
LANGUAGE MODELING FOR VOICE SEARCH: A MACHINE TRANSLATION APPROACH

Xiao Li, Yun-Cheng Ju, Geoffrey Zweig, and Alex Acero

Microsoft Research
One Microsoft Way, Redmond, WA, 98052, U.S.A.

{xiaol,yuncj,gzweig,alexac}@microsoft.com

ABSTRACT
This paper presents a novel approach to language modeling for voice

search based on the idea and method of statistical machine transla-

tion. We propose an n-gram based translation model that can be

used for listing-to-query translation. We then leverage the query

forms translated from listings to improve language modeling. The

translation model is trained in an unsupervised manner using a set of

transcribed voice search queries. Experiments show that the transla-

tion approach yielded drastic perplexity reductions compared with a

baseline language model where no translation is applied.

Index Terms— language modeling, machine translation, voice

search, directory assistance

1. INTRODUCTION

With the skyrocketing popularity of search technologies, the abil-

ity to enter search queries by voice has become increasingly ap-

pealing for mobile and telephony applications. Indeed, recent years

have witnessed a burgeoning development of voice search services,

mostly in the domain of local search [1], With such services, users

can retrieve information, such as phone numbers, addresses and driving

directions, of business listings or business categories by speaking to

an automated agent.

A technical framework for voice search has been proposed in

[2] and further investigated in [3]. In this framework, a voice search

system is decoupled into two components: voice recognition and

information retrieval. First, a spoken utterance o is converted into

text query q using automatic speech recognition (ASR), i.e.,

q∗ = argmax
q

p(o|q)p(q) (1)

where p(o|q) and p(q) represent an acoustic model and a language

model (LM) respectively. Statistical LMs, e.g. n-gram models, are

often used to allow flexibility in what users can say. Next, the best

(or n-best) q is feed into a search engine to retrieve the most relevant

document d, i.e.
d∗ = argmax

d

p(d|q) (2)

In the context of local search, documents d are in form of business

listings, which are typically short, e.g. Kung Ho Cuisine of China.

To build the language model p(q) for ASR, a simple and in-

tuitive approach is to use listings themselves as training sentences.

Often, however, a user refers to a listing in a different way as the

original form of that listing; and there are often multiple ways of ex-

pressing the same listing. For example, the listing Kung Ho Cuisine
of China can be formulated as Kung Ho, Kung Ho Chinese Restau-
rant, or Kung Ho Restaurant. In this regard, the LM trained using

listing forms may not best predict what users will say in practice.

Ideally, the LM should be trained using transcriptions of real voice

search queries, but this would require a prohibitive number of train-

ing samples, considering the number listings is often in the magni-

tude of 106 ∼ 108 (for regional or national business search). A more

realistic approach, as was adopted in [4], is to generate query forms

by rules based on a combination of human knowledge and data.

In this work, we propose a statistical translation model that au-

tomatically converts the original form of a listing to its query forms,

which in turn are used for building more robust LMs for voice search.

The translation model is trained using a small number of transcribed

queries, without the need of acquiring the true listings. Compared

with rule-based approaches, our method requires the least human

knowledge and can easily lend itself to be used in different voice

search applications such as product search [5].

The work most related to the idea presented in this paper is the

use of machine translation in web information retrieval [6], where

queries are assumed to be generated or ”translated” from web doc-

uments. In our task, however, the listings and queries are both very

short, and hence more akin to the concept of ”sentence pairs” in

bilingual machine translation, thus enabling us to borrow some tech-

niques used therein. The rest of the paper is organizes as follows:

Section 2 and Section 3 present the details of our translation model.

Section 4 discusses how we obtain listing and query pairs that are

used to train our translation model. Section 5 discusses LM perplex-

ity experiments, followed by discussions in the last section.

2. NGRAM-BASED TRANSLATION MODEL

Although a query and its intended listing may differ in forms, there

usually exists a semantic correspondence, at the word level, between

the two. In other words, each word in the query can be mapped to

a word in the listing or to a null word; and it is vice versa. This

motivates us to use a machine translation approach to predict possi-

ble query forms of a listing, and then to utilize the predicted query

forms to improve language modeling. Specifically, we use n-grams

on word pairs to model the joint probability of a listing and a query.

Note that this model has a similar flavor to the tuple n-gram model

used in bilingual machine translation [7], and to the joint multi-gram

model used in letter-to-sound conversion [8, 9].

We start with the assumption that there exists a corpus of paral-

lel text (d,q), where listings and queries serve as source and target

sentences respectively. Moreover, we let a denote a monotonic align-

ment between d and q, where null words are added, if necessary, to

account for insertions or deletions that occur in the alignment. Once

d and q are aligned, including sentence start and sentence end, we

49131-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

create a sequence of word pairs as follows,

(d,q,a) = ((d1, q1), (d2, q2), . . . , (dL, qL))

where we treat each (di, qi) as a single semantic unit. Note that con-

secutive word pairs can be merged to form phrase pairs if necessary.

We then train a standard n-gram model on such units. Consequently,

the probability of an aligned sentence pair is computed as

pM (d,q,a) =�

i

p((di, qi)|(di−n+1, qi−n+1), . . . , (di−1, qi−1)) (3)

where the subscript M is used to denote the monotonic condition.

Initially, we obtain the alignment a by computing the Levenshtein

distance between d and q. Then we iteratively update the alignment

and n-gram model parameters in the maximum likelihood sense.

Once the n-gram model is trained, the listing-to-query transla-

tion works as follows: given a listing form, we search for the query

forms that yield the highest conditional probability. Mathematically,

q∗ = argmax
q

pM (q|d)

= argmax
q

pM (d,q)

= argmax
q

�

a

pM (d,q,a)

≈ argmax
q

max
a

pM (d,q,a)

(4)

where p(d,q,a) is evaluated using Equation (3). The translation

not only exploits word-level semantic correspondence as modeled by

unigrams, but also takes into account word context by using higher-

order n-grams. The search for the best or n-best query forms can

be achieved efficiently by applying the best-first search algorithm

[10], where pruning techniques are applied to further reduce compu-

tational complexity. Once the n-best query forms are obtained for all

listings, we add them into our training sentences for LM estimation.

There are two implementation details worth special attention.

First, allowing the use of null words in d raises a potential problem

at decode time — the search space is drastically expanded since null
can be present or absent at any position of the source sentence. To

avoid this problem, we eliminate the use of (di = null, qi) as se-

mantic units for all values of qi. Specifically, in training we merge

(di = null, qi) with its proceeding or following semantic unit,

depending on which of the phrases, qi−1qi or qiqi+1, have more

occurrences in the training data. We then treat (di−1, qi−1qi) or

(di+1, qiqi+1) as a single semantic unit. At decode time, we do not

explicitly insert null in d, since using semantic units (di−1, qi−1qi)
or (di+1, qiqi+1) is equivalent to adding null in the source sentence.

The second problem is concerned with out-of-vocabulary (OOV)

words in d. When OOV occurs, we would not be able to produce any

query forms, since p(di = OOV, qi) = 0 for any value of qi. To deal

with such cases, we always assign a positive probability to unigrams

(di, qi = di) whenever di = OOV. This implies that a listing word,

if never seen in the training data, will always be translated to itself,

which is intuitively correct.

3. REORDERING

A natural extension to the above framework is to allow non-monotonic

alignments between d and q. An equivalent way of formulating

this problem is to reorder d, while keeping the order of q, before a

monotonic alignment is applied. Formally, for a listing d with length

n, we introduce a variable s = (s(1), s(2), . . . , s(n)) to represent a

permutation of (1, 2, . . . , n). The resulting reordered listing is rep-

resented by ds = (ds(1), ds(2), . . . , ds(n)). Note that our monotonic

condition in Section 2 is equivalent to assuming an identity permuta-

tion, i.e., s = (1, 2, . . . , n). In general, the number of permutations

is factorial in n. For computational feasibility, we constrain the per-

mutation space to contain only a subset of permutations,

s ∈ S = {(j + 1, j + 2, . . . , n, 1, 2, . . . , j) : j = 1..n}

In other words, we only consider permutations that are shifts of the

original order. In addition, for reordering purpose, we append null
words to a listing, if necessary, to ensure all listing forms have the

same length and hence the same permutation space.

Having defined the space of s, we revisit our training and decod-

ing algorithms that enable reordering. For training, we modify our

algorithm as follows.

1. Initialize an alignment between d and q by computing their

Levenshtein distance; and estimate initial n-gram model pa-

rameters using the aligned sentence pairs;

2. For each listing d, find the best permutation s given the cur-

rent model,

s∗ = argmax
s∈S

max
a

pM (ds,q,a), (5)

where pM (ds,q,a) is defined in Equation (3) under the monotonic

condition.

3. Given new (ds∗ ,q) pairs, re-estimate n-gram model parame-

ters following Section 2 under the monotonic condition.

4. Repeat step 2 and 3 until convergence. We let s∗ denote the

final permutation of d.

At decode time, on the other hand, we allow a listing to be re-

ordered in advance. Mathematically,

q∗ = argmax
q

p(q|d)

= argmax
q

�

s∈S
p(q|s,d)p(s|d)

≈ argmax
q

max
s∈S

pM (q|ds)p(s|d)

≈ argmax
q

pM (q|dŝ)

(6)

where pM (q|d) is defined in Equation (4) and where

ŝ = argmax
s∈S

p(s|d) (7)

The translation process is essentially decoupled into two steps. First,

we use a classifier p(s|d) to find the best permutation ŝ ∈ S . Sec-

ondly, we search for the best query form q based on the permuted

listing form dŝ under the monotonic condition. For the first step,

we build a classifier p(s|d) using a conditional maximum entropy

model [11], where we have unigrams, bigrams and trigrams as input

features. The classifier is trained using (d, s∗) pairs obtained from

step 4 of our training algorithm. Note that we empirically found that

the prior probability of s being the identity permutation is very high,

meaning that in most cases a listing would stay in the original order.

4914

4. LISTING RETRIEVAL USING TF-IDF

Our discussion assumes the availability of a set of (d,q), pairs,

based on which a translation model can be trained. In many applica-

tions, however, while it is relatively easy to obtain query transcrip-

tions, finding their intended listings is a difficult task. In this work,

we obtain hypothesized listings for given queries in an unsupervised

manner using information retrieval techniques. More specifically,

we represent each d and q by a vector vd and vq. Each vector

component corresponds to a term (word or phrase) in the listing vo-

cabulary, and the value of which is the tf-idf weight of that term with

respect to the listing collection [12]. On the basis of this vector space

model, we measure the relevancy between vd and vq by the cosine
similarity, i.e.,

cos(vd,vq) =
vd · vq

‖vd‖ · ‖vq‖ ; (8)

and we look for the listing d that maximizes this similarity metric.

Moreover, we empirically set a threshold on this similarity metric,

and (d,q) will be excluded from training if their cosine similarity

does not reach the threshold.

The reason we choose to use tf-idf based cosine similarity is

largely due to its widely acknowledged success in the field of infor-

mation retrieval, although it might introduce noise in the retrieved

results. For example, the query Bluwater Restaurant, if no exact

match exists, would retrieve lexically similar listings such as Bluwa-
ter Consulting; and Consulting and Restaurant would be aligned as

a semantic unit. With sufficient training data, however, one would

hope the probability of such linguistically incorrect semantic unit to

be trivial.

5. EVALUATION

5.1. Methodology

Given a data set of transcribed voice queries, there are two ways of

measuring LM perplexity. First, we collapse a query set Q to con-

tain unique queries, which we denote as Quniq . We then randomly

divide Quniq into train and test sets. Both training set queries and

the original listing collection D are utilized to train a LM (we will

discuss this in detail shortly). The LM perplexity is then evaluated

on test set queries. We let PPLuniq denote the perplexity obtained

in this fashion. Since there is no query overlap between training and

testing, PPLuniq reflects how well the language model generalizes

to unseen queries.

In real-world scenarios, however, some queries occur more fre-

quently than others, and hence should be weighted more in both

training and testing. We therefore use a second way of measuring

perplexity. With certain sampling rate, we randomly sample Q to

form a training set. In this way, a query with a high frequency in

Q is likely to be sampled more times, and hence will be weighted

more. Similarly we sample Q again to form a test set, on which the

LM perplexity PPL is evaluated. Note that in general we expect

PPL < PPLuniq with the same amount of training data.

5.2. Data preparation

Our data sets were obtained from an in-house voice local search ap-

plication. Without loss of generality, our experiments focused on the

Seattle (WA, U.S.) area, for which we had a feed of 140K business

listings including a few hundred category names. We denote this

listing set by D. We also had a large collection of transcribed voice

search queries from this area, which formed our query sets Q and

hence Quniq .

First, to evaluate PPLuniq , we allocated 5k unique queries from

Quniq for testing, which we denote as Qtest
uniq . For each of the re-

maining queries q, we retrieved the most relevant d following the

method in Section 4, and we filtered out q if cos(vd,vq) < 0.8. Af-

ter filtering, we created training sets Qtrain
uniq with different sizes that

range from 1K to 10K. Similarly, to evaluated PPL on naturally-

distributed queries, we allocated 6K queries from Q (in which 5K

are unique) for testing, and we formed training sets Qtrain with dif-

ferent sizes from 1K to 15K.

5.3. Perplexity experiments

In this work, we use bigram language models with backoff, and we

use an open vocabulary but OOVs in the test set are not included

in perplexity evaluation. For translation model, we use bigrams on

word (or phrase) pairs and we allow reordering. Note that this bi-

gram model for translation should be distinguished from the above

bigram language model for ASR.

We conducted two sets of experiments, corresponding to the two

evaluation methods presented in Section 5.1. Both methods compare

a baseline LM, which we call QAL, with LMs estimated from trans-

lation results, which we call TAL.

• QAL: Query Augmented Listings. A baseline LM that is trained

on a combination of D and training set queries (either Qtrain
uniq

or Qtrain).

• TAL: Translation Augmented Listings. We first build a trans-

lation model using training set queries and the retrieved list-

ings; then we apply the translation model to listings D to ob-

tain D′, which contains the n-best query forms as well as

their weights. Finally, we combine D and D′ to train a new

LM. Note that below we only report experiments using top

n = 1, 2, 3 translations, as further increasing in n did not

bring significant improvement.

• QTAL: Query and Translation Augmented Listings. Similar

to TAL except we combine all D, D′ and training set queries

in LM estimation.

Figure 1 shows the perplexity results of QAL as well as TAL

with top n = 1, 2, 3 translations. Here the LMs were trained on

Qtrain
uniq , with different amounts of training data, and was evaluated

on Qtest
uniq . Similarly, Figure 2 shows the results where we trained

on Qtrain and evaluated on Qtest. Initially when no transcribed

data was available, we used only D as training sentences for LM es-

timation, resulting in PPLuniq = 3830 and PPL = 1771 (the

initial points in both figures). Not surprisingly, as we increased

the amounts of transcribed queries, we observe consistent perplex-

ity reductions from all LMs. It is interesting to see that TAL-nbest,

n = 1, 2, 3, have significantly lower perplexities than QAL, given

the same amounts of transcribed queries. This is because the trans-

lation approach is able to learn from the observed samples and gen-

eralize to unseen samples. As one can imagine, as the number of

transcribed queries further increases, the performance of QAL will

approach to, or even exceed, that of TAL, since the LM trained using

QAL will asymptotically converge to the real query distribution. In

practice, however, as the query set will always be finite, the trans-

lation approach can be more appealing owing to its generalization

ability.

4915

0

800

1600

2400

3200

4000

0 2500 5000 7500 10000

Pe
rp

le
xi

ty

uniq queries in training

QAL

TAL-1best

TAL-2best

TAL-3best

Fig. 1. Perplexities PPLuniq on unique queries with different

amounts of transcribed queries in training

Lastly, we conducted experiments using QTAL, again with top

n = 1, 2, 3 translations. They yielded only trivial improvements

over TAL; here we do not include them in the figures to avoid con-

fusion. Instead, we report the PPL values of QTAL with 3-best

translations — the best configuration we obtained in all experiments

— as well as their relative reductions from QAL. As shown in Ta-

ble 1, QTAL achieved a relative 70-80% reduction from our baseline

TAL. The perplexity reductions for PPLuniq are in a similar range.

queries 1k 3K 7K 10K 14K

QAL 1534 1414 1104 1054 888

QTAL-3best 409 314 229 217 190

relative reduction % 73.4 77.8 79.3 80.4 78.5

Table 1. PPL scores of QAL, QTAL-3best (the best LM) and

the relative PPL reductions with different amounts of transcribed

queries

6. CONCLUSIONS AND FUTURE WORK

This paper introduced a translation approach to language modeling

for voice search. Specifically we used an n-gram based translation

model to predict query forms from listing forms, and we added the

query forms into the training data for language modeling. We ob-

tained very promising results when evaluating LM perplexities on

transcribed voice search queries. For future work, we would like to

evaluate the impact of such an approach on recognition performance,

and to exploit other features such as word class and part-of-speech

tag in the translation model.

The authors would like to thank Hermann Ney, Xiaodong He,

Patrick Nguyen and Mei Yang for useful discussions.

7. REFERENCES

[1] D. Miller, “Speech-enabled mobile search marches on,”

Speech Technology Magazine, July 2007.

0

300

600

900

1200

1500

1800

0 2500 5000 7500 10000 12500 15000

Pe
rp

le
xi

ty

total queries in training

QAL

TAL-1best

TAL-2best

TAL-3best

Fig. 2. Perplexities PPL on all queries with different amounts of

transcribed queries in training

[2] P. Natarajan, R. Prasad, R. Schwartz, and J. Makhoul, “A scal-

able architecture for directory assistance automation,” in Proc.
ICASSP, Orlando, U.S., 2002.

[3] D. Yu, Y.-C. Ju, Y.-Y. Wang, G. Zweig, and A. Acero, “Au-

tomated directory assistance system - from theory to practice,”

in Proc. Interspeech, Antwerp, Belgium, 2007.

[4] O. Scharenborg, J. Sturm, and L. Boves, “Business listings in

automatic directory assistance,” in Proc. Eurospeech, Aalborg,

Denmark, 2001.

[5] Zweig et. al., “The voice-rate dialog system for consumer rat-

ings,” in Proc. Interspeech, Antwerp, Belgium, 2007.

[6] A. Berger and J. Lafferty, “Information retrieval as statistical

translation,” in Proc. SIGIR, 1999.

[7] J. M. Crego, A. de Gispert, and J. B. Marino, “The TALP

ngram-based SMT system for IWSLT’05,” in Proc. Inter-
national Workshop Spoken Language Translation, Pittsburgh,

2005.

[8] M. Bisani and H. Ney, “Investigations on joint multigram mod-

els for grapheme-to-phoneme conversion,” in Proc. ICSLP,

Denver, U.S., 2002.

[9] X. Li, A. Gunawardana, and A. Acero, “Adapting grapheme-

to-phoneme conversion for name recognition,” in Proc. ASRU,

Kyoto, Japan, 2007.

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall, second edition, 2003.

[11] Adam L. Berger, S. Della Pietra, and V. J. Della Pietra, “A

maximum entropy approach to natural language processing,”

Computational Linguistics, vol. 22, no. 1, pp. 39–71, 1996.

[12] G. Salton and C. Buckley, “Term-weighting approaches in

automatic text retrieval,” Information Processing & Manage-
ment, vol. 24, no. 5, 1988.

4916

