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We present an approach for constructing dynamic models for the simulation
of gene regulatory networks from simple computational elements. Each element
is called a “gene gate” and defines an input/output relationship corresponding
to the binding and production of transcription factors. The proposed reaction
kinetics of the gene gates can be mapped onto stochastic processes and
the standard ordinary differential equation „ODE… description. While the ODE
approach requires fixing the system’s topology before its correct
implementation, expressing them in stochastic �-calculus leads to a fully
compositional scheme: network elements become autonomous and only the
input/output relationships fix their wiring. The modularity of our approach allows
to pass easily from a basic first-level description to refined models which capture
more details of the biological system. As an illustrative application we present the
stochastic repressilator, an artificial cellular clock, which oscillates readily
without any cooperative effects. [DOI: 10.2976/1.2804749]
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Providing efficient ways to model the dynam-
ics of gene regulatory networks is an important
challenge in systems biology. Many different
methods have been proposed in the past for
such dynamical networks. One prominent ap-
proach is based on discrete logical methods,
going back to the pioneering work by Kauff-
man on synchronous Boolean networks
(Kauffman, 1969) and Thomas on asynchro-
nous Boolean networks (Thomas, 1973, 1991);
reviews of the current state of such approaches
are in De Jong, 2002, Smolen et al., 2002. A
different, independent approach is based on
rate equations, hence on the continuous dy-
namics of nonlinear ordinary differential equa-
tions (ODEs) (Goldbeter, 1996). Finally, there
are various variants of stochastic methods,
based either on the master equation approach
(Van Kampen, 1992) or on the equivalent
Gillespie algorithm (Gillespie, 1977).

The basic underlying problem for the quan-
titative description of the dynamics of gene
regulatory networks is the enormous diversity
of the “actors” involved, i.e., the biomolecules

which determine the network structure and dy-
namics. Both from an analytic and a computa-
tional point of view, one therefore needs to
simplify in order to make simulations of such
networks feasible: representing all actors by in-
dividual computational elements is simply un-
feasible. But this is not the only problem. Two
obvious other challenges are: (i) to have flex-
ible modeling schemes, and (ii) schemes which
do not grow too fast with the increase of the
number of reactions included.

In this paper we propose an approach
to models of gene regulatory network dynam-
ics which is both flexible and has such advan-
tages in terms of system size. It combines two
features:

First, our modeling approach to gene regu-
latory networks is based on an abstraction of
the genome as a set of input-output elements,
the gene gates (Blossey et al., 2006). The prop-
erties of each gate are defined by a set of ab-
stract kinetic reactions. (In the simplest - Bool-
ean - setting, a gate would be either on or off.)
Based on these modules, regulatory circuits
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can be constructed by formulating input-output relationships
between the gates. An advantage of this modeling approach
is that it allows to start with a very simple construction of
the gates to represent the overall topology of the network.
We show how more biological detail can be added to the
model while leaving the underlying topology of the network
unaltered. The approach therefore permits to build computa-
tional models with variable degrees of detail which is highly
desirable given the incomplete knowledge of most biological
systems.

Second, the full advantage of our compositional approach
can be seen by formulating the networks in terms of pro-
cesses defined in a process calculus, the �-calculus, which
originates in the field of programming languages in theoret-
ical computer science (Milner, 1999), and has been proposed
for applications to systems biology only recently (Priami
et al., 2001; Regev and Shapiro, 2002; Regev, 2003). Not
only do the compositional features of this calculus allow to
express each gate as an autonomous network element, they
also significantly reduce the system size (Cardelli, 2007). For
2n elements, the size of the input/output interface equals 2n,
while the number of kinetic reactions can be in the worst case
n2. An introduction to the stochastic �-calculus and its use in
simulations is presented in the Supplementary Material (see
also Phillips and Cardelli, 2007).

The process calculus directly allows for a stochastic for-
mulation of the dynamics, which is clearly more realistic for
networks of molecules with small copy numbers than the de-
terministic dynamics. This feature can indeed be critical for
the description of the network dynamics.

We illustrate this by our application of the approach to the
repressilator, a three-gate inhibitory network which is an ar-
tificial cellular clock realized experimentally (Elowitz and
Leibler, 2000). While the repressilator readily oscillates
within a stochastic dynamics without cooperative mecha-
nisms in the interaction between genes and transcription fac-
tors, such cooperativity is required to bring about oscillations
in a deterministic (nonlinear) gate dynamics as we show by
mapping the gene gate kinetics onto deterministic ODEs.

Finally, we demonstrate the refinement of the basic de-
scription to include more details of the biological system for
the repressilator by an inclusion of the transcription, transla-
tion and repressor binding processes. Protein complexation
is found to regularize the oscillations.

MODELING GENE REGULATORY NETWORKS
BY GENE GATES

Definition of a gene gate
To be specific, in this work we want to consider genetic
interactions in genomes similar to those of prokaryotes (bac-
teria). In such organisms, the basic regulatory mechanism
follows the classical dogma of molecular biology, according
to which DNA “makes” RNA which in turns “makes” pro-
tein (Alberts et al., 2002).

The modeling scheme we propose for the gene regulatory
circuits of such organisms is based on the idea that the action
of each gene is uniquely identifiable by its regulatory input
(activation/inhibition) and its regulatory output. In a first
modeling step this therefore amounts to neglecting all inter-
mediate steps, which are the formation of the gene-
transcription factor complex, the recruitment of the poly-
merase for basal transcription, the transcription process of
the gene, the translation process of the mRNA. Only the
blocking of the gene by transcription factor recruitment
(since in the present paper we only discuss repressed genes)
and the production of a corresponding transcription factor
from the gene is retained.

We represent the whole gene network as a composition
of “gene gates.” A gene gate comprises not only all of
the processes listed above but in addition also the degrada-
tion machinery of the proteins. In a gene gate, transcription
and translation are lumped together in one parameter set,
and protein degradation will be controlled by a separate
parameter.

The physical basis for this initial modeling employing a
reduction of variables is based on the common distinction
between slow and fast variables. The selection of these vari-
ables is indeed important, as has been discussed in detail,
e.g., in Bundschuh et al., 2003. The advantage of our
compositional/modular approach is that we can add all ne-
glected intermediate layers of regulation in an easy fashion
without affecting the basic topology of the network. In this
way, the faster processes that were neglected in the beginning
can be added in principle without any further approxima-
tions, as we demonstrate here.

We thus arrive at the representation of a gene regulator
element as shown schematically in Fig. 1 (top left). The

Figure 1. Gate reaction kinetics and stochastic �-calculus
model of a gene gate. The kinetics denote stochastic reactions,
where all the rates are of dimension s−1.
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double helix represents an active gene g, while the double
helix with a blocked promoter region represents a blocked
gene g�. The red and orange ovals represent different types of
proteins, while the dotted ovals represent degraded proteins.
The shapes are labeled with a gene name �g ,g�� or a protein
name �A ,B�.

The graphical representation has a precise correspon-
dence with the gate reaction kinetics shown at the bottom of
the figure, which summarizes the possible reactions between
the gate and the proteins. These reactions are the blocking
of the gene by protein A, the production of protein B by the
unblocked gene, the unblocking of g�, and the decay of the
protein, all with their corresponding rates.

Gene gates in stochastic �-calculus
The stochastic �-calculus is essentially a modular language
for describing the dynamics of a biological system, from
which a set of reaction equations can subsequently be de-
rived. The stochastic �-calculus differs from reaction equa-
tions in two fundamental ways. First, instead of modeling the
individual reactions of a system, we model its components.
This allows a system to be described in a modular fashion, so
that each component can be modified independently. Second,
instead of explicitly saying which component can interact
with which other component, we describe the different sites
on which a component can interact. This adds a layer of ab-
straction to the model, where two components can interact if
they have complementary sites.

Figure 1 (left and right) compares the reaction equation
model and a stochastic �-calculus model of the gene gate. As
for the reaction kinetics, the graphical representations at the
top of the figure are equivalent to the textual representations
at the bottom. Each shape in the graphs represents a protein
or gene in a particular state.

For the stochastic �-calculus model on the right, each la-
beled edge represents a reaction, which can be either unary
or binary. Unary reactions are labeled with a reaction name,
where each name is associated with a corresponding rate.
For example, a protein can degrade by doing a reaction �, and
a blocked gene can unblock by doing a reaction �. A gene
can also produce a new protein in parallel with itself by do-
ing a reaction �, where a horizontal bar represents parallel
composition. Binary reactions are labeled with a reaction site
preceded by a send �?� or receive �!�, where each site is asso-
ciated with a corresponding rate. For example, a gene can
become blocked by receiving on site a, and a protein can re-
act by sending on site b. Two entities can interact by sending
and receiving on the same site, where the rate of the reaction
is equal to the rate of the site. As a result, a protein that sends
on site a can interact with a gene that receives on a, causing
the gene to block.

Each shape in the model is parameterized by its interac-
tion sites. The genes g ,g� are parameterized by sites a and b,
while the protein P is parameterized by site b. Thus g�a ,b�

denotes a gene that receives on a and that produces proteins
which send on b. The parameters allow networks of arbitrary
complexity to be constructed from a single model of a gene
gate. For instance, an autoinhibitory gate can be defined as
g�a ,a�, i.e., a gene that receives on a and that produces pro-
teins which send on a. A bistable network can be defined as
g�a ,b� �g�b ,a� and a repressilator network can be defined as
g�a ,b� �g�b ,c� �g�c ,a�.

If we compare the two models in Fig. 1 we observe that
the reaction equation model contains two proteins A ,B, but
does not fully describe the behavior of either. In particular,
there is no information on how protein A is produced or de-
graded, or on how protein B interacts. In contrast, the sto-
chastic �-calculus model describes the complete behavior of
the protein P that is produced by the gene. Furthermore, the
model does not need to explicitly mention protein A, since it
only considers the site on which the gene can interact. This
ability to describe the components of a system in a modular
way is one of the main advantages of the stochastic
�-calculus. Not only does this allow for more maintainable
models, but it can also help to significantly reduce the model
size. Consider the gene network described in Fig. 2, consist-
ing of N proteins P1 , . . . ,PN, each of which can block M
genes g1 , . . . ,gM. For the reaction equation model we need to
explicitly state which protein can block which gene, resulting
in a model of size N�M. In contrast, for the stochastic
�-calculus model we only need to state that each protein can
send on site a and that each gene can receive on a, resulting
in a significantly smaller model of size N+M.

APPLICATION: THE REPRESSILATOR IN STOCHASTIC
�-CALCULUS

Parameter variation of a basic repressilator
In the first instance we explore the parameter space of a
simple repressilator network, constructed using the gene gate
described in Fig. 1. Our compositional approach to modeling
allows the network to be defined in a straightforward manner
as g�a ,b� �g�b ,c� �g�c ,a�. Note that the initial population of
proteins is empty: they are produced constitutively and sto-
chastically by the gates. We assume that the sites a ,b ,c are
associated with the same reaction rate r, resulting in a model
with four parameters r ,� ,� ,�. Furthermore, since the dy-
namics of the network depends only on the relative rates of
these parameters, we can arbitrarily fix the value of one pa-
rameter in order to study the effects of the other three. Here
we fix the constitutive rate of protein production � at a nomi-
nal value of 0.1, and vary the rates of protein degradation �,
gene unblocking � and gene repression r. The results of the
parameter variation are shown in Fig. 3.

Figure 3(i) shows the simulation results for �=0.00001,
�=0.001 and r=1.0. We observe alternate cycles of pro-
tein production, where each cycle is characterized by a
dominant protein. The cycles alternate in a specific sequence
of proteins P�c�, P�b�, P�a� and the population of the
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dominant protein stabilizes at about 100 in each cycle. The
dominant population fluctuates significantly due to sto-
chastic noise in the system, and the duration of the cycles
also varies considerably. We can improve on all these as-
pects of the repressilator model by adjusting its parameters
appropriately.

First, we observe that the dominant protein population
stabilizes at an equilibrium between production and degrada-
tion, given by � /�. We can limit the relative size of the fluc-
tuations by decreasing the degradation rate to �=0.0001,
resulting in a dominant population of about 1000, as shown
in Fig. 3(ii).

Next, we observe that when one protein is dominant the
other two proteins are absent and their corresponding genes
are blocked, where one of the blocked genes is actively re-
pressed. If the repressed gene unblocks then it is immediately
blocked again by the dominant protein. If the unrepressed
gene unblocks then it can start to produce proteins, which
will repress the dominant gene and will themselves become
dominant. The duration of protein cycles is highly irregular,
since it depends on the rate of unblocking of the unrepressed
gene, which is characterized by an exponential distribution.
Furthermore, both blocked genes are in a stochastic race to
unblock, and the duration of protein cycles will also depend
on how far apart they unblock from one another, which is
highly variable. We can reduce this variability by increasing
the rate of gene unblocking to �=0.0001. As this rate is in-

creased, the effect of degradation plays a role in improving
the regularity of oscillations: if a gene unblocks, it is imme-
diately blocked again by any repressors that have not yet de-
graded. As a result, a gene can only start producing proteins
when all residual repressors are degraded. Since the decay
curve of each protein is fairly regular, we observe an in-
creased regularity in the oscillations. In this setting, a gene
can repeatedly block and unblock many times while waiting
for the residual repressors to degrade. Unfortunately, this
also increases the likelihood of a leaky production of pro-
teins, which results in a stuttering of the oscillations, as ob-
served in Fig. 3(iii).

We can compensate for this by increasing the rate of gene
repression to r=10.0. In this setting, even if there is one pro-
tein remaining, it will still have a high probability of block-
ing the corresponding gene. This significantly reduces the
probability of a leaky production of proteins, thereby reduc-
ing the stuttering effects, as shown in Fig. 3(iv).

We summarize the results of our parameter analysis for
the repressilator network:

• The rate of protein degradation � should be low
enough so that the population of the dominant protein
is large relative to its fluctuations.

• The rate of gene unblocking � should be higher than
the rate of protein degradation, to enable protein
cycles of regular duration.

Figure 2. Reducing the combinatorial explosion in stochastic �-calculus.
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• The rate of gene repression r should be high enough
that a single protein will cause the gene to block be-
fore transcription can occur, to prevent the leaky pro-
duction of proteins. The rate should also take into ac-
count the number of times that a gene can attempt to
produce before the last repressor has degraded, which
is determined by � /�.

Using these basic principles we can design effective repressi-
lator networks with a wide range of parameters. In particular,
successful designs should include all models that satisfy
the constraints ��� /1000, ��� and r�100·� ·� /�. Ad-
ditional details are provided in the online supplementary
material.

We also note that the behavior of the stochastic repressi-
lator significantly differs from its deterministic counterpart.
Later, we provide the derivation of the ODE system that fol-
lows from the kinetic reaction scheme. While the stochastic

repressilator oscillates readily without cooperativity, it can
be shown that this is not the case for the deterministic dy-
namics.

Transcription, translation, and repressor binding
The repressilator network in the previous section was
constructed using a highly simplistic model of a gene gate.
In this section we examine various refinements to our gene
gate model, and test whether the results of our parameter
analysis are still applicable. Note that the high-level defini-
tion of the repressilator network remains unchanged as
g�a ,b� �g�b ,c� �g�c ,a�. We simply refine our model of a gene
gate to include more biological details.

Figure 4 presents a model of a gene gate which considers
gene transcription and RNA translation. The simulation re-
sults with �=�=0.0001, r=10 and �2=�2=0.01 are almost
identical to those of Fig. 3(iv), suggesting that our parameter
analysis is still applicable. Here we fix � /�2=10 so that there
is a continuous supply of a few RNA molecules to enable

Figure 3. Parameter variation
for a simple repressilator
network, based on the gene
gate model of Fig. 1. The plots
show the populations of pro-
teins P�a�, P�b�, P�c� over time
�Ms�.
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steady translation, and we fix �2/�=100 so that the domi-
nant protein population stabilizes at about 1000.

Figure 5(i) presents a model of a gene gate in which a
repressor must remain bound in order to block the gene. In
this situation the simulation results do not produce alternat-
ing protein cycles when the rate of repressor binding is high,
as shown in Fig. 6(i). This is because, when a repressor
unbinds from a gene it has a high probability of re-binding,
which gives rise to a situation in which all three genes
are blocked. However, we do get oscillations when the rate
of repressor binding is very low �r=0.00001� as shown in
Fig. 6(ii), though the cycles are irregular. The low repression
rate ensures that a single repressor has a low probability of
switching off a gene. This allows the gene to produce pro-
teins when the repressor finally does unbind, in order to start
the next cycle. This also means that a large number of repres-
sors is required in order for a gene to be switched off. We
observe that a gene is typically switched off after about 100
repressors are produced. In this model it is also important
for the DNA-TF complex to be long lived ��=0.00001� so
that the repressor remains tightly bound for a sufficient
length of time, comparable to the duration of a protein cycle.
Unfortunately, low � also means that the oscillations do not
occur at regular intervals, since the duration of protein cycles
is determined by � as opposed to the smooth repressor deg-
radation curve. If we increase � to 0.0001 we no longer ob-
tain distinct oscillations, since the repressor can unbind too
soon, after which the gene has a much higher probability of

producing a protein than becoming blocked again. This
causes the protein cycles to interfere with each other, as
shown in Fig. 6(iii).

Interestingly, we can solve this problem by allowing pro-
teins to degrade when still bound to a gene. We model this by
replacing the definition of P� with P��b ,u�= ?u .P�b�+ ?u in
Fig. 5(i), which is equivalent to adding a reaction g�→�g.
This produces the desired oscillations, shown in Fig. 6(iv).
At first glance the degradation of bound repressors may seem
counterintuitive, but it can also be viewed as an abstraction
of a more general requirement, which is that a repressor can
somehow dissociate from a DNA binding site in an inactive
form, such that it has very low probability of re-binding. One

Figure 4. Gate reaction kinetics and stochastic �-calculus
model of a gene gate with gene transcription and RNA
translation.

Figure 5. Gate reaction kinetics and stochastic �-calculus
models of gene gates with repressor binding „i… and with two
repressor binding sites „ii…. In the stochastic �-calculus models
the protein P is characterized by a local binding site u, written ��u�.
In this setting, !b�u� can be understood as “send on site b and bind
to site u,” and ?b�u� can be understood as “receive on site b and
bind to site u.”
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way of achieving this is to allow two repressors to bind to
the DNA, as shown in Fig. 5(ii). For large repressor popula-
tions, when a repressor unbinds it is more likely to bind again
than for the second repressor to unbind. Conversely, for
small repressor populations when a repressor unbinds it is
much less likely to bind again. In this way, the population of
repressors can be used to control the likelihood of gene acti-
vation, giving rise to more regular cycles. Corresponding
simulation results are shown in Fig. 6(v). Although the pro-
tein cycles are still noisy, they are nevertheless of reasonably
similar duration.

We summarize the results for our more detailed repressi-
lator models:

• The presence of gene transcription and RNA transla-
tion does not significantly perturb the dynamics of the
repressilator network, provided there is a continuous
supply of a few RNA molecules.

• If we assume that a protein must remain bound in or-
der to repress a gene then we can still obtain the de-
sired repressilator dynamics, provided the bound pro-
teins can also degrade. The degradation of bound

Figure 6. Simulation results
for gene gates repressor
binding „i…–„iii…, for degrada-
tion of bound repressors „iv…
and for gene gates with two
repressor binding sites „v….
The plots show the populations
of proteins P�a�, P�b�, P�c� over
time �Ms�.
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repressors is not essential for oscillations, but it does
produce a significant improvement in their regularity.

Cooperativity by repressor dimerization
and tetramerization
As a final modification of the stochastic repressilator we dis-
cuss the effect of cooperativity in transcription factor bind-
ing. For this we address the cases of dimerization and tet-
ramerization. The gate reaction kinetics and the stochastic
�-calculus models for these two cases are depicted in Fig. 7.

In the first model the gene produces a protein that can
form a dimer by sending or receiving on site b2, and the re-
sulting dimer can send on site b. In the second model, the
dimer can form a tetramer by sending or receiving on site b4,
and the resulting tetramer can send on site b. This way of

modeling dimerization is also compatible with biological re-
ality, since a protein must be able to interact both on a site
and on its complement in order to dimerize.

Figure 8 shows the effect of cooperativity on the repressi-
lator network. The results on the left correspond to the re-
pressilator with no cooperativity, while the results on the
right correspond to the repressilator with tetramerization.
The program code for the simulations is given in supplemen-
tary online material. Figure 8(i) shows the populations of the
three proteins P�a�, P�b�, P�c� over time. We observe that the
populations fluctuate significantly less in the presence of co-
operativity. We can quantify this by measuring the variability
of the dominant protein populations over time. In order to
obtain a clean separation of protein cycles, we only consider
the dominant population of a given protein when the remain-
ing two proteins are off. The principle of the approach is il-
lustrated in Fig. 8(ii). We assume that a protein is on when its
population is above a certain threshold, and off when its
population is below this threshold, and we fix the threshold at
roughly 10% of the observed steady state of protein levels,
i.e., at about 100. We use this definition to extract the domi-
nant protein populations from the simulation results in row
(i) by application of a simple filter, in order to obtain the plots
in row (ii). The gaps in the plots correspond to situations
where multiple proteins are on simultaneously, which we de-
liberately ignore. This is a convenient metric for comparing
the variability of dominant protein populations, since it fil-
ters out situations where multiple proteins have competing
populations. We quantify the difference between the two
models by measuring the mean and standard deviation of the
dominant protein populations over a time period of 107 time
units. In absence of cooperativity we observe a mean of 880
and a standard deviation of 196, whereas with tetrameriza-
tion we observe a mean of 935 and a standard deviation of
98. For clarity, only the first 106 units are shown in Fig. 8(i),
(ii), and (iii). For a more coarse-grained comparison over the
same time period, in the absence of cooperativity we observe
that the dominant protein population falls below a threshold
of 800 roughly 23% of the time, whereas with tetrameriza-
tion it falls below this threshold only 3% of the time. In this
setting, cooperativity acts to improve the regularity of oscil-
lations by reducing the fluctuations in protein levels. In the
presence of cooperativity, the leaky transcription of a gene is
less likely to perturb the oscillations, since at least two pro-
teins must be produced in order to have an effect in the case
of dimerization, and at least four proteins are required in the
case of tetramerization. Thus, cooperativity can be seen not
as an essential requirement for oscillations, but as a means of
improving the stability of oscillations over a wider range of
parameters.

We can compare the regularity of oscillations by measur-
ing the duration of protein cycles. Here we assume that a pro-
tein cycle starts when the protein is switched on, and ends
when the next cycle starts. Figure 8(iii) shows histograms of

Figure 7. Models of gene gates with dimerization „i… and tet-
ramerization „ii… of repressors.
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the duration of protein cycles for the three proteins. For both
models there are approximately 140 protein cycles, and we
observe a moderate improvement in cycle regularity in the
presence of cooperativity. Without cooperativity we observe
a mean duration of 69 000 and a standard deviation of
16 000, and with tetramerization we observe a mean duration
of 75 000 and a standard deviation of 14 000.

Note that in presence of cooperativity the rate of gene
repression r can be significantly lower than in absence of co-
operativity, while still observing regular protein cycles. Not
only does this improve the robustness of the network by al-
lowing for a broader range of parameters, it could also be
important in situations where the rate of repression is limited
by cellular constraints. For example, if we assume that the

Figure 8. Observed effects of cooperativity on the Repressilator Network. The plots in row �i� and �ii� show the populations of proteins
P�a�, P�b�, P�c� over time �Ms�. The plots in row �iii� show histograms of the duration of protein cycles for all three proteins. The results without
cooperativity were obtained for �=0.1, �=0.0001, �=0.001 and r=1.0, while the results with tetramerization were obtained for �=0.4,
r2=0.0001 and r4=0.0001, with �, � and r unchanged.
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rate of protein-gene interaction is determined by random dif-
fusion, it may be physically impossible for this rate to be
above a certain threshold. Cooperativity could be one way
for a cell to overcome this limitation.

RATE EQUATIONS OF THE GENE GATES
For completeness we establish how the gate reaction kinetics
can be expressed in terms of rate equations (ODEs) by mak-
ing use of the mass action law.

We demonstrate this by applying the scheme to the sim-
plest circuit that can be built from the inhibitory gate, the
autoinhibitory loop (Fall et al., 2002), where the output B
acts upon its own gate, hence B and A have to be identified;
we first ignore the formation of protein complexes.

With the identification A=B in the gate reaction kinetics
in Fig. 1, the autoinhibitory loop is given by

A + g→r g� + A , �1�

g→� g + A , �2�

g�→� g , �3�

A→� 0. �4�

In order to have a well-defined continuous setting we con-
sider a cellular environment with a protein concentration
�A�c (mol/L). We choose a population of autoinhibitory loops
with a concentration �N�c (mol/L) and normalize according
to

�A� �
�A�c

�N�c
, �g� �

�g�c

�N�c
, �g�� �

�g��c

�N�c
�5�

so that �A�, �g�, �g�� are concentration ratios, hence dimen-
sionless quantities. For the gate states we have the conserva-
tion condition �g�+ �g��=1. Casting the reaction kinetics into
ordinary differential equations we have

�A�˙ = ��g� − ��A� , �6�

�g�˙ = − r�g��A� + ��g�� , �7�

�g��˙ = r�g��A� − ��g�� . �8�

Note that due to our choice of dimensionless variables the
kinetic parameters carry the same dimensions as the rates in
the reaction scheme �s−1� and we can therefore leave the
same symbols. Using the conservation condition we can
eliminate the equation for �g�� and end up with only one
equation for the unblocked gate state �g�, i.e.,

�g�˙ = ��1 − �1 + ��A���g�� , �9�

where ��r /�. The inhibitory loop is therefore described by
two ODEs, one each for �A� and �g�.

We can relate the gene gate description to the common
continuum description of the dynamics of gene networks.
This can be achieved by making some additional simplifica-
tions which are of approximate nature. First, we observe that

in the limit �→0, when ��r /� is kept finite, �g�˙ can
be made very small without affecting the equation for �A�
since it does not depend on �. Therefore, this limit allows
to separate the time scales of the dynamics of �A� and �g�.
For �g�˙ �0, �g� varies according to

�g��t� �
1

1 + ��A��t�
. �10�

Inserting this equation into Eq. (6) one obtains an equation
for �A� which is given by

�A�˙ =
�

1 + ��A�
− ��A� . �11�

This is the standard Hill-type equation for an inhibitory loop
(Cherry and Adler, 2000; Fall et al., 2002) in the case of a
noncooperative inhibition.

We can easily check the quality of this approximation.
From Eq. (10) we obtain

�g�˙ = −
��A�˙

�1 + ��A��2 = −
�

�1 + ��A��2� �

1 + ��A�
− ��A�	

�12�

which shows that �g�˙ =0 is strictly fulfilled only at the sta-
tionary points of the dynamics of �A�. Due to the �A� depen-
dence of the denominator in the equation the time variation
of �g� becomes indeed small if �A� is large; but for small
values of �A�, and away from the stationary points, the ap-
proximation becomes increasingly poor. For the autoinhibi-
tory loop it can indeed be seen from the numerical solutions
of the equations that for large initial values of �A�, and near
the stationary state for t→	, the exact and approximate so-
lutions coincide, but for the intermediate range of concentra-
tions, both do differ quantitatively (not shown).

For the fixed points of the full system we find from

�A�˙ = �g�˙ =0 the conditions

�g0 = �A0, g0 =
1

1 + �A0
�13�

which lead to a unique equilibrium solution. Perturbations
around the fixed-point value �A0 ,g0� in the form A=A0+�A
obey

���A�˙

��g�˙
	 = 
 − � �

−
��

1 + �A0
− ��1 + �A0� � · ���A�

��g�
	 . �14�

Denoting the matrix in this equation by J, one has
Det J�0 and Tr J�0 independent of the parameter values,
hence the equilibrium state is indeed stable (Fall et al., 2002).
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We now allow for dimerization of the transcription factor
A. In the gate reaction kinetics we have

A + A→d A2 �15�

and the dimers degrade according to

A2→� 0. �16�

We now assume that the dimers activate the gene according
to (see Fig. 6, top)

A2 + g→r g� + A2. �17�

The rate equation for the dimers thus reads as

�A2�˙ = d�A�2 − ��A2� . �18�

Upon assuming that the dimerization reaction is in equilib-

rium, �A2�˙ =0, we can relate the concentrations of dimers,
�A2�, to �A�2, and define an equilibrium constant KD. This
leads to a modification of Eq. (9)

�g�˙ = ��1 − �1 + �D�A�2��g�� , �19�

with �D��KD. The denominator in Eq. (11) is then replaced
by

�

1 + ��A�
→

�

1 + �D�A�2 , �20�

where the exponent h=2 is the Hill-exponent corresponding
to dimerization. The case of tetramerization can be treated
analogously.

We finish this section by writing down the ODE equa-
tions of the repressilator. It consists of a three-gene circuit in
which each gene represses the transcription of one of the
other genes in a circular manner, e.g., g1�g2�g3�g1.

For the deterministic version of the repressilator the gene
gate equations read as follows. Denoting the corresponding
transcription factors of the repressilator genes by �Ai�, with
i=1,2 ,3, the rate equations of the repressilator are given by
the six ODEs

�Ai�˙ = ��gi� − ��Ai� �21�

�gi�˙ = ��1 − �1 + �h�Ai−1�h��gi�� �22�

with periodic conditions on the indices ��g4���g1��.
In Eqs. (21) and (22), the gene-transcription factor in-

teraction is assumed to be cooperative with a general Hill
exponent h whose value is left unspecified here; dimeriza-
tion corresponds to the value h=2 and tetramerization to
h=4. For a deterministic version of the repressilator, called
“RepLeaky” by the authors, it has recently been shown that a
sufficient criterion on the Hill exponent is h�4/3 in order to
bring about sustained oscillations (Müller et al., 2006). Al-
though the RepLeaky repressilator is formulated in terms of
a protein-mRNA model, and hence its nonlinear dynamic
equations thus differ from those of our gate-based version, it

turns out that the result by Müller et al. also applies to our
case. This follows from a comparison of the stability analysis
of both models, which shows that the equations governing
the linear stability of the fixed points can be mapped onto
each other. Hence, according to the sufficient criterion for
oscillations developed by Müller et al., the noncooperative
repressilator which we found to oscillate readily in its sto-
chastic case does not oscillate in its deterministic version
since h=1.

Finally, it is instructive to compare the ODE description
of the repressilator based on the gene gates with other ODE
description of gene regulatory circuits, see, e.g., Widder
et al. (2007). Here, the modeling of simple gene circuits
starts with considerably more biological detail than our gene
gate description, which is minimalistic. However, keeping all
the details is often difficult if not impossible, and sometimes
not even needed. We believe it is therefore more reasonable
to start with a basic model and do refinements at a later stage.
At the lowest level of detail, the basic model could ultimately
be simplified to the level of stochastic boolean networks, by
ignoring the protein species and modeling the interaction be-
tween gene gates directly. This is clearly difficult in modeling
schemes that are not sufficiently modular, one clear advan-
tage of the stochastic �-calculus, as presented in this work.

CONCLUSION: CONTRIBUTIONS AND RELATION
TO OTHER WORK
To conclude, we have presented an approach to model gene
regulatory networks which is fully compositional and
stochastic due to the use of a process calculus description
of gene gates. It is made possible by exploiting the com-
positional features of the stochastic �-calculus, which
greatly facilitates the exploration of model design through
simulation.

Our approach demonstrates that for a better understand-
ing of the effect of regulatory mechanisms, a coarse model
can indeed be a useful starting point; we have shown how a
stepwise modification of such a model can provide novel in-
sights into their role. For our system at hand, the repressila-
tor, we could establish that stochasticity alone is sufficient to
bring about oscillatory behavior in the three-gene network,
and that, contrary to the deterministic case, cooperative
mechanisms are not needed. The latter are not without effect,
as we could see: cooperativity of binding regularizes the os-
cillations. Furthermore, we have shown how additional
mechanisms in transcription, translation and repressor bind-
ing influence the oscillatory behavior of the network.

We like to note that the noncooperative case is also not
entirely academic: while in protein binding cooperativity is
mostly present in in-vivo cellular genetic networks, it now
becomes technically feasible to build artificial transcrip-
tional oscillators based on DNA and RNA which lack protein
binding cooperativity in the transcriptional initiation process
(Simmel F, private communication, 2007; Kim et al., 2006).
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The properties of such artificial and in-vitro networks can
thus be expected to yield novel information about the func-
tional constraints of gene regulation systems, in particular
when combined with mathematical modeling.

We have also established the relationship between the
stochastic and the deterministic (ODE) description of the
gene gates. While both descriptions are valid representations
of the underlying gate reaction kinetics, the example of the
repressilator clearly shows that both descriptions do not yield
equivalent system behavior.

Stochastic effects in networks have previously been stud-
ied mostly in the context of their role in perturbing an under-
lying deterministic dynamics. Also there surprising effects
were observed, like the occurrence of oscillatory behavior
at a finite distance from a Hopf bifurcation, or even oscilla-
tions via a different type of bifurcation (Freidlin, 2001; Lee
Deville et al., 2006). We stress that in our context stochastic
effects do not act merely as perturbations of an underlying
deterministic dynamics, but bring about the dynamic behav-
ior in the first place.

It remains a challenge to find the correct abstraction level
for the representation of the biologically relevant features of
a regulatory network in terms of computable elements. In
this respect our compositional approach is of advantage,
since it permits to modify the properties of the individual
components by fine tuning without affecting the overall net-
work topology. Supporting information is available in an
EPAPS document.
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