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ABSTRACT 

 

We continue our previous work on soft margin estimation (SME) 
to large vocabulary continuous speech recognition (LVCSR) in 
two new aspects. The first is to formulate SME with different unit 
separation. SME methods focusing on string-, word-, and phone-
level separation are defined. The second is to compare SME with 
all the popular conventional discriminative training (DT) methods, 
including maximum mutual information estimation (MMIE), 
minimum classification error (MCE), and minimum word/phone 
error (MWE/MPE). Tested on the 5k-word Wall Street Journal 
task, all the SME methods achieves a relative word error rate 
(WER) reduction from 17% to 25% over our baseline. Among 
them, phone-level SME obtains the best performance. Its 
performance is slightly better than that of MPE, and much better 
than those of other conventional DT methods. With the 
comprehensive comparison with conventional DT methods, SME 
demonstrates its success on LVCSR tasks. 
Index Terms: soft margin estimation, hidden Markov model, 
discriminative training 

1. INTRODUCTION 

Discriminative training (DT) methods have been extensively 
studied to boost the automatic speech recognition (ASR) system 
accuracy [1-3]. The most successful methods are maximum mutual 
information estimation (MMIE) [1], minimum classification error 
(MCE) [2], and minimum word/phone error (MWE/MPE) [3]. 
MWE/MPE has achieved great successes by minimizing the 
approximate word/phone error rates, compared to MCE and MMIE 
that minimize some utterance-level error measures. Attributed to 
the success of MWE/MPE, several variations have been proposed 
recently, such as minimum divergence training [4] and minimum 
phone frame error training [5]. 

Inspired by the great success of margin-based classifiers, there 
is a trend to incorporate the margin concept into hidden Markov 
model (HMM) for ASR. In contrast to the above conventional DT 
methods, margin-based techniques treat the generalization issue 
from a perspective of statistical learning theory [6]. Several 
attempts based on margin maximization were proposed recently 
and have shown some advantages over DT methods in some small 
ASR tasks. Major methods are: large margin estimation (LME) [7], 
large margin hidden Markov models (LM-HMMs) [8], and soft 
margin estimation (SME) [9].  

Although margin-based methods have shown their superiority 
on small tasks, they have not well demonstrated the same power on 
large vocabulary continuous speech recognition (LVCSR) tasks. 
To be widely used, it is necessary to show convincing successes on 

LVCSR tasks. In [10], SME was shown to work well on the 5k-
word Wall Street Journal (5k-WSJ0) [11] task. However, two 
potential issues need to be addressed. The first is that the criterion 
to judge correct and competing candidates was on the string level 
in [10], although frame-based selection was performed. If word- or 
phone-level criterion can be used, performance may be boosted 
according to the success of MWE/MPE. The second is that SME 
only showed advantage over MCE in [10] and didn’t compare with 
MMIE and MPE on the same task. The newest version of HMM 
toolkit (HTK) [12] provides an accurate tool to train MMIE and 
MWE/MPE models. We should test the performance of MMIE and 
MWE/MPE models trained by HTK. 

This study addresses the two above-mentioned issues. For the 
unit separation, string, word, and phone levels are all considered. 
Different separation measures are defined based on the candidate 
definition. For comparison, MCE will be compared fairly with 
SME by sharing most of implementation details. In addition, 
MMIE, MWE, and MPE trained by HTK will also be compared.  

The research presented in this paper will make a comprehensive 
study of SME for LVCSR tasks. In Section 2, we propose SME 
with utterance-, word-, and phone-level unit separation. In Section 
3, SME will be compared with all the popular DT methods. The 
best SME model achieves a relative word error rate (WER) 
reduction of 25% from our maximum likelihood estimation (MLE) 
baseline on the 5k-WSJ0 task. It outperforms all the DT models in 
this study. Conclusions are drawn in Section 4. 

2. SOFT MARGIN ESTIMATION 

In this section, the theory of soft margin estimation is first briefly 
reviewed. A frame-based SME framework is proposed. Then SME 
methods with different unit separation are formulated. Finally, the 
practical implementation issues are discussed. 

2.1 Previous SME Work 
Here, we briefly introduce SME. Please refer to [9] for detailed 
discussion. SME has two targets for optimization: one is to 
minimize the empirical risk, and the other is to maximize the 
margin. These two targets are combined into a single SME 
objective function for minimization: 
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Λ denotes the set of HMM parameters, ( )Λ,iO�  is a loss function 

for utterance Oi, and N is the number of training utterances. ρ  is a 
constant soft margin, and λ  is a coefficient to balance soft margin 
maximization and empirical risk minimization. 



As discussed in [9], there is a mapping relationship between λ  
and ρ . For a fixed λ , there is one corresponding ρ . Instead of 
choosing a fixed λ  and trying to get the solution of Eq. (1), we 
can directly choose a ρ  in advance. The key component of SME 
is a proper definition of the loss function, ( )Λ,iO� . This loss 

should be related to the margin, ρ .  
In [10], we have elaborated to design the loss function ( )Λ,iO� . 

Different loss functions for SME with frame or utterance selection 
have been discussed. Frame-based SME with a modified hinge loss 
function was shown to outperform other options. In this study, we 
will directly use that loss function. For SME, our target is to 
separate the correct candidates from the competing candidates with 
a distance greater than the value of the margin. How to define the 
candidates is an issue. In [10], the candidates are defined in the 
string level. However, this is different from the target of ASR, 
which wants to reduce the word error rate instead of the string 
error rate. In this paper, we further works on the word- and phone-
level separation for SME. This turns out to be very effective to 
reduce the word error rate on LVCSR tasks.  

2.2 SME with Frame Selection 

SME with frame selection is formularized as: 
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where Oij is the jth frame for utterance Oi, I(.) is an indicator 
function, and Fi is the frame set in which the frames contribute to 
the loss computation. ( )Λ,ijOd is the separation measure between 

the correct and competing candidates for Oij. SME now selects the 
frames that are critical to discriminative separation. We realize it 
with the frame posterior probability via computing the posterior 
probability ( )icecs Ottcp ,,|  for a correct candidate c with starting 

time tcs and ending time tce. The candidate can be word or phone as 
described in the following section. The frame posterior probability 
is then computed by summing the posterior probabilities of all the 
correct candidates that pass time j: 
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Frame selection for SME is done by comparing the frame posterior 
probability with a margin ρ  and a threshold τ :  
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Eq. (4) selects the frames that are critical for parameter 
updating. As discussed in [10], it works on confusion patterns and 
removes the influence of noisy frames with too small posterior 
probabilities because they may be unreliable for parameter update 
due to inacurate time alignment. This loss function has been 
demonstrated to have the best performance in [10]. Please refer 
[10] for the comparison of different loss functions. 

2.3 SME with Unit Separation at Different Levels 
The computation of frame probability q(Oij) and separation 
measure ( )Λ,ijOd  rely on how to define the correct and competing 

candidate units. This will be discussed in the following section 
with string-, word-, and phone-level candidate unit definitions.  

2.3.1 String-level Unit 

In this case, SME separates the correct strings from incorrect 
strings in a decoded lattice. For every word w in the decoded 
lattice, it is considered as a correct word only if it belongs to a 
lattice path, which corresponds to the correct transcription Si for 
utterance Oi. Then the posterior probability for a correct word w 
with starting time tws and ending time twe is got by summing the 
probabilities of all the lattice paths, R, in which w lies in: 
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where Gi is a decoded lattice for utterance Oi, and Ŝ  denotes the 
transcription of words in the decoded lattice, Gi. 

The frame posterior probability is then computed by summing 
the posterior probabilities of all the correct words passing time j: 
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The last step is to define a frame level separation measure as: 
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The correct transcription is removed from the denominator in 
Eq. (7) because it is a measure of the correct versus the incorrect 
transcriptions. By plugging Eqs. (6) and (7) into Eq. (4) to 
compute the loss functions in Eq. (1), SME with string-level unit 
separation is implemented.  

2.3.2 Word-level Unit 

In this case, we want to separate the correct words from the 
incorrect words in a decoded lattice. For the correct transcription Si 
that consists of Ni correct words, its correct words set is  

{ }iN
iiii wwwW ,......, 21= .  (8) 

Every word in set Wi has a unique label, a starting and an ending 
time. For any word w in set Wi with a time interval [tws, twe], we 
look at all the strings in the decoded lattice. If a segment has the 
same label with w and also spans [tws, twe], we consider the strings 
passing that segment as positive candidates and separate these 
positive strings from other strings in the duration [tws, twe]. In this 
way, we can directly work on the local word level of the decoded 
lattice, and maximize the word accuracy. 

To formulate the counter parts of Eqs. (5), (6), and (7) with 
word-level unit, we need to define two string sets for each word 

n
iw  in set Wi. One set ( n

iΦ ) contains all the strings passing n
iw in 

the decoded lattice, Gi: 
n
i

n
i wwRwR =∧∈∃Φ∈∀ , .  (9) 

The other set ( n
iΦ̂ ) contains all the strings that do not pass n

iw : 

n
i

n
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In contrast to the string-level operation, a word w in the decoded 

lattice is considered to be a correct word when it is in set n
iΦ  (i.e., 

it has the same word label, starting and ending time as wi). The 



posterior probability of word w is now defined by summing the 

probabilities of all the paths in set n
iΦ that cross word w: 
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The frame posterior probability is again computed by summing 
the posterior probabilities of all the correct words that pass time j: 
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The frame level separation measure is defined to separate the 

strings cross time j in set n
iΦ  from the strings in set n

iΦ̂ : 
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By plugging Eqs. (12) and (13) into Eq. (4) to compute the loss 
functions in Eq. (1), SME with word-level separation is realized. 

2.3.3 Phone-level Unit 

An extension from word- to phone-level unit is straightforward. 
We replace all the word denotations from Eq. (8) to Eq. (13) with 
phone denotations.  

2.4 Practical Implementation Issues 
The extended Baum-Welch (EBW) [13][14] is adopted to update 
HMM parameters for all the SME formulations. A brief 
implementation is described as follows. First, an MLE model and a 
bigram language model (LM) were used to decode all training 
utterances to generate corresponding word lattices. Then a unigram 
was used to rescore the decoded lattices. In all the DT methods 
experimented in this study, a factor of 1/15 was used to scale down 
the acoustic model likelihood as used in the other DT studies 
[3][14][15]. Updating statistics were obtained from the lattices 
with a forward-backward algorithm. Then, EBW was used to 
update the HMM parameters as in [14]. Because SME directly 
works on generalization, no i-smoothing was used.  

The word or phone posterior probability computation is a key 
to implement the EBW algorithm. For the denominator lattice in 
EBW, we need to remove all the correct candidates and rescale the 
remaining word or phone arcs to get the posterior probabilities. For 
SME with string-level candidate unit, any word in a correct string 
may be shared with an incorrect string. Therefore, we need to 
consider all the word arcs and follow the method proposed in [15] 
to compute the word posterior probability: 
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It is noted that the posterior probability in Eq. (14) is for the 
decoded lattice after the correct strings removed. This is different 
from the posterior probability in Eq. (5), which is for the original 
decoded lattice.  

For SME with word- and phone-level units, it is much simpler. 
We just consider all the strings passing the incorrect words in a 
time interval [tws, twe] and compute the posterior probability as: 
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However, the rescaling of Eq. (15) is aggressive since it will 
magnify the contribution from segments that have large correct 
word posterior probabilities. For example, consider a segment has 
two wrong words. Each word has an original posterior probability 
of 0.05. All other words in that segment are correct words. After 
rescaling, those two words will each have posterior probability of 
0.5, 10 times as their original probabilities. This magnification will 
hurt the optimization. Therefore, we set a threshold β  and only 
rescale the segment that has a correct word posterior probability 
less than β .  

3. EXPERIMENTS 

The 5k-WSJ0 task was used to evaluate the effectiveness of DT 
methods on LVCSR. The training set is the SI-84 set, with 7077 
utterances from 84 speakers. All testing is conducted on the Nov92 
evaluation set, with 330 utterances from 8 speakers. Baseline 
HMMs are trained with MLE using HTK [12]. The HMMs are 
cross-word triphone models. There were 2818 shared states 
obtained with a decision tree and each state observation density is 
modeled by an 8-mixture Gaussian mixture model. The input 
features were 12MFCCs + energy, and their first and second order 
time derivatives. A trigram LM within the 5k-WSJ0 corpus was 
used for decoding. The baseline WER was 5.06% for MLE models.  

The MMIE, MWE, and MPE models were trained with HTK. 
The i-smoothing factor was set 100 for MMIE, 25 for MWE, and 
50 for MPE, as suggested in [14]. The word error rates (WER) of 
MMIE, MWE, and MPE on the Nov92 evaluation set are 4.60%, 
4.37%, and 3.92%, which correspond to 9%, 14%, and 22% 
relative WER reductions, respectively. 

The MCE model was also trained. The smoothing constant in 
the sigmoid function was set to 0.04 as in [15]. EBW was used for 
HMM parameters update. The WER of the MCE model was 
4.60%, getting 9% relative WER reduction over the MLE baseline.  

For the purpose of a fair comparison, all the proposed SME 
methods were modified on the basis of the MCE implementation. 
This means that the implementations are similar, only the 
individual algorithm parts are different. Three SME models were 
trained with the string-, word-, and phone-level units separation. 
They are denoted as SME_String, SME_Word, and SME_Phone, 
separately. All the SME models were initiated from MLE model. 
For all the SME models training, the margin ρ  and the threshold 
τ were set as 0.9 and 0.1, individually. For SME_Word and 
SME_Phone, the threshold β was set as 0.4 for rescaling the 
posterior probabilities of incorrect arcs in the decoded lattice. 

 
Table 1: Performance comparison on the 5k-WSJ0 task. 

 WER Relative Improvement 
MLE 5.06% - 
MCE 4.60% 9% 
MMIE 4.60% 9% 
MWE 4.37% 14% 
MPE 3.92% 22% 
SME_String 4.22% 17% 
SME_Word 4.11% 19% 
SME_Phone 3.81% 25% 

 
Table 1 compares the resulting WERs and relative WER 

reductions of the conventional DT methods (MCE, MMIE, MWE, 
and MPE) and all the SME methods (SME_String, SME_Word, 



and SME_Phone) from the MLE baseline. The conventional DT 
methods got 9%-22% relative WER reductions. Among them, 
MPE performed the best, obtaining 22% relative WER reductions. 
All the proposed SME methods worked better than most of the 
conventional DT methods, achieving about 17%-25% relative 
WER reduction from MLE baseline. SME_Phone is the best 
among all the evaluated methods, reaching 25% relative WER 
reductions. This shows the objective of phone-level separation is 
very effective on the 5k-WSJ0 task. Working on the string-level 
discrimination, SME_String is better than MCE and MMIE. 
Focusing on the word level, SME_Word also outperforms MWE. 
The relation is also true for SME_Phone and MPE.  

The evolutions of WERs of the best two DT methods, MPE 
and SME_Phone, are plotted in Figure 1. The minimum WERs of 
MPE and SME_Phone were reached at iteration 12. All the other 
methods also reached their minimum WERs within 15 iterations. 
To save space, we didn’t plot them. It is almost in every iteration 
that the WER of SME_Phone was less than that of MPE.  
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Figure 1: Evolutions of testing WER for MPE and SME_Phone 
models on the 5k-WSJ0 task. 

4. CONCLUSIONS 

In this study, we treated SME thoroughly on the 5k-WSJ0 task. 
SME methods for string-level (SME_String), word-level 
(SME_Word), and phone-level (SME_Phone) separation are 
proposed. All these methods focus on how to make the correct 
units separate from the competing units with a distance greater 
than the value of the margin. The most popular DT methods 
(MMIE, MCE, MWE, and MPE) are used for comparison on the 
5k-WSJ0 task. In each separation level, SME outperforms its 
counter part of conventional DT methods. In string level, 
SME_String gets 17% relative WER reductions while MCE and 
MMIE all get 9% relative WER reductions. In word level, 
SME_Word obtains 19% relative WER reductions while MWE has 
14%. In phone level, SME_Phone achieves 25% relative WER 
reductions, compared to 22% for MPE. We can see that phone-
level separation optimization is the most effective way to reduce 
WER on the 5k-WSJ0 task. SME works the best in this study and 
demonstrates that the margin-based methods can be a good option 
for LVCSR tasks.  

Two research issues need to be addressed in the future. The 
first is to extend this study to feature extraction on an LVCSR task. 
fMPE [16] has already demonstrated its great power in LVCSR 
tasks. SME only showed its success in jointly optimization of 
features and HMM parameters on the TIDIGITS task [17]. We will 
work SME on the feature extraction part and compare with fMPE 

on an LVCSR task. The second is to apply SME to even larger 
LVCSR tasks than the 5k-WSJ0 task.  
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