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ABSTRACT tiveness. In this paper, we take full advantage of the symbol
raph in improving the symbol recognition engine in an on-
handwritten math expression recognition system.

First, graph based discriminative training algorithmis pro-
osed for the exponential weights of different model likeli-

In the symbol recognition stage of online handwritten matty:
expression recognition, the one-pass dynamic programmin{:f1e
algorithm can produce high-quality symbol graphs in addition
of the best recognized hypotheses [1]. In this paper, we ex- ) . .
ploit the rich hypotheses embedded in a symbol graph to di 100ds and the insertion penalty, rather than for Hidden Markov

criminatively train the exponential weights of different modeli Ogiiiﬁw\M)szraTﬁtff n s(,jpgiecrr]irrr:aiﬁog\r/lltlf[)rn.ir:ir;lcomrparr;
likelihoods and the insertion penalty. The training is investi->° € IN-best ist based disc ative training, grap

gated in two different criteria: Maximum Mutual Information based discriminativ_e training is much more efficient due to
(MMI) and Minimum Symbol Error (MSE). After discrim- the compact encoding method of alternative hypotheses. A

inative training, trigram-based graph rescoring is performe famework for graph based discriminative training of HMM

. . . . arameters could be found in Daniel Povey’s thesis [2]. The
in a post-processing stage. Experimental results finally sho . . . .
Post-p g stag P y f?\axmum Mutual Information (MMI) criterion showed its

a 97% symbol accuracy on a test set of 2,574 written expre . L . .
o Sy y P effectiveness in improving word error rates in Large Vocab-

sions with 43,300 symbols, a significant improvement of sym- . .
bol accuracy obtained. ulary Continuous Speech Recognition (LVCSR). Povey also

presented a new discriminative training technique called Min-

Index Terms— Handwritten math formula recognition, imum Phone Error (MPE). This consistently gives better re-
symbol recognition, symbol graph, discriminative training,sults than MMI, and appears to be a promising technique for
graph rescoring discriminative training. In this paper, we focus on two train-

ing criteria: MMI and Minimum Symbol Error (MSE) whose
1. INTRODUCTION concept is similar to MPE.

After the discriminative training of decoding parameters,
In our previous work, a one-pass dynamic programming basegymbol graph rescoring is applied in a post-processing stage.
symbol decoding and graph generation algorithm for onlinérhis provides an opportunity to further improve symbol accu-
handwritten mathematical expression recognition was proposaey by using more complex information that is difficult to be
[1]. It embeds segmentation into symbol identification toused in the one-pass decoding. In this paper, we rescore the
form a unified framework for symbol recognition. Besidessymbol graph by introducing trigram syntax model probabil-
the accurately recognized hypotheses, it can produce higlties.
quality symbol graphs as well. During the decoding, there
are six knowledge sources participating in the search. Similar 2. SYMBOL DECODING ALGORITHM [1]
to the language model scale factor and the insertion penalty
adopted in speech recognition, exponential weights of differnder the assumptions that a user always writes a symbol
ent model likelihoods and the symbol insertion penalty shouldvithout any insertion of irrelevant strokes before he finishes
also be considered. In the previous system, the parameters d@ne symbol and each symbol can have at most atrokes,
manually tuned. This process is very time and computatiom dynamic programming algorithm is feasible to be used in
consuming. In this paper we would like to train them in ansearching of an optimal symbol sequence within an affordable
automatic way. search space.

As having been proved in speech recognition, graph based The goal of symbol decoding is to find out a symbol se-
discriminative training and post-processing are very useful tguenceS that maximize a posterior probabilif(S|O) given
improve system performance. Along with the proposal of thea sequence of input strokés = o105 - - - o, Over all possi-
framework for graph based discriminative training [2], it be-ble symbol sequence&s= s; sz - - - sx. HereK, which is un-
comes more and more popular due to its efficiency and effedsnown, is the number of symbols in a symbol sequence, and



sy represents a symbol belonging to a limited symbol(set In this paper, we assign different exponential weights to
As proposed in [1], two hidden variables are introduced intaifferent model likelihoods and add an insertion penalty in
the search, which makes the Maximum A Posterior (MAP)symbol decoding to improve system performance. By doing

objective function become this, the MAP objective in Equation (2) becomes
S = arg max P(B, S, R|O) = argmax P(O, B, S, R) (1) Py (0,B,S5,R) = Hle (Hi1 PZU,E X I) = H§:1 Pk (3)
B,S,R B,S,R

wherep; is defined as a combined score of all knowledge

where3 = (bg =0) < by < by < < (bx = N) denotes ources and the insertion penalty for tié symbol in a sym-
a sequence of stroke indexes corresponding to symbol bouné—

aries (the end stroke of a symbol), aRd= ryry - - - ri rep- ol sequence
resents a sequence of spatial relations between every two con- D w;
secutive symbols. The second equal mark is satisfied because e =iz pii < 1 “)
of the Bayes theorem. w; represents the exponential weights of itk model like-
By taking into account the knowledge sources used in [1]lihoodpy. ; and! stands for the insertion penalty. The parame-
the MAP objective could be expressed as ter vector needs to train is expresseavas [wy, wo, - -+ ,wp, I]7T.
In previous experiments in [1], we used a set of manu-
ally tuned parameters, while in this paper, we discriminatively

P(O,B,S,R) = P(O|B,S,R)P(B|S, R)P(S|R)P(R) train them on a training set.
=TI, [P 1s0) P [s) P(of rs)
X P(bk = b33 Plsklsn—1, ) Plr )] 3. DISCRIMINATIVE TRAINING
= Lo L2 pes (2)  Discriminative training attempts to optimize the system per-

whereD = 6 represents the number of knowledge Source‘I‘ormance by formulating an objective function that in some

in the search and the probabilitieg; for 7 being 1 to 6 are way penallzes parameter sets.that are I|§1ble_ tq Cof‘fuse gorrect
' and incorrect answers. In this case, discriminative training

defined as . : -
Dot — P(ng)‘sk) . symbol likelihood requires a get of competing symbol sequences for one ert'—
: t _ o ten expression. In order to speed up computation, the generic
Pr,2 = P(O?k) |sk) + grouping likelihood symbol sequences can be represented by only those that have
= P(o"|r) :  spatial relation likelihood 3 reasonably high probability. A set of possible symbol se-
pra = P(bx —br—1|s) : duration probability quences could in principle be represented by an N-best list,
prs = P(sk|sk—1,m%) ¢ syntaxstructure probability that is, a list of theV most likely symbol sequences. A much
Pre = P(rilre — 1) : spatial structure probability  more efficient way to represent them, however, is a symbol

A one-pass dynamic programming (DP) search of the opgraph.  This stores the alternative symbol sequences in the
timgl symbol sequence is then applied through th_e state spaggm of graph in which the arcs correspond to symbols and
defined by the knowledge sources. Afterwards, single best r&ymbol sequences are encoded by the paths through the graph.
sults could bg obtained. To generate symbol graph, we o_nIy One advantage of using graphs is that the same graph can
need memorize all symbol sequence hypotheses recombingd ysed for each iteration of discriminative training. This
into each symbol hypothesis for each incoming stroke, rathéfeparates the most time-consuming aspect of discriminative
than just the best surviving symbol sequence hypothesis ifaining, which is to find the most likely symbol sequences,
the sipg!e best method. For the search algorithm, a detaileghq makes it only necessary to do once. This approach as-
description can be fO_L!nd in [1]. _ _ sumes that the initially generated graph covers all the symbol

In speech recognition systems, there is an exponential weigtiences that will have a high probability even given the pa-
between acoustic model likelihood and language model prolyymeters generated during later iterations of training. If this
ability so as to make the system benefit from both on a cefis not true, it will be helpful to regenerate graphs more than
tain scale (equalize and weight acoustic and language modghce during the training.
likelihood contributions). In addition, an insertion penalty is | this paper, we carry out discriminative training based
always set to balance the insertion and deletion errors in thg, the symbol graphs generated through symbol decoding.
results. The traditional method to determine these parametef$ere is no graph regeneration during the whole training pro-

is to tune them on a development set to minimize the recogseduyre, that is, symbol graphs are used repeatedly.
nition error, since the parameters are few and manually tun-

ing is easy. Soongt al proposed a Generalized Word Poste- 1. Algorithm

rior Probability (GWPP) based method to search the optima?' '

weights on the word verification error surface [3]. However,Suppose that there af® training expressions. For train-
this is just feasible for low-dimensional search space. ing file m,1 < m < M, let us denote the stroke sequence



with O,,, the reference symbol sequence witfy, and the an edge belonging to pafli, andp. is the combined score
reference symbol boundaries with,,. No reference spatial with respect to edge. By comparing equations (6) and (7),
relations are used here since we only care segmentation ande can found thas, andp, are the same thing of different
symbol recognition quality. Hereafter, a symbol being correchotations.

means both its boundaries and symbol identity being correct, The denominator of Equation (7) is a sum of the path
while a symbol sequence being correct indicates all symbdicores over all hypotheses. Given a symbol graph, it can be
boundaries and identities in the sequence being correct. Asfficiently calculated by the Forward-Backward algorithm as
sumesS, B and R to be any possible symbol sequence, sym-5y. While the nominator is a sum of the path scores over
bol boundary sequence and spatial relation sequence, respedl-correct symbol sequences. It can be calculated within the
tively. Probability calculations in the training are carried outsub-graph’ constructed just by correct paths in the original
with probabilities scaled by a factor af This is importantif graphG. Assume that the forward and backward probabili-
discriminative training is to lead to good test-set performanceies for the sub-graph ar€’ and3’, then the nominator can

[4]. be calculated as(,3,. Finally, the objective becomes
Two training criteria are adopted in this paper, they are .
Maximum Mutual Information (MMI) and Minimum Sym- Fuvr(w) = XM log zggg

bol Error. (MSE). In (_)bjective opt.imization, the qqasi-Newton The derivatives of the MMI objective function with re-
method IS u§ed to find chal_opt|n_1al of the functions. There'spect to the exponential weights and the insertion penalty can
fore, derivative of the objective with respect to each paramey an pe calculated as:

ter must be produced. All these objectives and derivatives can

be efficiently calculated via the Forward-Backward algorithm

M K K
[5] based on symbol graph. OFyaiw)  _ § [Zum TecUm PE TeeUn, 08 PE;

dw; YU Heeuy, Pé

m=1

3.1.1. MMI criterion _Zu HEEEUU’}?IEEE;%‘““?J]
The MMI training was proposed as a discriminative training _ JXV’: (ZeEG’ locf/pg;ja;rﬁsé _ Teea loigg,ojaep:ﬂg)
criterion which would maximize the mutual information be- m=1 oro
tween the training symbol sequence and the observation sexy,,;w _ g’: [Zum Me vy, P8 Secuy, <1~
quence. Its objective function can be expressed as a difference o =1 2Um Heevm pe
of joint probabilities Yy lecu ¥ zeezgu*l]
Yullecu Pe

M . .
— eIl Z (dec/ aPEBe  Teea aep’gﬁe)
_ M > r Pw(Om,Bm,Sm,R)" - 0656 agBo
}‘MMI(W) = Zmzl log Y5 5.1 Pw(Om,B,S. R~ (5) m=1

. . i . In the derivativesq, and 3, indicate the forward and back-
Probability P, (O, B, S, R) is defined as in (3). The MMI ward probabilities of edge.

criterion equals the posterior probability of the correct symbol

sequence, thatis 3.1.2. MSE criterion

Famt(w) = XM log Pa(Bim, Sm|Om)" The Minimum Symbol Error (MSE) criterion is directly re-
lated to Symbol Error Rate (SER) which is the scoring crite-
rion generally used in symbol recognition. It is a smoothed
o approximation to the symbol accuracy measured on the out-
Fa(w) = M log % (6) put of the symbol recognition stage given the training data.
B.5,R Llk=1Pk The objective function in MSE, which is to be maximized, is:

Substituting Equation (3) into (5), we have

wherep,, \ is the same witlp,, except that the former corre-
sponds to the reference symbol sequence ofitltle training
data.

In the condition that all hypothesized symbol sequencegihereP,, (B, S|O,,)" is defined as the scaled posterior prob-
are encoded by a symbol graph, the graph based MMI criteability of a symbol sequence being the correct one given the

Fusu(w) = Ym_1 S5 s Pw(B, 5|0m) A(BS, BnSm) (8)

rion can be formulated as weighting parameters. It can be expressed as
" P (B SlO )N — ER Pw (Om,B,S,R)" (9)
M Ty, Heeuvy, PE w2, 2Em 5,51 Pw(Om,B,5,R)F
Faar(w) =320 lo ng HEEZ PE (7 st

A(BS, B,,S,,) in Equation (8) represents the row accuracy
whereU,, denotes a correct path in the graph for th&h  of a symbol sequence given the reference forvifith file,
file, U represents any path in the graphc U stands for which equals the number of correct symbols



3.2. Experimental results

A(BS, BmSm) = XK L ap, ay = { (1) Skvbk—oltv}f:ririzecorrect In this section, we experimentally investigate the discrimina-
tive training of exponential weights and insertion penalty. The

The criterion is an average over all possible symbol sedatabase used in [1]is adopted here again. Symbol graphs are
quences (weighted by their posterior probabilities) of the rav@enerated first by using the symbol decoding engine on the

symbol accuracy for an expression. By expandigs, 5|0, )", training data. Since MMI training must calculate the poste-
Equation (8) can be expressed as: rior probability of the correct paths, only those graphs with

zero graph symbol error rate (GER) are randomly selected.
o The final data set for discriminative training has about 2,500
Fusu(w) = oM Zesn iz i 255 B Sm) formulas, a comparable size with the test set. The graphs are
5,5, =1 7k then used for multiple iterations of MMI and MSE training.
Similar to the graph based MMI training, the graph based?ll parameters are initialized to 1 before the training.
MSE criterion has the form

. 3.2.1. Convergence
Fuse(w) = ZM Yulleeu P Zecuv,ccc b (10)

m=1 >y lleev PE

) Fig. 1 shows the convergence of discriminative training with
whereC' denotes the set of correct edges. By changing thgmoothing factotl /x = 0.3. Both MMI and MSE objectives
order of sums in the nominator, Equation (10) becomes are monotonically increased during the process.

Fusp(w) = Zivn[fl Zeecglju,ﬁeul?;;eU P (11) o oo
- ee€ e
The second sum in the nominator indicates the sum of the & / 2™ //

Objective
Objective

path scores over all hypotheses that past can be calcu-
lated from the Forward-Backward asp? .. The final MSE
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objective can then be formulated by the forward and back- C i © L
ward probabilities as (a) MMI (b) MSE
_ M Xeec @epiBe
Frase(W) = Xom1 =505, (12) Fig. 1. Convergence property (x = 0.3).

It equals the sum of posterior probabilities over all correct
edges. At each iteration of the training, the best path in the graph
For the quasi-Newton optimization, the derivatives of theis investigated given the latest parameters. Both training and
MSE objective function with respect to the exponential weightesting data are investigated. Fig. 2 shows the corresponding
and the insertion penalty can be calculated as results with respect to symbol accuracy. In Fig. 2, (a) and (b)
are obtained on training data, while (c) and (d) are obtained on
o . . testing data. We can observe that the improved performance
O7ygp(n)  — 5 [ZULeeU Pe Reey 8re, decleeC can generalize to unseen data very well.

m=1

 ZuTleeu Pé Zecu,ecc V(Zu Mlecu P Teeu log P?,j)]
(v Heev PE)?
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Herea!®) and3(®) indicate the forward and backward prob-
abilities calculated within the sub-graph constructed by paths _
passing through edge while o9 and ﬂéf‘) represents the Fig. 2. Symbol accuracy of best path in gragh' £ = 0.3).

e’

particular probabilities of edg€.



system accuracy| rel. impv. pair sk, the symbol graph constructed in this way would

two-step system 89.12% - have ambiguities of the second left context for each arc. There-

bigram decoding (MMI)[ 93.33% 38.7% fore, the original symbol graph must be transformed to a proper

bigram decoding (MSE) 93.41% 39.4% format before rescoring. Fig. 3 shows an example of the
transformation. In comparison with the original graph, the

Table 1. Symbol accuracy of bigram decoding. transformed graph duplicated the central node so as to distin-
guish different paths recombined into the nodes at the right
side.

3.2.2. Symbol accuracy

After discriminative training, we applied the obtained param- aNo

eters in the symbol decoding engine to do a complete search.

Table 1 shows the symbol accuracy and relative improvement @ e
obtained with different system configurations. \

The first line in Table 1 illustrates the baseline results pro-
duced by the old system in which segmentation and symbol
recognition are two separated steps. When comparing results
of MMI and MSE training, we noticed that MSE training has
achieved better performance than MMI training. This is con-
sistent with Povey’s conclusion in the MPE experiments in Fig. 3. Graph expansion.

LVCSR. The reason is obvious. While the MMI criterion

maximizes the posterior probability of the correct paths, the

MSE criterion distinguishes all correct edges even in the in4.2. Rescoring

correct paths. The MSE criterion has a closer relationship ) ) »

with the performance metric of symbol recognition, therefore After graph expansion, the trigram probability could be used
optimization of the MSE objective function will straight im- (O récalculate the score for each arc as follows

prove symbol accuracy. »
pe =TI prs x I (13)

4. GRAPH RESCORING Here D = 7 rather than 6 in bigram decoding (Equation (4)),
andpy 7 = P(skrk|sk—2ri—2,Sk—17x—1) indicates the tri-

After discriminative training of the exponential weights andgram probability. The exponential weight of the trigram prob-
the insertion penalty, the system can be further improved b@bility still can be discriminatively trained together with the
graph rescoring. In this paper, we introduce a trigram syntafther weights and the insertion penalty based on the trans-
model to the symbol graph so as to make the correct patformed symbol graph, in the same way as described in Sec-
more competitive. The trigram syntax model is formed bytion 3. Hence there are two sets of parameters in the system,
computing a probability for each symbol-relation pair givenone is of 6 dimensions and for bigram decoding and the other
the preceding two symbol-relation pairs on a training set ~ one is of 7 dimensions and for trigram rescoring.

WN.O

(a) original (b) transformed

4.3. Experimental results

c(Sk—2Tk—2,5k—1Tk—1,5k"k)
olek—2Tk—2:5%—17k—1) In this section, we investigate the recognition performance
wherec(sy_or_2, S_175—_1, $57% ) represents the number of achieved by_graph rescoring. The new set of exponential
times that triple(s_s7s_2, Sk_17%_1, Ss7%) OCCUTS in the weights and.ms.ertlon penalty was alsg trained by bot.h MMI
training data anc:(sy,_orp_s, s5_17%_1) is the number of and MSE criteria. After graph rescoring, the path with the
times that(sy_o7y_2, si_17%_1) is found in the training data. highest score was extracted and compared with the reference

For triples that do not appear in the training data, smoothinéf calculate the symbol accuracy. Table 2 shows the average
techniques can be used to approximate the probability. symbol accuracy. Compared to the one-pass bigram decod-
ing, the trigram rescoring got further significant improvement

on symbol accuracy. The best result even exceeded 97%.

P(skri|Sk—2Tk—2, Sk—1Tk—1) =

4.1. Graph expansion

From the definition of the trigram syntax model, it is required 5. SUMMARY

to distinguish both the last and second last predecessors for

a given symbol-relation pair. Since the symbol-level recom-The paper presented the use of discriminative criteria for train-
bination in the bigram decoding distinguishs partial symboing exponential weights and insertion penalty used in sym-
sequence hypotheses# only by their final symbol-relation bol decoding for handwritten math formula recognition. This



criterion | system accuracy| rel. impv.
MMI 2-g decoding| 93.33% -
3-g rescoring| 96.94% 54.1%
MSE 2-g decoding| 93.41% -
3-g rescoring| 97.02% 54.8%

Table 2. Symbol accuracy of trigram rescoring.

includes the Maximum Mutual Information (MMI) and the
Minimum Symbol Error (MSE) criteria. Both implementa-
tions of MMI and MSE training are carried out based on sym-
bol graphs to represent alternative hypotheses of the training
data. The quasi-Newton method was used for the optimiza-
tion of the objective functions. Due to the Forward-Backward
algorithm, the objectives and their derivatives were efficiently
calculated through graph. Experiments showed that both cri-
teria worked very well on unseen test data and produced sig-
nificant improvement on symbol accuracy. Moreover, MSE
reliably gave better results than MMI.

After discriminative training, graph rescoring was then
performed by using a trigram syntax model. The graph was
first modified by expanding nodes so that there will be no am-
biguous path for trigram probability computation. Then arc
scores are recomputed with the new probability. To do this,
a new set of exponential weights and insertion penalty was
trained based on the expanded graph. Experimental results
showed dramatic improvement of symbol recognition through
trigram rescoring.

In summary, via both graph based discriminative training
and rescoring, the symbol recognition engine achieved a high
performance of 97% in symbol accuracy.
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