
Optimal Dialog in Consumer-Rating Systems using a POMDP Framework

Zhifei Li
Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21218, USA

zhifei.work@gmail.com

Patrick Nguyen, Geoffrey Zweig
Microsoft Corporation

1 Microsoft Way,
Redmond, WA 98052, USA

{panguyen,gzweig}@microsoft.com

Abstract

Voice-Rate is an experimental dialog system
through which a user can call to get prod-
uct information. In this paper, we describe
an optimal dialog management algorithm for
Voice-Rate. Our algorithm uses a POMDP
framework, which is probabilistic and cap-
tures uncertainty in speech recognition and
user knowledge. We propose a novel method
to learn a user knowledge model from a review
database. Simulation results show that the
POMDP system performs significantly better
than a deterministic baseline system in terms
of both dialog failure rate and dialog interac-
tion time. To the best of our knowledge, our
work is the first to show that a POMDP can
be successfully used for disambiguation in a
complex voice search domain like Voice-Rate.

1 Introduction

In recent years, web-based shopping and rating sys-
tems have provided a valuable service to consumers
by allowing them to shop products and share their
assessments of products online. The use of these
systems, however, requires access to a web interface,
typically through a laptop or desktop computer, and
this restricts their usefulness. While mobile phones
also provide some web access, their small screens
make them inconvenient to use. Therefore, there
arises great interest in having a spoken dialog inter-
face through which a user can call to get product
information (e.g., price, rating, review, and so on)
on the fly. Voice-Rate (Zweig et al., 2007) is such
a system. Here is a typical scenario under which
shows the usefulness of the Voice-Rate system. A
user enters a store and finds that a digital camera he

has not planed to buy is on sale. Before he decides
to buy the camera, he takes out his cell phone and
calls Voice-Rate to to see whether the price is really
a bargain and what other people have said about the
camera. This helps him to make a wise decision.
The Voice-Rate system (Zweig et al., 2007) involves
many techniques, e.g., information retrieval, review
summarization, speech recognition, speech synthe-
sis, dialog management, and so on. In this paper, we
mainly focus on the dialog management component.

When a user calls Voice-Rate for the information
of a specific product, the system needs to identify,
from a database containing millions of products, the
exact product the user intends. To achieve this, the
system first solicits the user for the product name.
Using the product name as a query, the system then
retrieves from its database a list of products related
to the query. Ideally, the highest-ranked product
should be the one intended by the user. In reality,
this is often not the case due to various reasons. For
example, there might be a speech recognition error
or an information retrieval ranking error. Moreover,
the product name is usually very ambiguous in iden-
tifying an exact product. The product name that the
user says may not be exactly the same as the name
in the product database. For example, while the user
says “Canon Powershot SD750”, the exact name
in the product database may be “Canon Powershot
SD750 Digital Camera”. Even the user says the ex-
act name, it is possible that the same name may be
corresponding to different products in different cat-
egories, for instance books and movies.

Due to the above reasons, whenever the Voice-
Rate system finds multiple products that match the
user’s initial speech query, it initiates a dialog pro-
cedure to identify a specific product that the user

intends by asking questions about the products. In
the product database, many attributes can be used
to identify a product. For example, for a digital
camera, it has the product name, category, product
brand, resolution, zoom, and so on. Given a list
of products, different attributes may have different
ability to distinguish these products. For example,
if the products in the list belong to many categories,
the category attribute is very useful to distinguish the
products. In contrast, if all the products in the list be-
long to a single category, it does not make any sense
to ask a question about the category. In addition
to the variability in distinguishing products, differ-
ent attributes may require different knowledge from
the user in order for them to answer questions about
these attributes. For example, while most users are
able to answer a question on category very easily,
they may not be able to answer a question regard-
ing the part number of a product, though the part
number is unique and is perfect to distinguish prod-
ucts. Other variabilities are in the difficulty that the
attributes impose on speech recognition and speech
synthesis. Clearly, given a list of products and a set
of attributes, what questions and in what order to
ask is essential to make the dialog interaction time
short. Our goal is to dynamically find such impor-
tant attributes at each stage (or turn).

The baseline system (Zweig et al., 2007) asks
questions only on product name and product cate-
gory. The order of questions is fixed: first ask ques-
tions on product category, and then on the prod-
uct name. Moreover, the baseline system is deter-
ministic and does not model uncertainly in speech
recognition and user knowledge. Partially observ-
able Markov decision process (POMDP) has been
shown to be a general framework to capture the un-
certainty in spoken dialog systems. In this paper,
we present a POMDP-based probabilistic system,
which makes use of rich product information and
captures uncertainty in speech recognition and user
knowledge. We propose a novel method to learn a
user knowledge model from a review database. Our
simulation results show that the POMDP-based sys-
tem improves the baseline system significantly.

To the best of our knowledge, our work is the first
to show that a POMDP can be successfully used for
disambiguation in a complex voice search domain
like Voice-Rate.

Yes

Begin

Information Retrieval
Dialog Manager

End

Initial Speech Query

List of Products

Corrupted User Action

Human

Speech recognizer

User Action

Found
product? No

Play Rating

Question

• Intended product

Figure 1: Flow Chart of Voice-Rate System

Step-1: remove products that do not match the
user action

Step-2: any category question to ask?
yes: ask the question and return
no: go to step-3

Step-3: ask a product name question

Table 1: Baseline Dialog Manager Algorithm

2 Voice-Rate Dialog System Overview

Figure 1 shows the main flow in the Voice-Rate sys-
tem1. Specifically, when a user calls Voice-Rate for
the information of a specific product, the system first
solicits the user for the product name. Treating the
user input as a query and the product names in the
product database as documents, the system retrieves
a list of products that match the user input based on
TF-IDF measure. Then, the dialog manager dynam-
ically generates questions to identify the specific in-
tended product. Once the product is found, the sys-
tem plays back its rating information. In this paper,
we mainly focus on the dialog manager component.

Baseline Dialog Manager: Table 1 shows the
baseline dialog manager. In Step-1, it removes all
the products that are not consistent with the user re-
sponse. For example, if the user answers “camera”
when given a question on category, the system re-
moves all the products that do not belong to category
“camera”. In Step-2 and Step-3, the baseline system
asks questions about product name and product cat-
egory, and product category has a higher priority.

1Note that we simplified some components in the Voice-
Rate system (Zweig et al., 2007), for simplicity of presentation.

3 Overview of POMDP

3.1 Basic Definitions

A Partially Observable Markov Decision Process
(POMDP) is a general framework to handle uncer-
tainty in a spoken dialog system. Following nota-
tions in Williams and Young (2007), a POMDP is
defined as a tuple {S, A, T, R, O,Z, λ,~b0} where S
is a set of states s describing the environment; A is
a set of machine actions a operating on the environ-
ment; T defines a transition probability P (s

′ |s, a);
R defines a reward function r(s, a); O is a set of ob-
servations o, and an observation can be thought as
a corrupted version of a user action2; Z defines an
observation probability P (o

′ |s′ , a); λ is a geometric
discount factor; and~b0 is an initial belief vector.

The POMDP operates as follows. At each time-
step (a.k.a. stage), the environment is in some unob-
served state s. Since s is not known exactly, a distri-
bution (called a belief vector ~b) over possible states
is maintained where~b(s) indicates the probability of
being in a particular state s. Based on the current be-
lief vector ~b, an optimal action selection algorithm
selects a machine action a, receives a reward r, and
the environment transits to a new unobserved state
s
′
. The environment then generates an observation

o
′

(i.e., a user action), after which the system update
the belief vector ~b. We call the process of adjusting
the belief vector~b at each stage “belief update”.

3.2 Applying POMDP in Practice

As mentioned in Williams and Young (2007), it is
not trivial to apply the POMDP framework to a
specific application. To achieve this, one normally
needs to design the following three components:

• State Diagram Modeling

• Belief Update

• Optimal Action Selection

The state diagram defines the topology of the
graph, which contains three kinds of elements: sys-
tem state, machine action, and user action. To drive
the transitions, one also needs to define a set of mod-
els (e.g., user goal model, user action model, and so

2In this paper, we use the terms user action and observation
interchangeably.

on). Depending on the application, one may sim-
plify certain models by making modeling assump-
tions. The state diagram, together with the models,
determines the dynamics of the system.

In general, the belief update depends on the ob-
servation probability and the transition probability,
while the transition probability itself depends on the
modeling assumptions the system makes. Thus, the
exact belief update formula is application-specific.

Optimal action selection is essentially an opti-
mization algorithm, which can be defined as,

a∗ = arg max
a∈A

G(P (a)), (1)

where A refers to a set of machine actions a.
Clearly, the optimal action selection requires three
sub-components: a goodness measure function G, a
prediction algorithm P , and a search algorithm (i.e.,
the argmax operator). The prediction algorithm is
used to predict the behavior of the system in the
future if a given machine action a was taken. The
search algorithm can use an exhaustive linear search
or an approximated greedy search depending on the
size of A (Murphy, 2000; Spaan and Vlassis, 2005).

4 POMDP Framework in Voice-Rate

In this section, we present our instantiation of
POMDP in the Voice-Rate system3.

4.1 State Diagram Modeling
4.1.1 State Diagram Design

Table 2 summarizes the main design choices in
the state diagram for our application, i.e., identifying
the intended product from a large list of products.

As in Williams and Young (2007), we incorporate
both the user goal (i.e., the intended product) and
the user action in the system state. Moreover, to ef-
ficiently update belief vector and compute optimal
action, the state space is dynamically generated and
pruned. In particular, at each stage, instead of listing
all the possible combinations between the products
and the user actions, we only generate states contain-
ing the products and the user actions that are relevant

3One reviewer points out that our model is more like the
greedy information theoretic model in Paek and Chickering
(2005), instead of a POMDP model. However, we believe our
model follows the POMDP modeling framework in general,
though it does not involve reinforcement learning currently.

to the last machine action. Moreover, at each stage,
if the belief probability of a product is smaller than a
threshold, we prune out this product and all system
states related to it. In the simulation, we will use a
development set to tune this threshold.

As shown in Table 2, five kinds of machine ac-
tions are defined. In general, the questions on
product names are very long, imposing difficulty in
speech synthesis, user input, and speech recognition.
Therefore, shorter questions (e.g., questions on cate-
gory or simple attributes) are preferable. This partly
motivate us to exploit richer product information to
help the dialog process.

Seven kinds of user actions are defined as shown
in Table 2. Among them, the user actions “others”,
“not related”, and “not known” are special. Specif-
ically, to limit the question length and to ensure the
human is able to memorize all the options when an-
swering the question, we restrict the number of op-
tions in a single question to a threshold N (e.g., 5).
Clearly, given a list of products and a question, there
might be more than N possible options. In such a
case, we need to merge some of the options into
the “others” class. The third example in Table 2
shows an example with the “others” option. One
may exploit a clustering algorithm (e.g., an iterative
greedy search algorithm) to find an optimal merge.
In our system, we simply take the top-(N -1) options
(ranked by the belief probabilities) and treat all the
remaining options as “others”.

The “not related” option is required when some
candidate products are irrelevant to the question. For
example, when the system asks a question regarding
the attribute “cpu speed” while the products contain
both books and computers, the “not related” option
is required in case the intended product is a book.

Lastly, while some attributes are very useful to
distinguish the products, a user may not have enough
knowledge to answer a question on these attributes.
For example, while there is a unique part number for
each product, however, the user may not know the
exact part number for the intended product. Thus,
“not known” option is required whenever the system
expects the user is unable to answer the question.

4.1.2 Models
We assume that the user does not change his goal

(i.e., the intended product) along the dialog. We

also assume that the user rationally answers the
question to achieve his goal. Additionally, we as-
sume that the speech synthesis is good enough such
that the user always gets the right information that
the system intends to convey. The two main mod-
els that we consider include an observation model
that captures speech recognition uncertainty, and a
user knowledge model that captures the variability
of user knowledge in different attributes.

Observation Model: Since the speech recogni-
tion engine we are using returns only a one-best and
its confidence value C ∈ [0, 1]. We define the obser-
vation function as follows,

P (âu|au) =

{
C if âu = au,

1−C
|Au|−1 otherwise.

(2)

where au is the true user action, âu is the speech
recognition output (i.e., corrupted user action), and
Au is the set of user actions related to the last ma-
chine action.

User Knowledge Model: In most of the applica-
tions (Roy et al., 2000; Williams, 2007) where the
POMDP framework got applied, it is normally as-
sumed that the user needs only common sense to an-
swer the questions asked by the dialog system. Our
application is more complex as the product informa-
tion is very rich. A user may have different diffi-
culty in answering different questions. For example,
while most users can easily answer a question on
category, they may not be able to answer a question
regarding the part number. Therefore, a user knowl-
edge model is needed to capture such uncertainty.
Specifically, given a question (say am) and an in-
tended product (say gu) in the user’s mind, we want
to know how likely the user has required knowledge
to answer the question. Formally, we define the user
knowledge model as,

P (au|gu, am) =





P (unk|gu, am) if au=unk,
1− P (unk|gu, am) if au=truth,
0 otherwise.

(3)
where unk represents the user action “not known”.
Clearly, given a specific product gu and a specific
question am, there is exactly one correct user ac-
tion (represented by truth in Equation 3), and its
probability is 1 − P (unk|gu, am). Now, to obtain

Component Design Comments
System State (Product, User action) e.g., (HP Computer, Category: computer)
Machine Action Question on Category e.g., choose category: Electronics, Movie, Book

Question on Product name e.g., choose product name: Canon SD750 digital cam-
era, Canon Powershot A40 digital camera, Canon
SD950 digital camera, Others

Question on Attribute e.g., choose memory size: 64M, 128M, 256M
Confirmation question e.g., you want Canon SD750 camera, yes or no?
Play Rating e.g., I think you want Canon SD750 digital camera,

here is the rating!
User Action Category e.g., Movie

Product name e.g., Canon SD750 digital camera

Attribute value e.g., memory size: 64M

Others used when a question has too many possible options

Yes/No used for a confirmation question

Not related used if the intended product is unrelated to the question

Not known used if the user does not have required knowledge to
answer the question

Table 2: State Diagram Design in Voice-Rate

a user knowledge model, we only need to obtain
P (unk|gu, am). As shown in Table 2, there are
four kinds of question-type machine actions am. We
assume that the user always has knowledge to an-
swer a question regarding the category and prod-
uct name, and thus P (unk|gu, am) for these types
of machine actions are zero regardless of what the
specific product gu is. Therefore, we only need to
consider P (unk|gu, am) when am is a question re-
garding an attribute (say attr). Moreover, since there
are millions of products, to deal with the data spar-
sity issue, we assume P (unk|gu, am) does not de-
pends on a specific product gu, instead it depends on
only the category (say cat) of the product gu. There-
fore,

P (unk|gu, am) = P (unk|cat,attr). (4)

Now, we only need to get the probability
P (unk|cat,attr) for each attribute attr in each cate-
gory cat. To learn P (unk|cat,attr), one may collect
data from human, which is very expensive. Instead,
we learn this model from a database of online re-
views for the products. Our method is based on the
following intuition: if a user cares/knows about an
attribute of a product, he will mention either the at-
tribute name, or the attribute value, or both in his

review of this product. With this intuition, the occur-
rence frequency of a given attr in a given category
cat is collected from the review database, followed
by proper weighting, scaling and normalization, and
thus P (unk|cat,attr) is obtained.

4.2 Belief Update
Based on the model assumptions in Section 4.1.2,
the belief update formula for the state (gu, a

′
u) is,

~b(gu, a
′
u) = (5)

k × P (â
′
u|a

′
u)P (a

′
u|gu, am)

∑

au∈A(gu)

~b(gu, au)

where k is a normalization constant. The P (â
′
u|a

′
u)

is the observation function as defined in Equation 2,
while P (a

′
u|gu, am) is the user knowledge model as

defined in Equation 3. The A(gu) represents the set
of user actions au related to the system states for
which the intended product is gu.

In our state representation, a single product gu

is associated with several states which differ in the
user action au, and the belief probability of gu is the
sum of the probabilities of these states. Therefore,
even there is a speech recognition error or an un-
intentional user mistake, the true product still gets

a non-zero belief probability (though the true/ideal
user action au gets a zero probability). Moreover,
the probability of the true product will get promoted
through later iterations. Therefore, our system has
error-handling capability, which is one of the major
advantages over the deterministic baseline system.

4.3 Optimal Action Selection
As mentioned in Section 3.2, the optimal action se-
lection involves three sub-components: a prediction
algorithm, a goodness measure, and a search algo-
rithm. Ideally, in our application, we should mini-
mize the time required to successfully identify the
intended product. Clearly, this is too difficult as it
needs to predict the infinite future and needs to en-
code the time into a reward function. Therefore, for
simplicity, we predict only one-step forward, and
use the entropy as a goodness measure. Formally,
the optimization function is as follows:

a∗ = arg min
a∈A

H(Products | a), (6)

where H(Products | a) is the entropy over the belief
probabilities of the products if the machine action
a was taken. When predicting the belief vector us-
ing Equation 5, we consider only the user knowledge
model and ignore the observation function4.

In the above, we consider only the question-type
machine actions. We also need to decide when
to take the play rating action such that the dialog
will terminate. Specifically, we take the play rating
action whenever the belief probability of the most
probable product is greater than a threshold. More-
over, the threshold should depend on the number of
surviving products. For example, if there are fifty
surviving products and the most probable product
has a belief probability greater than 0.3, it is reason-
able to take the play rating action. This is not true
if there are only four surviving products. Also note
that if we set the thresholds to too small values, the
system may play the rating for a wrong product. We
will use a development set to tune these thresholds.

4.3.1 Machine Action Filtering during Search
We use an exhaustive linear search for the opera-

tor argmin in Equation 6. However, additional filter-
ing during the search is required.

4Note that we do not ignore the observation function in real
belief update.

Repeated Question: Since the speech response
from the user to a question is probabilistic, it is quite
possible that the system will choose the same ques-
tion that has been asked in previous stages5. Since
our product information is very rich, many differ-
ent questions have the similar capability to reduce
entropy. Therefore, during the search, we simply ig-
nore all the questions asked in previous stages.

“Not Related” Option: While reducing entropy
helps to reduce the confusion at the machine side, it
does not measure the “weirdness” of a question to
the human. For example, when the intended product
is a book and the candidate products contain both
books and computers, it is quite possible that the
optimal action, based solely on entropy reduction,
is a question on the attribute “cpu speed”. Clearly,
such a question is very weird to the human as he is
looking for a book that has nothing related to “cpu
speed”. Though the user may be able to choose the
“not related” option correctly after thinking for a
while, it degrades the dialog quality. Therefore, for
a given question, whenever the system predicts that
the user will have to choose the “not related” option
with a probability greater than a threshold, we sim-
ply ignore such questions in the search. Clearly, if
we set the threshold as zero, we essentially elimi-
nates the “not related” option. That is, at each stage,
we generate questions only on attributes that apply
to all the candidate products. Since we dynamically
remove products whose probability is smaller than
a threshold at each stage, the valid question set dy-
namically expands. Specifically, at the beginning,
only very general questions (e.g., questions on cate-
gory) are valid, then more refined questions become
valid (e.g., questions on product brand), and finally
very specific questions are valid (e.g, questions on
product model). This leads to very natural behav-
ior in identifying a product, i.e., coarse to fine6. It
also makes the system adapt to the user knowledge.
Specifically, as the user demonstrates deeper knowl-

5In a regular decision tree, the answer to a question is deter-
ministic. It never asks the same question as that does not lead to
any additional reduction of entropy. The problem is also due to
the fact we do not have an explicit reward function.

6While the baseline dialog manager achieves the similar be-
havior by manually enforcing the order of questions, the sys-
tem here automatically discovers the order of questions and the
question set is much more richer than the baseline.

Yes

Begin

Information Retrieval
Dialog Manager

• Baseline
• POMDP

End

Initial Query

List of Products
Corrupted User Action

Simulated User

• Intended product
• User knowledge model

Simulated
Speech Recognizer

User Action

Found
product? No

Play Rating

Question

Figure 2: Flow Chart in Simulation

edge of the products by answering the questions cor-
rectly, it makes sense to ask more refined questions
about the products.

5 Simulation Results

To evaluate system performance, ideally one should
ask people to call the system, and manually collect
the performance data. This is very expensive. Al-
ternatively, we develop a simulation method, which
is automatic and thus allow fast evaluation of the
system during development7. In fact, many design
choices in Section 4 are inspired by the simulation.

5.1 Simulation Model

Figure 2 illustrates the general framework for the
simulation. The process is very similar to that in
Figure 1 except that the human user and the speech
recognizer are replaced with a simulated compo-
nent, and that the simulated user has access to a user
knowledge model. In particular, we generate the
user action and its corrupted version using random
number generators by following the models defined
in Equations 3 and 2, respectively. We use a fixed
value (e.g., 0.9) for C in Equation 2.

Clearly, our goal here is not to evaluate the good-
ness of the user knowledge model or the speech rec-
ognizer. Instead, we want to see how the probabilis-
tic dialog manger (i.e., POMDP) performs compared
with the deterministic baseline dialog manager, and
to see whether the richer attribute information helps
to reduce the dialog interaction time.

7However, simulation is not without its limitations and the
results may not precisely reflect real scenarios.

5.2 Data Resource

In the system, we use three data resources: a prod-
uct database, a review database, and a query-click
database. The product database contains detailed in-
formation for 0.2 million electronics and computer
related products. The review database is used for
learning the user knowledge model. The query-
click database contains 2289 pairs in the format (text
query, product clicked). One example pair is (Canon
Powershot A700, Canon Powershot A700 6.2MP
digital camera). We divide it into a development set
(1308 pairs) and a test set (981 pairs).

5.3 Results on Information Retrieval

For each initial query, the information retrieval
(IR) engine returns a list of top-ranked products.
Whether the intended product is in the returned list
depends on the size of the list. If the intended prod-
uct is in the list, the IR successfully recalled the
product. Table 3 shows the correlation between the
recall rate and the size of the returned list. Clearly,
the larger the list size is, the larger the recall rate is.
One may notice that the IR recall rate is low. This
is because the query-click data set is very noisy, that
is, the clicked product may be nothing to do with
the query. For example, (msn shopping, Handspring
Treo 270) is one of the pairs in our data set.

List Size Recall Rate (%)
50 38.36
100 41.46
150 43.5

Table 3: Information Retrieval Recall Rates on Test set

5.4 Dialog System Configuration and Tuning

As mentioned in Section 4, several parameters in the
system are configurable and tunable. Specifically,
we set the max number of options in a question as
5, and the threshold for “not related” option as zero.
We use the development set to tune the following pa-
rameters: the threshold of the belief probability be-
low which the product is pruned, and the thresholds
above which the most probable product is played.
The parameters are tuned in a way such that no dia-
log error is made on the development set.

System Size Average Max
Stages Characters Words Stages Characters Words

Baseline
50 2.44 524.0 82.3 11 2927 546

100 3.37 765.4 120.4 25 7762 1369
150 3.90 906.4 143.0 30 9345 1668

POMDP
50 1.57 342.8 54.3 4 2659 466

100 2.36 487.9 76.6 18 3575 597
150 2.59 541.3 85.0 19 4898 767

Table 4: Interaction Time Results on Test Set

5.5 Results on Error Handling

Even the IR succeeds, the dialog system may not
find the intended product successfully. In particu-
lar, the baseline system does not have error handling
capability. Whenever the system makes a speech
recognition error or the user mistakenly answers a
question, the dialog system fails (either plays the rat-
ing for a wrong product or fails to find any product).
On the contrary, our POMDP framework has error
handling functionality due to its probabilistic na-
ture. Table 5 compares the dialog error rate between
the baseline and the POMDP systems. Clearly,
the POMDP system performs much better to han-
dle errors. Note that the POMDP system does not
eliminate dialog failures on the test set because the
thresholds are not perfect for the test set8. This is
due to two reasons: the system may prune the in-
tended product (reason-1), and the system may play
the rating for a wrong product (reason-2).

Size Baseline POMDP (%)
(%) Total Reason-1 Reason-2

50 13.8 8.2 4.2 4.0
100 17.7 2.7 1.2 1.5
150 19.3 4.7 0.7 4.0

Table 5: Dialog Failure Rate on Test Set

5.6 Results on Interaction Time

It is quite difficult to measure the exact interaction
time, so instead we measure it through the number of
stages/characters/words required during the dialog
process. Clearly, the number of characters is the one
that matches most closely to the true time. Table 4

8Note that the POMDP system does not have dialog failures
on the development set as we tune the system in this way.

reports the average and maximum numbers. In gen-
eral, the POMDP system performs much better than
the baseline system. One may notice the difference
in the number of stages between the baseline and the
POMDP systems is not as significant as in the num-
ber of characters. This is because the POMDP sys-
tem is able to exploit very short questions while the
baseline system mainly uses the product name ques-
tion, which is normally very long. The long product
name question also imposes difficulty in speech syn-
thesis, user input, and speech recognition, though
this is not reflected in the simulation.

6 Conclusions

In this paper, we have applied the POMDP frame-
work into Voice-Rate, a system through which a user
can call to get product information (e.g., price, rat-
ing, review, and so on). We have proposed a novel
method to learn a user knowledge model from a
review database. Compared with the deterministic
baseline system (Zweig et al., 2007), the POMDP
system is probabilistic and is able to handle speech
recognition errors and user mistakes, in which case
the deterministic baseline system is doomed to fail.
Moreover, the POMDP system exploits richer prod-
uct information to reduce the interaction time re-
quired to complete a dialog. We have developed a
simulation model, and shown that the POMDP sys-
tem improves the baseline system significantly in
terms of both dialog failure rate and dialog inter-
action time. We also implement our POMDP sys-
tem into a speech demo and plan to carry out tests
through humans.

Acknowledgement

This work was conducted during the first author’s
internship at Microsoft Research; thanks to Dan Bo-

hus, Ghinwa Choueiter, Yun-Cheng Ju, Xiao Li, Tim
Paek, Yeyi Wang, Sibel Yaman, and Dong Yu for
helpful discussions.

References
K. Murphy. 2000. A survey of POMDP solution tech-

niques. Technical Report, U. C. Berkeley.
T. Paek and D. Chickering. 2005. The Markov assump-

tion in spoken dialogue management. In Proc of SIG-
dial 2005.

N. Roy, J. Pineau, S. Thrun. 2000. Spoken dialog man-
agement for robots. In Proc of ACL 2000.

M. Spaan and N. Vlassis. 2005. Perseus: randomized
point-based value iteration for POMDPs. Journal of
Artificial Intelligence Research, 24:195-220.

J. Williams. 2007. Applying POMDPs to Dialog
Systems in the Troubleshooting Domain. In Proc
HLT/NAACL Workshop on Bridging the Gap: Aca-
demic and Industrial Research in Dialog Technology.

J. Williams and S. Young. 2007. Partially Observable
Markov Decision Processes for Spoken Dialog Sys-
tems. Computer Speech and Language 21(2): 231-
422.

G. Zweig, P. Nguyen, Y.C. Ju, Y.Y. Wang, D. Yu, A.
Acero. 2007. The Voice-Rate Dialog System for Con-
sumer Ratings. In Proc of Interspeech 2007.

