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Abstract 

Recently, there have been intensive studies of margin-based 
learning for automatic speech recognition (ASR). It is our 
believe that by securing a margin from the decision 
boundaries to the training samples, a correct decision can still 
be made if the mismatches between testing and training 
samples are well within the tolerance region specified by the 
margin. This nice property should be effective for robust ASR, 
where the testing condition is different from those in training. 
In this paper, we report on experiment results with soft margin 
estimation (SME) on the Aurora2 task and show that SME is 
very effective under clean training with more than 50% 
relative word error reductions in the clean, 20db, and 15db 
testing conditions, and still gives a slight improvement over 
conventional multi-condition training approaches. This 
demonstrates that the margin in SME can equip recognizers 
with a nice generalization property under adverse conditions. 
Index Terms: soft margin estimation, hidden Markov 
model, robust speech recognition  
 

1. Introduction 
Despite many years of research effort robust automatic speech 
recognition (ASR) remains a challenging problem. The main 
difficulty arises from many possible types of signal distortions, 
such as additive and convolutive noises, and they are often 
mixed and typically not easy to characterize analytically. As a 
result, the speech recognizer trained using clean speech often 
degrades its performance significantly when used under noisy 
situations if no distortion compensation is applied [1]. 

Different techniques have been proposed for environment 
robustness over the past three decades. There are three main 
areas of focus. In the signal domain, the testing speech signal 
can be enhanced before processing (e.g., spectral subtraction 
[2]). Moreover in the feature domain, the distorted acoustic 
features can be normalized or compensated to match training 
features (e.g., cepstral mean normalization [3], and stereo-
based piecewise linear compensation for environments [4]). 
Furthermore in the model domain, the original trained model 
can be adjusted to a model set that matches the testing 
environment (e.g., maximum likelihood linear regression [5], 
and maximum likelihood stochastic matching [6]). 

In contrast to the above methods, margin-based learning 
may provide a set of models with generalization capabilities 
to deal with noise robustness without actual compensation at 
operating time. Inspired by the success of margin-based 
classifiers, there is a new trend to apply the margin concept to 

training hidden Markov models (HMMs). Several attempts 
based on margin maximization were proposed recently for 
discriminative training of acoustic models for ASR. They 
are: large margin estimation (LME) [7], large margin 
hidden Markov models (LM-HMMs) [8], and soft margin 
estimation (SME) [9]. The formulation of margin-based 
methods allows some mismatch between the training and 
testing conditions. By securing a margin from the decision 
boundaries to the training samples, a correct decision can 
still be made if the mismatches between the testing and 
training samples are smaller than the value of the margin. 
Although this nice property of margin-based methods is 
quite desirable, we are not aware of any previously 
reported work on robust ASR with margin-trained HMMs. 
We study discriminative training (DT) methods, such as 
minimum classification error (MCE) [10] and SME 
training, and investigate if they generalize well to adverse 
conditions without applying any special compensation 
techniques.  

The rest of the paper is organized as follows. In 
Section 2, we review theory of SME and MCE. Then both 
methods are evaluated for generalization on the Aurora2 
task [11] in Section 3. It is concluded that SME is more 
effective than MCE to handle the mismatch between the 
training and testing conditions under clean training in all 
signal-to-noise-ratio (SNR) cases. As for multi-condition 
training SME slightly improved over MCE. 

2. Discriminative Training Methods 
Theory of SME is first reviewed in this following. MCE 
will then be briefly described. Both methods will be 
evaluated on the Aurora2 connected-digit recognition task. 

2.1 Soft Margin Estimation (SME) 

SME [9] originates from statistical learning [12]. It is 
shown that the test risk is bounded by the summation of 
two terms, the first is an empirical risk (i.e., the risk on the 
training set), and the second is a generalization term which 
is bounded by a decreasing function of the margin [12]. 
Hence, SME has two targets for optimization. The first is to 
minimize the empirical risk. The other is to maximize the 
margin, which is related to classifier generalization. These 
two objectives are combined into a single function for 
minimization as follows [9]: 
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where Λ denotes the set of HMM parameters, ( )Λ,iO�  is a 
loss function for utterance Oi, N is the number of training 
utterances. ρ  is the soft margin, λ  is a coefficient to balance 
the soft margin maximization and the empirical risk 
minimization. A smaller λ  corresponds to a higher penalty 
for the empirical risk. 

The loss function is defined with the help of a hinge loss 
function ( (x)+=max(x,0) ) as 
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with the separation measure d defined as 
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Fi is the frame set in which the frames have different labels in 
the competing strings. ni is the number of frames in Fi. I(.) is 
an indicator function, and Oij is the j-th frame of utterance Oi. 

( )iij SOPΛ  and ( )iij SOP ˆ
Λ  are the likelihood scores for the 

target string Si and the most competing  string iŜ . 
Plugging Eq. (3) into Eq. (2), the final objective function to 

minimize for SME is: 
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To solve Eq. (4), the indicator function I is approximated 
with a sigmoid function. Then Eq. (4) becomes 
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where γ is a smoothing parameter for the sigmoid function. 
The quantity in Eq. (5) is a smooth function of the soft margin 
ρ and the HMM parameters Λ . Therefore, they can be solved 
iteratively using the generalized probabilistic descent (GPD) 
algorithm [13], with tη and tκ as step sizes:  
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2.2 Minimum Classification Error (MCE) 

MCE minimizes a smoothed 0-1 loss function [10]: 
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where h is a misclassification measure for utterance Oi 
defined as the difference between the geometrical average of 
the log likelihoods of competing strings and the log 
likelihood of the correct string. γ andθ are parameters for a 
sigmoid function.  

For relative small tasks, GPD was often used for HMM 
parameter optimization. For large vocabulary continuous 
speech recognition tasks, extended Baum-Welch (EBW) [14] 
is adopted to update HMM parameters. 

3. Experiment 
The generalization issue for the above DT methods was 
evaluated on the standard Aurora 2 task of recognizing 
digit strings in noise and channel-distorted environments. 
The clean training set and multi-condition training set, 
which consist of 8440 clean utterances and multi-condition 
utterances, individually, were used to train the baseline 
maximum likelihood estimation (MLE) HMMs. The test 
material consists of three sets of distorted utterances. The 
data in set-A and set-B consist of eight different types of 
additive noise, while set-C contains two different types of 
noise plus additional channel distortion. Each type of noise 
is added into a subset of clean speech utterances, with 
seven different levels of SNRs. This generates seven SNR-
specific subgroups, namely clean, 20db, 15db, 10db, 5db, 
0db, and -5db SNRs, of testing sets for each specified noise 
type.  The baseline experiment configuration follows the 
standard script provided by ETSI [11], including the simple 
“backend” of HMMs trained using HTK. The acoustic 
features are 13-dimension MFCCs, appended by their first- 
and second-order time derivatives. The baseline clean-
trained and multi-condition-trained HMMs got 60.06% and 
86.39% word accuracy (Acc), separately. 

For a fair comparison, both SME and MCE were 
trained with similar implementations and differed only in 
the individual algorithm parts. Because the Aurora2 task is 
a connected-digit task, we need not use lattice for 
competing strings and EBW for parameter optimization, 
GPD was used to train HMM parameters and N-Best lists 
were used to construct competing strings. SME used only 
one competing string while MCE used 5 competing strings. 
If only one competing string was used for MCE, a worse 
performance was obtained. Therefore, we just reported the 
best performance for MCE with 5 competing strings.  

3.1 Clean Training Condition 

Usually, DT methods are only reported to work on the 
multi-style training set or on the de-noised testing condition 
combined with other noise robustness techniques (e.g., 
[15]). In this section, we investigate whether DT methods 
can work well in a mismatched condition (i.e., clean 
training case) without using other noise robust technologies. 

Table 1 (all the tables are in the last page of this paper) 
lists the detailed test accuracies for MLE and DT methods 
(MCE and SME with different values of the balance 
coefficient λ ) trained with clean data. The average digit 
accuracy was evaluated by averaging the accuracies on the 
subgroups with the SNRs from 0db to 20db, as described 
by the ETSI standard [11]. Table 2 shows the relative 
WER reductions for MCE and SME from the baseline. In 
average, SME with different balance coefficients achieved 
about 17%-29% relative WER reductions from MLE while 
MCE obtained only 0.2% relative WER reduction due to 
poor performance in low SNR conditions. Examining the 
results in detail, we see that the characteristics of 
individual recognition accuracies for different SNR 
subgroups are very different for these two DT methods.  

For each SNR subgroup (column) in Tables 1-3, the 
best performance is shown in bold font. In all cases in 
Tables 1-2, SME outperformed MCE. It is interesting to 



 

 

note that for the clean testing subgroup, both SME and MCE 
got comparable accuracies, with the relative WER reductions 
ranging from 43% to 57%. This implies that under matched 
conditions, both DT methods performed similarly. The major 
difference occurred in the mismatched testing subgroups. In 
20db and 15db SNR conditions that are not severely distorted 
from the clean training conditions, MCE got 23% and 12% 
relative WER reductions. In contrast, all the SME methods 
achieved at least 42% relative WER reductions in the 20db 
and 15db SNR cases, with the best performance around 60% 
WER reduction. In the 10db case, MCE got less than 5% 
relative WER reductions while most SME can still get more 
than 40%. In the 5db, 0db, and -5db SNR scenarios, which 
are severely distorted conditions, MCE can get even worse 
performance than the MLE baseline. In contrast, SME still 
obtained satisfactory relative WER reductions in all cases.  

The above observations show that all these discriminative 
training methods have no big difference in matched testing 
conditions on the Aurora2 task. Big difference exists in the 
mismatched testing conditions. Because of the margin, SME 
greatly improved the generalization ability, allowing the 
classifier to make a correct decision as long as the testing 
samples deviate within the margin from the training samples.  

Examining the results of Table 2 in detail, we see that the 
best relative WER reductions for clean, 20db, and 15db SNR 
testing cases are 57%, 60%, and 59%. This demonstrates the 
effectiveness of the margin in the cases of 20db and 15db 
SNR testing conditions which are not as severely distorted 
from clean training condition, the margin can easily cover the 
distortion. However, for the 10db, 5db, 0db, and -5db cases, 
the relative WER reductions keep decreasing since these 
conditions are increasingly pulled away from clean training 
and the distortions cannot be easily covered by a margin.  

SME, with different balance coefficients λ , affects the 
performance in different testing conditions. In the cleaning 
testing case, SME with the smallest λ  ( λ =10) gives the best 
accuracy, since it is a matched testing and the classifier with 
a focus on empirical risk minimization works the best. With 
the testing SNR decreasing, larger λ  is required to give more 
weights to margin maximization which in turn gives better 
generalization. As a result, SME with λ =50 works best in 
the 20db SNR case, while SME with λ =100 gets best 
accuracies in the 15db and 10db SNR cases. SME with 
λ =200, 300, and 400 obtain the most word error reduction in 
the 5db, 0db, and -5db SNR testing conditions. We can easily 
see the trend of best SME with respect to the coefficient.  

The original generalization property of margin-based 
classifiers in statistical learning theory [12] requires the 
training and testing samples to be from the identically 
independent distributions (i.i.d.). The results here show that 
SME performs very well even if the training and testing 
distributions are very different, which means that SME may 
have even better generalization property. We believe this is 
because the formulation of SME can push training samples 
away from the decision boundary with a distance of the 
margin. That margin in turn allows correct decision be made 
as long as the testing samples are distorted from training 
samples within a distance less than the value of the margin. 

3.2 Multi-condition Training Condition 

Table 3 lists test results for MLE, MCE, and SME using 
multi-condition training data. Both DT methods obtained 
similar performance, with around 10% relative WER 
reduction, which is similar to the relative WER reduction 
reported in [15] when MCE was only applied to multi-
condition trained HMMs without combining with other 
methods. Here, only SME results with λ =10 is given for 
comparison. SME with other balance coefficient gives 
similar results and are omitted here.  

The improvement of SME in multi-condition training 
is not as impressive as that in the clean training case. The 
possible reason is given in the following. For model 
trained from the clean data, the accuracy is as high as 99% 
on the clean testing data. From Eq. (1), we can see that 
classifier learning balances empirical risk minimization 
and margin maximization. Because the empirical risk (i.e., 
the risk on the training set) is already very small, the focus 
of classifier learning is to maximize the margin. The 
resulted large margin in turn gives better generalization for 
the classifier, making it performs very well in mismatched 
testing conditions although the classifier is trained only 
with clean data. In contrast for models trained from multi-
condition data, the accuracy is only around 86% on the 
multi-condition test data. The classifier training has to care 
about both the empirical minimization and the margin 
maximization. As a result, the margin cannot play a 
significant role to contribute to significantly improving the 
generalization capabilities of SME-trained models.  

4. Conclusion 
We have evaluated the generalization issues of SME and 
MCE in this study. Multi-condition testing with both clean 
and multi-condition training is investigated on the Aurora2 
task. In the clean training case, SME achieves an overall 
average of 29% relative WER reductions while MCE gets 
less than 1% relative WER reductions. Although both 
methods perform similarly when testing with clean 
utterances, SME outperforms MCE significantly in the 
testing utterances with SNRs ranging from -5db to 20db. 
In those mismatched conditions, the margin in SME 
contributes to classifier generalization and results in great 
performance improvements for SME. In multi-condition 
training, SME is slightly better than MCE since in this 
case the focus of classifier learning is more on minimizing 
the empirical risk instead of maximizing the margin for 
generalization. We hope the observations in this study can 
further deepen the research of generalization property of 
margin-based classification methods. 

This paper only presents our initial study, we are now 
working on a number of related research issues. First, 
current evaluation of these DT methods is on Aurora2, 
which is a connected-digit task. We may extend the 
evaluation to a larger task, such as Aurora4. Second, SME 
may be combined with other robust ASR methods as in 
[15] to further improve ASR performance. 
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Table 1: Detailed test accuracies for MLE, MCE, and SME with different balance coefficient λ  using clean training data.
Word Acc clean 20db 15db 10db 5db 0db -5db Avg. 

MLE 99.03 94.07 85.04 65.52 38.61 17.09 8.53 60.06 

MCE 99.50 95.43 86.88 66.95 37.29 14.27 6.58 60.16 

SME ( 10=λ ) 99.58 97.00 91.39 75.73 48.61 21.59 8.53 66.86 

SME ( 50=λ ) 99.56 97.61 93.42 80.74 55.32 27.29 11.01 70.88 

SME ( 100=λ ) 99.54 97.60 93.85 81.98 56.59 28.19 12.28 71.64 

SME ( 200=λ ) 99.49 97.55 93.76 81.94 56.96 28.67 13.14 71.78 

SME ( 300=λ ) 99.46 97.41 93.55 81.43 56.54 28.86 13.33 71.56 

SME ( 400=λ ) 99.45 97.34 93.49 81.57 56.32 28.68 13.44 71.48 

 
Table 2: Relative WER reductions for MCE, and SME from MLE baseline using clean training data. 

Rel. WER red. clean 20db 15db 10db 5db 0db -5db Avg. 
MCE 48.45% 22.93% 12.30% 4.15% -2.15% -3.40% -2.13% 0.25% 
SME ( 10=λ ) 56.70% 49.41% 42.45% 29.61% 16.29% 5.43% 0.00% 17.03% 
SME ( 50=λ ) 54.64% 59.70% 56.02% 44.14% 27.22% 12.30% 2.71% 27.09% 
SME ( 100=λ ) 52.58% 59.53% 58.89% 47.74% 29.29% 13.39% 4.10% 28.99% 
SME ( 200=λ ) 47.42% 58.68% 58.29% 47.62% 29.89% 13.97% 5.04% 29.34% 
SME ( 300=λ ) 44.33% 56.32% 56.89% 46.14% 29.21% 14.20% 5.25% 28.79% 
SME ( 400=λ ) 43.30% 55.14% 56.48% 46.55% 28.85% 13.98% 5.37% 28.59% 

 
Table 3: Detailed test accuracies for MLE, MCE, and SME using multi-condition training data.

 clean 20db 15db 10db 5db 0db -5db Avg. 

MLE 98.52 97.35 96.29 93.79 85.52 59.00 24.50 86.39 

MCE 98.79 98.23 97.37 95.23 86.40 60.37 24.69 87.52 

SME ( 10=λ ) 98.95 98.20 97.41 95.25 87.25 61.16 25.33 87.86 

 


