained by the
way WCETT models self-interference. From (5), it is
seen that WCETT views a path as a set of links. In this
example, it tries to maximize channel diversity by bal-
ancing the number of channels used on the path. Thus
the path in Figure 4(b) and the path in Figure 4(c) appear
equally good under WCETT.

In essence, WCETT takes a pessimistic interference
model that all links on the same channel in the route

� � �

�

��� ���

��� ���

Figure 5: Under the MIC metric, it is possible that the route
A → B → D → B → C has a lower cost than the route
A → B → C. Edges are labeled with the channels.

interfere with each other. Indeed, if we use this inter-
ference model, then SIM reduces to WCETT. The pro-
posed SIM metric models self-interference can differen-
tiate different ordering of the links in the path and find
the optimal path for this example. The benefit is that
SIM potentially allows better channel reuse.

Another self-interference aware metric is the metric of
interference and channel-switching (MIC), proposed by
Yang et al. [13, 14]. The MIC metric is defined as:

MIC(P)
∆
= α

∑

ek∈P

IRU(ek) +
∑

Nodei∈P

CSCi, (6)

IRU(ek)
∆
= ETT(ek) × Nk, (7)

CSCi
∆
=

{

w1 if previous hop is on a different channel,

w2 otherwise. 0 ≤ w1 < w2.

(8)

Here α > 0 is a weighting factor to balance the two
terms. In (7), Nk is the number of neighbors in the
network that interferes with the transmission of link ek.
The IRU (interference-aware resource usage) term aims
at reflecting the inter-flow interference. A link that in-
terferes with more neighbors will be penalized. The
CSC (channel-switching cost) aims at reflecting the self-
interference, since it penalizes consecutive uses of the
same channel.

The total CSC term (8) in the MIC metric models the
self-interference by considering the immediate previous
hop. As an extension, the authors also considered the
extension of the MIC metric to model self-interference
for more than one hops [14]. However, a potential lim-
itation with the MIC metric and its multi-hop extension
is that it has a fixed limited memory span. Consider the
example in Figure 5. Suppose the links between nodes A
and B have very low costs. Under the MIC metric, it is
possible that the route A → B → D → B → C has a
lower cost than the route A → B → C. Since the path is
selected by optimizing the metric, it is unclear whether
the MIC metric can rule out the possibility of selecting
a pathological path, which has self-interference that are
not modeled in the MIC expression.

Compared with the MIC metric, the SIM metric con-
siders the possible interference with all previous hops.
This avoids the pathological case as shown in Figure 5.
In addition, whereas the link CSCs are summed up in (6),
SIM uses the maximum ESI. The use of the maximum
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operation can better reflect the fact that the throughput is
determined by the bottleneck link.

3 Context-Based Path Pruning
The previous section showed two concrete examples of
how context helps in making routing metrics more pow-
erful. After defining a good context-based path metric,
the subsequent challenge is to find the optimal (or near-
optimal) route under the path metric. A context-based
routing protocol needs both a context-based metric and a
way to find good paths under such metrics. In this sec-
tion, we develop such a path finding method called CPP
(Context-based Path Pruning) that can find paths under
any generic context-based metric. As a starting point,
we first consider a link state routing framework. In link
state routing, each router measures the cost to each of
its neighbors, constructs a packet including these mea-
surements, sends it to all other routers, and computes
the shortest paths locally. Hence for link state routing,
what is needed is a centralized algorithm for computing
the shortest paths. The CPP method will be explained
as a centralized algorithm. But we note that it can also
be applied in some distributed settings, such as distance
vector protocols and on-demand route discovery; these
extensions are omitted in the interest of space.

Let us begin by reviewing the (simpler) problem of
finding the optimal path under a path metric where each
link has a nonnegative cost and the cost of a path is the
sum of the costs of the constituting links. This problem
is well understood. For example, the classical shortest
path algorithm by Dijkstra can be applied to find the op-
timal path with complexity O(|V |2), where |V | denotes
the number of nodes in the network. Dijkstra’s algo-
rithm maintains upper-bound labels f(v) on the lengths
of minimum-cost s–v paths3 for all v ∈ V . The label of
each node is either temporary or permanent, through the
execution of the algorithm. At each iteration, a tempo-
rary label with the least total cost is made permanent and
the remaining temporary labels are updated. Specifically,
if v∗ has the minimum total cost among the temporary
nodes, then we update the cost of every other temporary
node w as:

f(w) := min {f(w), f(v∗) + c(v∗w)} . (9)

Dijkstra’s algorithm operates on an optimality princi-
ple: The shortest path from s to t via v is the shortest
path from s to v concatenated with the shortest path from
v to t. Thus, each node only needs to remember the cost
of the best s–v path. Such optimality principle no longer
holds for metrics such as SIM, ERC or WCETT; for such

3An s–v path refers to a path that begins at s and ends at v.

metrics, an s–v path P1 may have a larger cost than an s–
v path P2 but may eventually lead to a lower cost toward
the final destination node t.

We propose a context-based path pruning (CPP) tech-
nique as a heuristic method for optimizing a context-
based metric. To model the potential impact of past hops
on future hops, we maintain a set of paths that reach each
node v, instead of a single s–v path with minimum cost.
A natural question is: How many paths should we store
at each node as we search for a good s–t path? Storing
all paths would apparently result in an exponential com-
plexity. To keep the complexity manageable, we main-
tain only a small subset of s–v paths at a node v; the size
of the subset is constrained by the affordable computa-
tion complexity. Ideally we want this small set to cover
all “promising” s–v paths, which have the potential of
leading to an optimal s–t path. How do we select this set
then? Consider dividing an s–t path into three parts as:

s
P1

 u
P2

 v
P3

 t. (10)

A good route in a wireless mesh network typically moves
in the direction toward the destination. If the second part

P2 is sufficiently long, typically the first segment s
P1

 u

would be well separated from the third segment v
P3

 t;
as a result, there would not be a strong interdependency
between the first and the third segment. In other words,
the link interdependencies of a wireless route are typi-
cally localized in nature. This observation motivates us
to organize the memory at each node according to sev-
eral local contexts. As a concrete example, we can define
the local context of an s–v path as the sequence of links
in the last l hops, where l is a predetermined parameter.
Under this definition, if P2 in (10) is l-link long, then the

local context of the s–v path s
P1

 u
P2

 v is the sub-
path P2. The s–v paths with the same local contexts are
grouped together. During the execution of the proposed
algorithm, node v always keeps only one s–v path under
each local context, i.e., the minimum cost one found so
far in the algorithm execution. The algorithm works by
examining the paths stored at the nodes and considering
them for potential expansion into an s–t path.

In the above we have given a concrete example def-
inition of the local context, where the local context of
an s–v path is defined as the sequence of links in the
last l hops, where l is a predetermined parameter. For
the scenario of network coding–aware routing, we use
this definition with l = 2. As another concrete exam-
ple, we can define the local context of an s–v path as the
the sequence of channels taken by the links in the last l
hops. This definition is useful for the scenario of self-
interference aware routing. In general, the definition of
local contexts is problem specific.

More formally, Algorithm 1 shows a Dijkstra-style in-
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Algorithm 1 A Context-based Path Pruning Method
INPUT: A function that can evaluate the cost of a path.
T := {s}; /* The set of temporary paths. */
P := ∅; /* The set of permanent paths. */
while T 6= ∅ do

choose the path P∗ from T with the minimum cost;
T := T −P∗; P := P + P∗;
for each valid extension of P∗, P = P∗ + e, do

c := LocalContext(P); /* The definition of local contexts
is problem specific. Two examples are: the sequence of links
in the last l hops, and the sequence of channels taken by the
links in the last l hops. */
if T ∪ P contains a path Q with local context c then

replace Q by P if it has a lower cost than P ;
else

T := T + P ;
end if

end for
end while
OUTPUT: For each node v, find the best local context c

∗(v) result-
ing in minimum cost. For each context c of each node v, store the
best link reaching it with minimum cost. To recover a route from v

to s, back-track from c
∗(v) along the best links toward s.

A B C D

1.01.0 1.0
1.11.0

1.1

Figure 6: An example graph. There are three orthogonal chan-
nels, CH1, CH2, CH3, from top to bottom. The edges are la-
beled with their ETT.

stantiation of the CPP method. We maintain a set T of
temporary paths and a set P of permanent paths4. In each
step, we choose the temporary path with minimum cost.
Such a path, say P∗, is made permanent. Then we con-
sider the possible ways of extending P∗ toward an s–t
path. For each extension P = P∗ + e, we determine its
local context and search for a path with the same local
context in T and P . If a path with the same local context
already exists, then such existing path is compared with
P and the winner is retained. If a path with the same
local context does not exist, then P is added to T .

There is an alternative way to understand the CPP
method. For each physical node v, introduce one ver-
tex vc for each local context c applicable to v and inter-
connect the vertices according to original connectivity.
Denote such a context-expanded graph by Gc. We can
interpret Algorithm 1 as applying a revised version of
the Dijkstra’s algorithm to the expanded graph Gc. More
specifically, since here the path metric is not decompos-
able, the cost update step (9) needs to be revised. Instead
of using (9), node v∗ first reconstructs the current best

path from the source, say s
P
 v∗. Then each neighbor

4Permanent and temporary paths are concepts used in the path-
finding algorithm. These notions are extended from the original Dijk-
stra’s algorithm. In Algorithm 1, temporary paths (reaching a specific
context) are still subject to improvement (in terms of cost minimiza-
tion) in the algorithm execution. In each step, the temporary path with
minimum cost is made permanent. Only permanent paths will be con-
sidered for expansion into a longer path.

B[1]

B[2]

B[3]

A
C[1]

C[2]
D[1]

Figure 7: Expanded graph when the local contexts are defined
by the previous hop’s channel ID. X[i] corresponds to the local
context where the incoming link is on channel i.

B[-1]
B[-2]
B[-3]

A

B[11]
B[12]
B[13]
B[21]
B[22]
B[23]
B[31]
B[32]
B[33]

C[-1]
C[-2]
C[-3]
C[11]
C[12]
C[13]
C[21]
C[22]
C[23]
C[31]
C[32]
C[33]

D[-1]
D[-2]
D[-3]
D[11]
D[12]
D[13]
D[21]
D[22]
D[23]
D[31]
D[32]
D[33]

Figure 8: Expanded graph when the local contexts are defined
by the previous two hops’ channel IDs. Here X[ij] corresponds
to the context where this node is reached via a link in channel
i, followed by a link in channel j. X[−j] refers to the local
context where this node is directed reached from the source via
a link in channel j.

node w of v∗ is updated using the following path-based
update rule:

f(w) := min
{

f(w), cost
(

s
P
 v∗ → w

)}

, (11)

where cost(·) returns the path metric.
We now start from the network in Figure 6 and show

how to construct context-expanded graphs for it. Here
there are there orthogonal links from A to B, two links
from B to C, and one link from B to C. The ETT
metrics for the links are shown on the links. Consider
β = 0.5 and the SIM metric (3). In this example, Di-
jkstra’s algorithm using the path-based update rule (11)

will return A
CH1
−→ B

CH2
−→ C

CH1
−→ D, with a total cost of

0.5∗(1.0+1.1+1.0)+0.5∗max{1.0+1.0, 1.1} = 2.55.

Figure 7 shows the expanded graph for the case the lo-
cal contexts are defined by the previous hop’s channel ID.
Taking the original node B as an example, there are three
nodes in Gc, which are associated with three channels
to reach B. To connect Algorithm 1 with running Di-
jkstra’s algorithm using the path-based update rule (11)
over the expanded graph, we can view each node as stor-
ing the optimal path reaching it from the source; the opti-
mal path can be obtained by backtracking along the best
links that reach each node. In this case, the optimal route

found is A
CH2
−→ B

CH1
−→ C

CH1
−→ D, with a total cost of

0.5∗(1.0+1.0+1.0)+0.5∗max{1.0+1.0, 1.0} = 2.5.

If the local contexts are defined by the previous two
hops’ channel IDs, then the resulting expanded graph
would be the one shown in Figure 8(c). This will yield
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the optimal route A
CH3
−→ B

CH2
−→ C

CH1
−→ D, with a total

cost of 0.5∗(1.1+1.1+1.0)+0.5∗max{1.1, 1.1, 1.0} =
2.1.

Handling the ERC metric is simpler for CPP since
ERC simple has one-hop of memory. Thus the local con-
text is simply defined as the previous hop on which the
packet arrived instead of specifying the channel. This
shows that CPP is a generic technique which can be
used for many context-based metrics by defining the lo-
cal contexts in accordance with the definition of the met-
ric being used.

Optimality If the path metric indeed has a fixed mem-
ory span (say, l hops) such as in ERC, then CPP with
the local context defined by the l-hop links is guaranteed
to find a route that minimizes the given path metric (be-
cause no pruning step is suboptimal). In our case, the
SIM path metric has a memory span that could poten-
tially involve the entire path history. Even if the path
metric has a longer memory span than the length of the
local contexts, the CPP method can still be applied as an
effective heuristic method.

Related Work: Comparison with the Route Selec-
tion Method in [13, 14] Yang et al. [13, 14] proposed
a method for finding the optimal route under the MIC
metric (6) and its multi-hop generalization in polynomial
time complexity. The method hinges upon the fact that
the path metric is decomposable into a sum of link costs,
where the cost of a link depends only a fixed number of
previous hops; in other words, the path metric is additive
and has a fixed memory span. In [13,14], a virtual graph
is constructed, by introducing virtual vertices and edges
to represent different states; each edge has an associated
cost. Then finding an optimal route under the decom-
posable, finite-memory metric in the original problem
becomes the problem of finding an optimal path in the
virtual graph under a memoryless metric, where the cost
of a path is simply the sum of the costs of the constitut-
ing edges. Therefore, for the additive path metric with a
fixed memory span, the optimal solution can be found in
polynomial time.

In comparison, the CPP method is applicable for all
path metrics, not only when the path metric is decom-
posable and has finite memory. A key feature of the CPP
method is the explicit differentiation of two memories:
the path metric’s memory and the local context’s mem-
ory. The path metric’s memory can be chosen to best
model the path cost. For instance, the path metric based
on ERC has 2-hop memory; the SIM path metric has
global memory. However, the local context’s memory
will be chosen based on complexity. These two mem-
ories need not be equal length. When the path metric
is decomposable and has finite memory, CPP can also
find the optimal answer, by using a local context with the

same memory length as the path metric. When the path
metric is not decomposable, CPP can still be used, as a
heuristic method. This comes from the fact that CPP op-
erates by always examining the partial-paths from s and
applying the path metric to evaluate their costs, which is
apparent from Algorithm 1, as well as the path-based up-
date rule in (11). Observe also that the edges in Figures 7
and 8 do not have associated costs, in contrast to the vir-
tual graph in [13,14]. Although the local context used in
CPP only has limited information about the path history,
the path metric has the information of the complete path
and can properly take into account any local or global
link interdependency. This mix of “local” memory and
“global” path evaluation metric is a distinct feature of the
CPP method, rendering it generally applicable and effi-
cient.

Complexity As we mentioned earlier, Algorithm 1 can
be essentially viewed as applying Dijkstra’s algorithm
with the path-based update rule (11) over the expanded
graph. Note though that in Algorithm 1, the involved
vertices and links are constructed on the fly, without ex-
plicitly maintaining the expanded graph. Due to the con-
nection between Algorithm 1 and Dijkstra’s algorithm,
we can easily conclude that the time complexity of the
Algorithm 1 is O(C2), where C is the total number of
local contexts at all nodes. If we define the local con-
text of a path as the sequence of channels taken by the
links in the last l hops, then C is upper-bounded by
(K + K2 + . . . + K l) ∗ |V (G)|, where K is the number
of channels in the system and V (G) is the set of nodes in
the original network. For practical purposes, we specifi-
cally propose to use l = 2; see Figure 8 for an example
definition of the local contexts. This would lead to a spe-

cific complexity of O
(

(

(K + K2) · |V |
)2

)

.

4 Performance
This section documents our experience with the Context
Routing Protocol using simulations and a real deploy-
ment. CRP was implemented on both WindowsXP as
well as Linux.

4.1 Evaluation Methodology
Simulation Setup We implemented CRP in QualNet
3.9.5, a widely used simulator for wireless networks.
CRP was implemented with support for multiple inter-
faces, ETX and packet pair probing for ETT calculations,
periodic dissemination of link metrics, the WCETT, SIM
and ERC metrics and the CPP route selection method.
The simulations use the 802.11a MAC and a two-ray
fading signal propagation model. All radios operate at
a nominal physical layer rate of 54 Mbps and support
autorate. We use both UDP and TCP flows in the evalu-
ation. The simulations use 2-hop context length for SIM

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 387



Figure 9: The topology of the wireless testbed A.

and 1-hop context length for ERC. We also implemented
a complete version of COPE network coding [6] in Qual-
Net as a shim layer based on the protocol description.

Testbed Setup We implemented CRP on Windows
XP and Linux and tested it on two separate wireless
testbeds. CRP for Windows was implemented by ex-
tending the MR-LQSR protocol [4] implementation as
a loadable Windows driver that sits at layer 2.5. CRP
appears like a single virtual network adapter to applica-
tions by hiding the multiple physical interfaces bound to
it. This allows unmodified applications to run over CRP.
Routing operates using 48 bit virtual Ethernet addresses
of the MCL adapter in each node. This choice for our
CRP implementation allows a direct and fair comparison
with the WCETT metric since it is based on the same un-
derlying codebase. The CRP code uses 2-hop channel ids
as context. CRP on Linux was implemented by extend-
ing the SrcRR routing protocol from the RoofNet project.
We also used the publicly available COPE implementa-
tion from the authors of the protocol to implement net-
work coding. This implementation was available only
for Linux. CRP disseminates link metric information pe-
riodically similar to MR-LQSR. For multi-radio routing,
CRP introduces no additional control overhead in link-
state packets. The only cost is the additional memory re-
quired for computation of routes which is not significant
even for large networks with lot of radios. For network-
coding aware routing, CRP piggybacks additional infor-
mation on link-state updates (i.e. the conditional met-
rics). This results in slightly larger update packets when
network coding opportunities are available.

The CRP protocol was deployed on two testbeds: (1)
A 14 node wireless testbed running Windows XP (net-
work A), and (2) A 20 node wireless testbed running
Mandrake Linux (network B). Network A is located on
a floor of an office building in Redmond and is illus-
trated in Figure 9. 10 of the nodes are small form factor
HP desktops each with 3 DLink AWG132 802.11a/b/g
USB cards while 4 nodes are Toshiba tablet PCs with
one Netgear WAG511 802.11a/b/g PCMCIA card and 2
DLink AWG132 802.11a/b/g cards. The driver config-
urations are modified to allow multiple cards from the
same vendor to co-exist in a machine. The radios on each
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Figure 10: The topology of the wireless testbed B.

node have their own SSID and are statically assigned the
802.11a frequencies 5180, 5240 and 5300 GHz. Thus,
the 42 radios form three 14-node networks each with its
own frequency and SSID glued together through the CRP
virtual adapter. Each radio works in ad-hoc mode and
performs autorate selection. The OS on each machine
implements TCP-SACK. Finally, the nodes are static and
use statically assigned private IPv4 addresses. The re-
sults are expected to not be significantly affected by ex-
ternal interference since no other 802.11a network was in
the area. Network B is located across 3 academic build-
ing at Purdue University and is shown in Figure 10. The
machines are small form factor HP desktops each with
an Atheros 802.11a/b/g radio and run Linux.

4.2 Simulation Results
We first demonstrate the performance of CRP in a con-
trolled and configurable simulator setting.

4.2.1 CRP in a Frequency Reuse Scenario

The first scenario demonstrates how CRP can exploit fre-
quency reuse opportunities in a correct way. We consider
a chain of 10 nodes separated by 300m, each with 3 ra-
dios on 3 orthogonal channels. The transmission power
used causes interference to nodes even two hops away
which is typical in real networks. Figure 11 shows the
routes selected by using WCETT (on top) and CRP (be-
low).

Notice the route selected by WCETT: while it max-
imizes channel diversity, i.e., each channel is used ex-
actly equally (3 times), it cannot optimize the ordering of
the channel use (as explained in Section 2.2) while CRP
chooses the optimal route. How does this route selec-
tion impact performance? Figure 11 also shows the UDP
and TCP throughput achieved using ETT, WCETT and
CRP on this chain topology. The results show that CRP
route selection has a significant impact on performance
improving UDP throughput by 166% over WCETT and
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Figure 11: Performance under frequency reuse.
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Figure 12: Performance under heterogeneous nodes.

over 1000% compared to ETT. For TCP, CRP improves
the throughput by around 44% and 91% with respect
to WCETT and ETT, respectively. Thus, CRP is able
to select a path with high raw capacity. However, the
gains are reduced due to TCP’s known inability to reach
the available bandwidth effectively in multi-hop wireless
networks (which is also amplified by the long chain). An
interesting aspect to note here is that the benefit comes
from using the SIM metric and either CPP or Dijkstra’s
algorithm would choose the correct route. However, the
next section shows when SIM by itself is not enough and
demonstrates the usefulness of context-based path selec-
tion.

4.2.2 CRP in a Heterogeneous Node Scenario

In this scenario, we consider a simple 3 node topology as
shown in Figure 12. Node A and B have 2 radios tuned
to channel 1 and 2 while node C has one radio tuned
to channel 1. Even in such a simple topology, WCETT
and ETT are unable to choose the good route which can
simply be decided by observation. This is because of
the ‘forgetfulness’ of Dijkstra. Once the route to B is
decided simply based on the lowest metric to get to B,
it cannot be changed. Thus, both ETT and WCETT in
MR-LQSR choose the path with both hops on channel 1
while CRP chooses the path with channels 1 and 2 since
CRP does not finalize the interface used to reach B right
away. Figure 12 shows that the CRP route improves the
TCP throughput by 108% and UDP throughput by 102%
over both WCETT and ETT. Note that the performance
improvement is similar for TCP and UDP since in a two-
hop scenario, TCP is better able to utilize the available
bandwidth.
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Figure 13: Performance in a large network.

4.2.3 CRP in a Large Network

We now evaluate CRP in a large network of 50 static
nodes randomly placed in a 2000 m x 2000 m area. We
selected 20 random non-overlapping source destination
pairs in the network and initiated a TCP connection be-
tween each pair for 60 seconds (so as to observe steady
state behavior). Each node had 3 radios on orthogonal
channels.

The results in Figure 13 shows the percentage increase
in TCP throughput of CRP over WCETT. We find that 7
paths have 20% or more gain in TCP throughput with
the gains being as high as 90% in some cases. Typ-
ically whenever the performance of CRP and WCETT
are equal, it is for two reasons: (1) The path is 3 hops
or shorter in length. Since WCETT assigns channels in
equal proportions, it always chooses a route similar to
CRP (each link has a different channel), (2) Although
rare, sometimes when the path is longer than 3 hops, by
random chance the WCETT ordering of channels turns
out to be optimal.

4.2.4 CRP in Network Coding Scenarios

We now evaluate CRP for a single-radio network with
network coding in QualNet. Consider the network shown
in Figure 2 with an existing flow v3  v1. After
3 seconds, v1 initiates a flow to v9. There are many
possible routes that this flow can take, but only one
(v1−v2−v3−v6−v9) is optimal in terms of the resource
consumption. CRP causes the flow v1  v9 to choose
the mutually beneficial route v1 − v2 − v3 − v6 − v9,
resulting in maximized mixing. Intuitively, the existing
flow v3  v1 creates a discount in terms of the con-
ditional ERC metric in the opposite direction, which at-
tracts v1 to choose route v1−v2−v3−v6−v9. Once the
flows start in both directions, they stay together and mix
because both see discounts. As shown in Table 1, CRP
increases the number of mixed packets in this scenario
by 12× in comparison to LQSR+COPE.

We continue with the 9-node grid network scenario
and evaluate the performance with three flows: (1)v9  

v1, (2) v1  v9, and (3) v3  v1. Each flow begins ran-
domly between 50–60 seconds into the simulation. We
evaluate the performance of LQSR, LQSR+COPE and
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Scenario Mixed (CRP+COPE) Mixed (LQSR+COPE)

S1 20,366 1,593
S2 39,576 24,197

Table 1: Gain from CRP+COPE compared to LQSR+COPE.
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Figure 14: Throughput comparison and transmissions saved
with CRP+COPE, LQSR+COPE and LQSR.

CRP+COPE for this scenario for different input loads.
The results are depicted in Figure 14. CRP provides
throughput gains compared to LQSR (up to 47%) and
LQSR+COPE (up to 15%). Without CRP, flows mix es-
sentially by chance. In the example, the flow 1-2-3-6-9
is mixed with 9-6-3-2-1 with CRP, due to the mutually
beneficial discounts enjoyed by both flows.

Figure 14 also gives the amount of resource saved
by using CRP. CRP consistently provides reduction of
packet transmissions of over 10,000 packets across a
wide variety of traffic demands. Another observation
from Figure 14 is that the saved transmissions reduce
as the network load increases. This is counter-intuitive
since more packets should indicate more mixing oppor-
tunities. However, this occurs because of the capture ef-
fect in the 802.11 MAC layer which is amplified at high
loads. Due to this, packets from only one node (the cap-
turing node) fill queues for large durations of time with-
out allowing other traffic. This reduces mixing oppor-
tunities at high load. This problem can potentially be
addressed through a better MAC layer design that avoids
capture.

Thus, the simulation results for multi-radio networks
show that gains from CRP are observed in two cases: (1)
When frequency reuse is possible, and (2) When there
are heterogeneous nodes in the network, i.e. not all nodes
have the same number of interfaces. While these scenar-
ios are common and important to address (typical wire-
less networks are bound to have some frequency reuse
opportunities and networks may have all different types
of nodes with different number of radios and characteris-
tics), our testbed evaluation in the next section provides
insight into other scenarios where CRP is helpful. In
systems with network coding, CRP performance exem-
plifies that network coding itself cannot provide the best
achievable performance and a protocol such as CRP can
help network coding achieve better performance.
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Figure 15: Microbenchmark: route computation time.

4.3 Testbed Evaluation
We now document our experience with the performance
of CRP in a real wireless network deployment. We first
perform a series of microbenchmarks to see its perfor-
mance in known settings and then evaluate its perfor-
mance as a running system.

4.3.1 Computational Complexity

CRP improves Dijkstra route selection at the expense of
more computation and complexity. While the complexity
is not a hurdle (the protocol is already implemented), it
is important to find the computational complexity to as-
certain the protocols applicability to real mesh networks
which may have embedded devices with slow processors.

We configured our CRP implementation’s graph cache
with a graph topology of 100 nodes (taken from a typi-
cal neighborhood layout) and varied the number of in-
terfaces per node. We then evaluated the time taken by
CRP versus Dijkstra in computing the shortest paths to
all nodes in the network. We find that our implementa-
tion, while significantly more computationally expensive
than Dijkstra, can find routes in the extreme case of 100
node networks with 6 radios each in 900 ms. The cur-
rent MCL implementation in fact calls Dijkstra’s algo-
rithm only once per second, caching routes in between.
However in our current testbed with 14 nodes each with
42 radios, the computation is performed in around 10-20
ms. Thus, even if we use embedded mesh routers whose
CPU speeds are 5-6 times slower than our testbed nodes,
we expect to typically find routes under 100 ms. Ad-
ditionally, one could proactively find such routes in the
background to hide this delay as well.

4.3.2 Frequency Reuse Scenario

We now evaluate the real performance gains from good
choice of routes in our testbed. Note that unlike the simu-
lator which does not simulate adj-channel interference5,
this gives us a better idea of the potential performance
benefits.

We selected one of the 4 hops routes in testbed A be-
tween nodes 12 and 9 and performed multiple 1-minute

5QualNet physical layer code is binary only so we could not change
it to simulate adj-channel interference
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Figure 16: Microbenchmark: frequency reuse.

8 5 7
WCETT 1-1
CRP 2-1
TCP Throughput
(Kbps)

ETT WCETT CRP
8504 8490 11135

TCP Throughput
(Kbps)

ETT WCETT CRP
8504 8490 11135

Figure 17: Microbenchmark: heterogeneous nodes.

TCP transfers taking the median performance. The route
and channels chosen by WCETT and CRP are shown in
Figure 16. WCETT reuses channel 2 on the last link
11→9 essentially because the channel 2 radio on node 11
had a lower ETT. Thus, WCETT took a local view not re-
alizing this link would cause secondary interference with
link 13→14. However, CRP chose the interface on chan-
nel 1 on the last link which although locally had a higher
ETT, did not cause self-interference. Thus this route got
a higher SIM score and was selected by CRP providing
a performance gain of 60% and close to 200% with re-
spect to WCETT and ETT respectively. This example
clearly shows how using context benefit translates into
real world gain.

4.3.3 Heterogeneous Node Scenario

We next consider the simple topology of 3 to see how
much gain a CRP provides over a WCETT route in the
real world. As shown in Figure 17, we configured node 8
and 5 with two interfaces on channel 1 and 2 while node
7 had one interface on channel 1.

WCETT chose channel 1 on both links due to the the
use of Dijkstra and ETT also chose this route because
the ETT of channel 2 on node 8 was around 1ms higher
than channel 1. However, CRP is able to identify the cor-
rect route and chooses a route with channel 2 and chan-
nel 1. This allows CRP to have a TCP throughput 31%
higher than both WCETT and ETT. Note that the gain
is lower than that observed in simulation because some
adj-channel interference can limit gains. From measure-
ments, we know such interference exists despite our at-
tempts to place the cards at some distance from each
other on each machine.

4.3.4 Large Node Scenario

We now evaluate the gain from CRP in a running network
topology. Each testbed node in this scenario has 3 radios.
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Figure 18: Testbed macrobenchmark: Basic scenario. TCP
throughput gain on paths from node 1 to all other nodes.

We performed multiple 1-minute TCP transfers between
node 1 and all the other testbed nodes with WCETT and
CRP. The % throughput gain of CRP over WCETT ob-
served from node 1 to the other nodes (numbered on the
x-axis) is shown in Figures 18.

The results show that CRP can improve WCETT
throughput in 7 out of 13 paths by up to 100% and more
than 30% on most paths. Some of the results are expected
while some are non-intuitive. Among the expected re-
sults are: (1) The paths to nodes 3, 6, 4 and 116 have no
gain since they are less than 4 hops in length and WCETT
can assign costs correctly if the number of hops are less
than the number of radios per node. (2) Nodes 5 and 7
are reached via 4-hop routes and the SIM metric can now
choose a better path to provide gain.

Among the unexpected results are: (1) Paths to nodes
8 and 9 have gain despite their being 3 hops away. We
found this was caused by ETT variation among the in-
terfaces of node 6 which rendered 2 interfaces almost
useless due to high ETTs and effectively caused a bot-
tleneck link which required careful route selection. CRP
identified and used the good interface on node 6 and thus
performed better. (2) Routes to node 10 have low gain
despite reuse opportunities since the link performance is
constrained by the weak link 8→10. However, going to
nodes 12 and 13 through 10 gives gain since the through-
put is now constrained more by ordering of channels se-
lected than the weak link. (3) Finally, although 14 is 4
hops away, there is no gain because WCETT chooses the
good route selected by CRP purely by chance.

We also evaluated the gain in a heterogeneous network
scenario where all nodes do not have the same number
of interfaces. In these experiments, gains of up to 152%
were observed.

4.3.5 Network Coding Scenario

We now perform experiments with our Linux CRP im-
plementation on top of COPE in testbed B. We take mul-
tiple examples of the Alice-and-Bob topologies from our
testbed and demonstrate how much gain is provided by

6Node 4 can be reached with 2 hops due to it being in an open area
and the waveguide effect of hallways.
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Scenarios UDP Gain TCP Gain

22→3, 3→22 1.66× 1.29×
18→5, 5→18 1.53× 1.24×
11→7, 7→11 1.78× 1.31×
37→13, 2→5 1.71× 1.24×

Table 2: Median throughput gain from CRP+COPE compared
to LQSR+COPE for both UDP and TCP. For each scenario we
initiated the flows 15 times.

simply using SrcRR+COPE versus using CRP+COPE.
This testbed has only one radio on each node. We use
the ERC metric in CRP. Table 2 shows the gains achieved
using CRP for different topologies tested in the testbed.
The left hand column lists the two flows initiated in the
network in each case and the node numbers refer to Fig-
ure 10.

The table shows significant gains from CRP+COPE
over SrcRR+COPE in the range of 1.7× for UDP and
1.27× for TCP. In the first scenario, SrcRR chooses the
routes 22-13-3 and 3-5-22 which does not provide gain
from network coding while causing interference among
the two flows. CRP entices flow 3-22 onto the same
route due to the ERC discounts and allows network cod-
ing to occur at node 13 for the duration of the transfer.
In the second scenario under SrcRR, flow 18-5 uses the
route 18-28-5 while flow 5-18 uses the low quality di-
rect route 5-18. CRP advertises discounts on the 28-18
link for traffic from 5 and this causes the two flows to
mix at node 28 resulting in gain. In the third scenario,
SrcRR choose the routes 11-5-3-7 and 7-16-13-11/7-16-
5-11 for the two flows resulting in no coding of packets
while CRP brings the two flows onto a mutually bene-
ficial route traversing nodes 5 and 3 in both directions.
Finally in the fourth scenario, CRP allows nodes 37 and
2 to choose 11 as a next hop once ERC discounts be-
come visible. Node 5 and 13 can overhear the packets
from 37 and 2 respectively giving rise to network coding
gain. Without CRP the two flows tend to take the routes
37-11-5 and 2-14-22 resulting in no coding gain. Thus,
we can see the benefits that CRP provides to the COPE
system allows the network coding engine more oppor-
tunities to code packets. Note that if a lot of flows are
present in the network (such as the scenarios evaluated
in [6]), the benefits from CRP would be less significant
since a large number of packets present in the network
can provide enough coding opportunities without intelli-
gent route selection. However, CRP can provide COPE
with coding opportunities even in more sparse or lightly
loaded networks.

Note that we currently do not aim at solving the load
balanced routing problem in handling multiple flows. We
believe a better practical strategy is for link traffic to af-
fect the link metric and then use a method, such as CRP,
to find a route. Thus CRP should potentially be useful

for load-balanced routing proposals.

5 Conclusion
In this paper, we investigated context-based routing, a
general route selection framework that models link in-
terdependencies and selects good routes, through the
case studies of network coding–aware routing and self-
interference aware routing in multi-radio systems. The
effectiveness of our approach is demonstrated through
both simulations and a deployed implementation. In the
future, we plan to investigate other potential applications
for CRP by studying further scenarios where link inter-
dependencies exists such as multi-radio networks with
network coding or lightpath selection in WDM optical
networks.
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