Constrained Physical Design Tuning

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

ABSTRACT

Existing solutions to the automated physical design prabie
database systems attempt to minimize execution costs atfivgrk-
loads for a given a storage constraint. In this paper, weeatigat
this model is not flexible enough to address several realevsit-
uations. To overcome this limitation, we introduce a caaistr
language that is simple yet powerful enough to express many i
portant scenarios. We build upon an existing transformabased
framework to effectively incorporate constraints in tharsé space.
We then show experimentally that we are able to handle a ladsc
of constraints and that our proposed technique scalesfglgce

1. INTRODUCTION

In the last decade, automated physical design tuning beeame
relevant area of research. As a consequence, several acaatain
industrial institutions addressed the problem of recondirena set
of physical structures that would increase the performaridee
underlying database system. The central physical desiglgm
statement has been traditionally stated as follows:

Given a workload? and a storage budgé?, find the
set of physical structures (or configuration), that fits in
B and results in the lowest execution cost ¥or.

This problem is very succinctly described and understoazhsé-
quently, it has recently received considerable atten&sulting in
novel research results and industrial-strength protatypall ma-
jor DBMS. Despite this substantial progress, however, tohblpm
statement and existing solutions cannot address impagahtife
scenarios. Consider, as a simple example, the followingyque

SELECT a, b, c, d, e

FROM R

WHERE a=10

and suppose that a single tuple frdrsatisfiesa=10. If the space
budget allows it, a covering indek: over (a, b, ¢, d, e) would be
the best alternative fay, requiring a single 1/O to locate the qual-
ifying row and all the required columns. Now consider a narro
single-column indexX x over (a). In this case, we would require
two 1/Os to answer the query (one to locate the record-id ef th

Permission to copy without fee all or part of this materiganted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0@/

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com

qualifying tuple from the secondary indéx;, and another to fetch
the relevant tuple from the primary index). In absolute ®ria:
results in a better execution plan compared to thafxf How-
ever, the execution plan that usks is only slightly less efficient
to the one that usek- (specially compared to the naive alterna-
tive that performs a sequential scan over taf)leand at the same
time it incurs no overhead for updates on colurhns, d, ore. If
such updates are possible, it might make sense to “penalizie’
indexes such ak- from appearing in the final configuration. How-
ever, current technigues cannot explicitly model this mepent
without resorting to artificial changes. For instance, weld®im-
ulate this behavior by introducing artificiabDATE statements in
the workload. This mechanism, however, is not general eménig
capture other important scenarios that we discuss below.
Note, however, that the previous example does not lead ftsel
a new “golden rule” of tuning. There are situations for whibk
covering index is the superior alternative (e.g., therddde no
updates on tabl& by design). In fact, an application that repeat-
edly and almost exclusively executes the above query caift ies
a 50% improvement when using the covering indexrather than
the narrow alternativé . A more subtle scenario that results in
deadlocks when narrow indexes are used is described in [13].
In general, there are other situations in which the tradiio
problem statement for physical design tuning is not sufficién
many cases we have additional information that we would tiike
incorporate into the tuning process. Unfortunately, itfio not
possible to do so by only manipulating either the input waoekl or
the storage constraint. For instance, we might want to tugieem
workload for maximum performance under a storage constiairm
ensuring that no query degrades by more than 10% with repect
the original configuration. Or we might want to enforce the t
clustered index on a table cannot be defined over certain columns
of T that would introduce hot-spots (without specifying whidh o
the remaining columns should be chosen). As yet anothergeam
in order to decrease contention during query processingnight
want to avoid any single column from a table from appearing in
more than, say, three indexes (the more indexes a columraappe
in, the more contention due to exclusive locks during ups)ate
The scenarios above show that state-of-the-art technifpres
physical design tuning are not flexible enough. Specificallgin-
gle storage constraint does not model many important gigitn
current DBMS installations. What we need is a generalizesior
of the physical design problem statement that accepts eneph-
straints in the solution space, and exhibit the followingparties:
Expressiveness.t should be easy to specify constraints with suf-
ficient expressive power.

Effectiveness. Constraints should be able to effectively restrict the
search process (e.g., a naive approach that tests aiposter
whether constraints are satisfied would not be viable).

Specialization. In case there is a single storage constraint, the re-
sulting configurations should be close to those obtained by
current physical design tools in terms of quality.

In this paper we introduce a framework that addresses tliede ¢
lenges. For simplicity, we restrict our techniques to hammtimary
and secondary indexes as the physical structures that défine
search space (extensions to materialized views and otlysicalh
structures are part of future work). Specifically, the maintd-
butions of the paper are as follows. First, in Section 2 weeme
a simple language to specify constraints that is powerfough
to handle many desired scenarios including our motivatiagre
ples. Second, we review a previously studied transformdtased
search framework (Section 3) and adapt it to incorporatetcaimts
into the search space (Sections 4 and 5). Finally, in Seétime
report an extensive experimental evaluation of our tearesq

2. CONSTRAINT LANGUAGE

Our design approach has been to provide a simple constaaint |
guage that covers a significant fraction of interesting ades (in-
cluding all the motivating examples in the previous seqtioWe
also provide a lower-level interface to specify more elab®rcon-
straints as well as more efficient ways to evaluate conssrdin the
rest of this section we introduce our language by using elesnp

2.1 Data Types, Functions, Constants

Our constraint language understands simple types suchnas nu
bers and strings, and also domain-specific ones. Spedifieea
natively handle data types that are relevant for physicalgte
such as database tables, columns, indexes and queries. siVe al
support sets of elements, which are unordered homogenabus ¢
lections (e.g., workloads are sets of queries, and contignsaare
sets of indexes). These sets can be accessed using eithemads
or associative array notation (e.g[2] returns the second query in
W, andw["QLong"] returns the query im whose id iSiLong).

Our language supports a rich set of functions over these data

types. As an example, we can obtain the columns of tahlsing
cols(T), the expected size of indekusingsize(I), and the ex-
pected cost of queryunder configuratiol' usingcost(g, C). In
the rest of this section, we introduce additional functiassieeded.
Finally, there are useful constants that can be freely eefard
in the language. We useo denote the input workload, and the fol-
lowing constants to specify certain commonly used configuma:

- C: denotes the desired configuration, on top of which con-
straints are typically specified.

- Corig: Thisis the configuration that is currently deployed in
the database system.

- CBase: The base configuration only contains those indexes
originating from integrity constraints. Therefore, it iset
worst possible configuration f@ELECT queries in the work-
load, and the one with lowesPDATE overhead.

- CselectBest: This configuration is the best possible one for
SELECT queries in the workload. SpecificallgselectBest
contains the indexes resulting from access-path requests g
erated while optimizing the input workload (see [4] for more
details). Intuitively, indexes in this configuration are thnost

would be(a,b,c), from the access-path request that attempts
to seek column for all tuples that satisfy<10 followed by

a sort byb, and (b,a,c), from the access-path-request that
scan< in b-order and filtera<10 on the fly.

2.2 Language Features

We next illustrate the different features of our constraart-
guage by using examples.

Simple Constraintswe can specify the storage constraint used
in virtually all physical design tuning tools as follows:

ASSERT size(C) < 200M

wheresize(C) returns the combined size of the final configuration.
Constraints start with the keywoudserT and follow the pattern
function-comparison-constanfs another example, the constraint
below ensures that the cost of the second query in the watkloa
under the final configuration is not worse than twice its costan

the currently deployed configuration:

ASSERT cost(W[2], C) < 2 * cost(W[2], COrig)

Note that, for a fixed queny, the valuecost (q, COrig) is constant,
so theAsSERT clause above is valid.

Generators.Generators allow us to apply a template constraint
over each element in a given collection. For instance, theviing
constraint generalizes the previous one by ensuring teatdkt of
each queryunder the final configuration is not worse than twice its
cost under the currently deployed configuration:

FOR Q IN W
ASSERT cost(Q, C) < 2 * cost(Q, COrig)

In turn, the following constraint ensures that every indethe final
configuration has at most four columns:

FOR I in C
ASSERT numCols(I) < 4

Filters. Filters allow us to choose a subset of a generator. For
instance, if we only want to enforce the above constraintiffer
dexes that have leading colunan13, we can extend the original
constraint as follows:

FOR I in C

WHERE I LIKE "col3,x"

ASSERT numCols(I) < 4

whereLIKE performs “pattern matching” on the index columns.

Aggregation.Generators allow us to duplicate a constraint mul-
tiple times by replacing a free variable in theserT clause with

a range of values given by the generator. In many situatiees,
want a constraint acting on aggregatevalue calculated over the
elements in a generator. As a simple example, we can rewste t
original storage constraint used in physical design tosisgigen-
erators and aggregates as follows:

FOR I in C
ASSERT sum(size(I)) < 200M

As a more complex example, the following constraint ensthat
the combined size of all indexes defined over tabis not larger

specific ones that can be used in some execution plan for than four times the size of the table itself:

a query in the workload. For instance, the two indexes in
CSelectBest for query:

SELECT a,b,c FROM R
WHERE a<10
ORDER BY b

FOR I in C

WHERE table(I) = TABLES["T"]

ASSERT sum(size(I)) < 4 * size(TABLES["T"])
whereTABLES is the collection of all the tables in the database, and
functionsize on a table returns the size of its primary index.

Nested ConstraintSConstraints can have free variables that
are bound by outer generators, effectively resulting inetkson-
straints. The net effect of the outer generator is to dufditae in-
ner constraint by binding each generated value to the freabla
in the inner constraint. As an example, the following comistr
generalizes the previous one to iterate over all tables:

FOR T in TABLES

FOR I in C

WHERE table(I) = T
ASSERT sum(size(I)) < 4 * size(T)

Soft ConstraintsThe implicit meaning of the language defined
so far is that a configuration has to satisfy all constraintbe
valid. Among those valid configurations, we keep the one with
the minimum expected cost for the input workload. There dre s
uations, however, in which we would prefer a relaxed notibn o
constraint. For instance, consider a constraint that eafothat
every nONYPDATE query results in at least 10% improvement over
the currently deployed configuration. In general, therehilige no
configuration that satisfies this constraint, speciallyanjanction
with a storage constraint. In these situations, a betterradtive is

to specify asoft constraintwhich states that the final configuration

should get as close as possible to a 10% improvement (a cenfigu

ration with, say, 8% improvement would still be consideratid).
We specify suclsoft constraints by adding sorFT keyword in the
ASSERT clause. The resulting constraint thus becomes:

FOR Q in W

WHERE type(Q) = SELECT

SOFT ASSERT cost(Q, C) < cost(Q, COrig) / 1.1

Note that the traditional optimization function (i.e., nmmizing the
cost of the input workload), can be then specified as follows:

FOR Q IN W
SOFT ASSERT sum(cost(Q, C)) = 0

If no soft constraints are present in a problem specificati@nim-
plicitly add the above soft constraint and therefore optarfor the
expected cost of the input workload. In general, howevét,cem-
straints allow significantly more flexibility while specifyg a phys-
ical design problem. For instance, suppose that we areesttt in
the smallest configuration for which the cost of the worklosaet
most 20% worse than that for the currently deployed configama
(as shown in [5], this problem statement is useful to elingna-
dundant indexes without significantly degrading the exgeciost
of the workload). We can specify this scenario using soft-con
straints as follows:

FOR Q IN W
ASSERT sum(cost(Q, €)) < 1.2 * sum(cost(Q, COrig))

SOFT ASSERT size(C) = 0

2.3 Generic Constraint Language

In general, a constraint is defined by the grammar below, evher
bold tokens are non-terminals (and self-explanatory);imald to-
kens are literals, tokens between brackets are optiond ldrrep-
resents choice:

constraint:=[SOFT] ASSERT [aggdl function (<|=|>) constant
| FOR var IN generator

[WHERE predicate]
constraint

We next show that although our language is simple, it is able t
specify all the motivating examples in the previous sectlarSec-
tion 5 we discuss how we can handle constraints that lie deitsie
expressive power of the language by using a specializedfaote

2.4 Motivating Examples Revisited

We now specify constraints for the motivating examples io-Se
tion 1. The following constraint ensures that no column appé
more than three indexes to decrease the chance of contention

FOR T in TABLES
FOR col in cols(T)
FOR I in C WHERE I LIKE "*,col,*"
ASSERT count(I) < 3

The next constraint enforces that the clustered index de tab
must have eithes, b, or c as its leading column:

FOR I in C
WHERE clustered(I)
ASSERT I LIKE "(a,*)|(b,*)|(c,*)"

Note that theAsserT clause is a predicate and does not follow
the patterrffunction-comparison-constantintroduced earlier. We
thus implicitly replace a predicate with §(p)=1, where¢ is the
characteristic functiond(true)=1 andd(false)=0).
The constraint below enforces that sELECT query degrades by
more than 10% compared to the currently deployed configurati
FOR Q in W
WHERE type(Q) = SELECT
ASSERT cost(Q, C) < 1.1 * cost(Q, COrig)

The last constraint enforces that no index can be replacéts by
narrow version without at least doubling the cost of someyue

FOR I in C
FOR Q in W
ASSERT cost(Q, C - I + narrow(I))/cost(Q, C) < 2

wherenarrow(I) results in a single-column index witts leading
column (e.g.parrow((a,b,c)) = (a)).

3. SEARCH FRAMEWORK

In this section we review the general architecture of ourdea
framework, which we adapted from [4, 5]. For presentation pu
poses, we address in this section the traditional physieaigd
problem (i.e., we assume that there is a single storage regmst
and we optimize for expected cost). Then, in Section 4 weagxpl
how to incorporate multiple constraints into the searcmfravork.

3.1 General Architecture

Figure 1 shows a high-level architectural overview of owarsk
framework. Animportant component of the framework is thabgll
cache of explored configurations (shown at the bottom ofrieidi.
This global cache is structured in three tiers, which retspslg
contain (i) the best configuration found so far, (ii) the sehon-
dominated configurations in case there are multiple softraimts,
and (iii) the remaining suboptimal configurations.

We begin the search from an initial configuration (step 1 & th
figure), which becomes the current configuration. Afterthes
progressively explore the search space until a stoppinditon is
satisfied (typically a time bound). Each exploration itEnatcon-
sists of the following steps. First, we evaluate the curoemfigu-
ration and store it in the global cache (step 2 in the figurdjenl
we perform a pruning check on the current configuration. Itee
cide to prune the current configuration, we keep retrievingnfthe
global cache previously explored configurations until weaobone
that is not pruned (this step effectively implements a hacking
mechanism). At this point, we use transformation rules toege
ate new candidate configurations from the current one (step 3
the figure). We rank candidate configurations based on their e
pected promise and pick the best candidate configuratiarsthat

Pick Best

Pruned? Retrieve new

Candidate
Configurations

Current
Configuration

A

Initial
Configuration

'

'

Retrieve Store

T e || O

All Configurations | Non-dominated Configurations | ’ ;
| Configuration |
Output

Figure 1: Architecture of the Search Framework.

already in the global cache, which becomes the current amafig
tion. This cycle repeats until the stopping criterium is naetd we
output the best configuration(s) found so far (step 4 in thaég

Looking at the search strategy at a high level, we start vathes
configuration (either the initial one or a previously expldrone)
and keep transforming it into more and more promising caatdil
until a pruning condition is satisfied. At this point we piclkew
configuration and begin a new iteration. In the rest of thitiea
we discuss additional details on the search framework.

3.1.1 Configuration Evaluation

Each step in the search process requires evaluating a psgvio
unexplored configuration, which in itself consists of twekis.

First, we need to determine whether the storage consteagatt+
isfied, and if not, how close is the current configuration toadhe
state. With a storage constraint Bf we simply estimate the size
of the current configurationsize (). If size(C) < B, the storage
constraint is satisfied. Otherwise, the vatiee(C') — B quantifies
how close we are to a valid configuration.

Second, we need to evaluate the optimizing function, thahés
expected cost of the workload under the current configuratio
order to do so, we need to optimize the queries in the workionad
awhat-if mode [9], which returns the expected cost of each query
without materializing the configuration. This step is ugudhe
bottleneck of the whole process, since optimizer callsypieally
expensive. There are several ways to reduce this overhewda®
proach is to use information about previous optimizatianmfter,
in some cases, the cost of a query under a given configurattbn w
out issuing an optimization call (examples of such techesquse
atomic configurations [8] or a top-down relaxation appropgh
A recent approach introduced in [7] results in accurate @ppra-
tions of the cost of a query at very low overhead (typicallgiers
of magnitude faster than a regular optimization call).

3.1.2 Transformations

After evaluating the current configuration, we apply transfa-
tion rules to generate a set of new, unexplored configuraiiothe
search space. For that purpose, we usertbee-reducéamily of
transformations introduced in [5]. Specifically, the tfansations
that are considered for the current configuration are agviist|

Merging rules: Merging has been proposed as a way to eliminate
redundancy in a configuration without losing significant-effi
ciency during query processing [5, 10]. The (ordered) merg-
ing of two indexesl; and I, defined over the same table is
the best index that can answer all requests that eithand
1> do, and can efficiently seek in all cases thatan. Specif-
ically, the merging ofl; and I, is a new index that contains

all the columns off; followed by those inl, that are not

in I (if one of the original indexes is a clustered index, the
merged index will also be clustered). For example, merg-
ing (a,b,c) and(a, d, c) returns(a, b, c,d). Index merging

is an asymmetric operation (i.e., in general mefgd}) #
merge(2,11)). LetC be a configuration andl;, I2) a pair of
indexes defined over the same table such {liat/>} C C.
Then, the merging rule induced Hy and I, (in that order)

on C, denotedmerge(C, I1, I2) results in a new configura-
tionC’ = C — {I1,I>} U {merge(I1, I2) }.

Reduction rules: Reduction rules replace an index with another
that shares a prefix of the original index columns. For in-
stance, the reductions of indéx, b, ¢, d) are(a), (a,b), and
(a, b, ¢). Areduction rule denoted asduce(C, I, k), where
k is the number of columns to keepinreplaced in C with
its reduced versiomeduce(I, k).

Deletion rules: Deletion rules, denotegemove(C, I'), remove in-
dex I from configurationC'. If the removed index is a clus-
tered index, it is replaced by the corresponding table heap.

The number of transformations for a given configurat@ris
O(n - (n + m)) wheren is the number of indexes i6' andm
is the maximum number of columns in an indexGn Of course,
in real situations this number is likely to be much smallecGduse
indexes are spread throughout several tables (and therafnging
is valid for only a subset of the possible cases), and alsausec
not all reductions need to be considered. To clarify thetaibint,
consider indeX on (a, b, ¢, d, e) and the single-query workload:

SELECT a,b,c,d,e
FROM R
WHERE a=10

In this situation, the only useful reduction for the indexi®n (a),
since any other prefix df is going to be both larger thail and less
efficient for answering the query.

3.1.3 Candidate Configuration Ranking

After generating all valid transformations for the curreanfig-
uration, we need to rank them in decreasing order of “promgze
that more promising configurations are chosen and explorsd fi
For that purpose, we estimate both the expected cost of the wo
load and the expected size (i.e., the storage constraingaof
resulting configuration. While estimating sizes can be deffie
ciently, estimating workload costs is much more challeggifihe
reason is that often there are several candidate confignsato
rank (typically one per transformation), and the cost ofiropt-
ing queries (even using the optimizations described enigoo
costly. To address this issue, we use the local transfoomaip-
proach of [4, 6] and obtain upper bounds on the cost of quésies
each candidate transformation. Consider a quesmd a configu-
ration C’ obtained fromC. The idea is to analyze the execution
plan of g underC and replace each sub-plan that uses an index in
C — C’ with an equivalent plan that uses indexegihonly.

As an example, consider the execution plaat the left of Fig-
ure 2 under configuratiof. IndexI on (a,b,c) is used to seek
tuples that satisfy, < 10 and also to retrieve additional columns
b andc¢, which would eventually be needed at higher levels in the
execution plan. Suppose that we are evaluating a configuaréati
obtained by reducind to I’ on (a,b). We can then replace the
small portion of the execution plan that usewith a small com-
pensating plan that usé$ (specifically, the replacement sub-plan
uses/’ and additional rid-lookups to obtain the remaining recire
c column). The resulting pla#’ is therefore valid and at most as
efficient as the best plan found by the optimizer undér

|=(a,b,c) reduced to I'=(a,b)

——

rid lookup

Seek (a<10)
I'=(a,b)

Figure 2: Local transformations to obtain upper-bound coss.

Once we obtain estimates for both the optimizing functiod an
the deviation from the storage constraint for each of theradttive
configurations, we need to put together these values to hendtif-
ferent candidate transformations. In the context of a sisgprage
constraint, reference [4] uses the valiyg,: /As;:. to rank trans-
formations, where\ ... is the difference in cost between the pre-
and post-transformation configuration, afd; .. is the respective
difference in required storage (reference [4] adapts tlesimfrom
the greedy solution for the fractional knapsack problem).

3.1.4 Configuration Pruning

As explained in Figure 1, we keep transforming the current co
figuration until it is pruned, at which point we backtrack tpravi-
ous configuration and start another iteration. Considengleitor-
age constrainB, and assume sELECT-only workload. Suppose
that the current configuratioff exceedsB, but after transforming
C into C" we observe that” is within the storage bound. In
this case, no matter how we further transfafify we would never
obtain a valid configuration that is more efficient thah. The
reason is that all the transformations (i.e., merges, tathgand
deletions) result in configurations that are less efficientlie in-
put workload. Therefore;” dominates the remaining unexplored
configurations, and we can stop the current iteration byipgun
C’. When there are multiple rich constraints, the pruning ¢t
becomes more complex, and is discussed in Section 4.

3.1.5 Choosing the Initial Configuration

Although any configuration can be chosen to be the startiirg po
in our search, the initial configuration effectively restsithe search
space. Specifically, our search framework is able to evéntren-
sider any configuration that is a subset of the closure ofritiali
configuration under the set of transformations. Formadiy/Cl be
a configuration and lef; (« > 0) be defined as follows:

-Co=C
- Cit1 = C; U {merge(I1, I2) foreachli, I, € C;}

U {reduce(/, K) foreachl € C;, K < |I|}

We defineclosurdC) = Cj, wherek is the smallest integer that
satisfiesCy, = Ck41. The closure of a configuratio@' is then
the set of all indexes that are either@hor can be derived frond’
through a series of merging and reduction operations. Fadréa-
son, if no subset of thelosureof the initial configuration satisfies
all the constraints, the problem is unfeasible. Unless aiipéni-
tial configuration is given, the default starting pointéelectBest,
which contains the most specific indexes that can be usedhamgw
by the query optimizer for the input workload, and thus stdue
appropriate to handle all but non-standard constrhints

LAn example of such constraint would be the requirement thiatesindex
not useful for any workload query be present in the final camigon.

Constraint | Objective

F(C) <K | max(0, F(C) — K)
F(C)=K | |[F(C)—- K|

F(C) > K | max(0, K — F(C))

Table 1: Converting constraints into c-objectives.

4. CONSTRAINED PHYSICAL TUNING

In the previous sections we introduced a constraint langaad
reviewed a general transformation-based strategy to rsavine
space of valid configurations. In this section we explain hom-
tegrate constraints into the search framework. In shortcaveert
constraints into objective functions and avoid directlynparing
multiple objectives together by using Pareto optimalitpaepts.

4.1 From Constraints to C-Objectives

Constrained physical design is a multi-constraint mutieative
optimization problem (recall that soft-constraints natiyrlead to
more than a single optimization function). A common apphotac
handle such problems is to transform constraints into nej@ceb
tive functions (we call these-objectivedor short) and then solve
a multi-objective optimization problem. Note that thenction-
comparison-constarpattern forAsserT clauses enables us to as-
sigh a non-negative real value to each constraint with e
a given configuration. It is in fact straightforward to ceeatc-
objectivethat returns zero if the constraint is satisfied and positive
values when it is not (and moreover, the higher the value thieem
distant the configuration to one that satisfies the consjraifa-
ble 1 shows this mapping, whef§C') and K denote, respectively,
the function (of the current configuration) and the constarihe
ASSERT clause. For constraints that iterate over multipdSERT
clauses, we sum the values of the individagderT clauses.

By proceeding as before, each configuration is now assadciate
with ns + ny, values forn, soft constraints and,, hard (i.e., non-
soft) constraints. Minimizing the, c-objectivesdown to zero re-
sults in a valid configuration that satisfies all hard constsawhile
minimizing then c-objectivesesults in the most attractive config-
uration (which might not satisfy some hard constraint). aisuithe
ny, c-objectivesare in opposition to the; c-objectivesaand also to
each other, and therefore our search problem is not stfargfrd.

A common approach to address multi-objective problems is to
combine allc-objectivedogether into a new single objective func-
tion. In this way, the resulting optimization function midgiecome:

singleObjectivéC) = > " w; - ai(C)
i=1

wherea; (C') denotes thé-th c-objectiveandw; are user-defined
weights. While this approach is universally applicablestiffers
from a series of problems. The choice of weights is typically
subtle matter, and the quality of the solution obtained {@nethe
likelihood of finding a solution whatsoever) is often seimsitto
the values chosen. A deeper problem arises from the factshat
ally c-objectivesare non-commensurateand therefore trade-offs
between them range from arbitrary to meaningless.

For this reason, we do not reduce the original problem toglesin
optimization alternative. Instead, we rely on the concéRareto
optimality, which in general does not search for a single solution
but instead the set of solutions with the “best possibleetraifs”.
We next explain this notion and how we use it to reason with con
figurations within our search strategy.

2Instead, we could consider eatBSERT within a generator individually.
Our experiments show that this alternative results in amtit complexities
without improving the effectiveness of the search strategy

4.2 Pareto Optimality for Configurations

The concept of Pareto optimality can be explained by usieg th
notion of dominance We say that vectar = (z1,...,z,) dom-
inates vectoy = (y1,...,yn) if the value of each dimension of
x is at least as good as thatmfand strictly better for at least one
dimension. Therefore, assuming that smaller values aterbet

zdominatey <= Vi:z; <y; AJj:x; <yj
An elementz € X is said to bdPareto Optimain z if it is not dom-
inated by any other vectar € X. (ThePareto Optimalelements
of a set are also said to form tkkyline[3] of the set).

In our scenario, each configuration is associated with sovedt
sizens + ny, for ng soft constraints and,, hard constraints, and
thus we can talk about dominance of configurations. If thera i
single soft constraint and all hard constraints are sabisfjahere
must be a uniqu®areto optimalsolution. In fact, for a configu-
ration to be valid, each of the,, c-objectivesmust be zero, and
thus the valid configuration with the smallesbbjectivevalue for
the soft-constraint dominates every other configurati@ve(for
a single soft constraint, however, there can be mulfjaieto opti-
mal configurations among the explored ones during the search.)

4.3 Configuration Ranking

Using the notion of dominance, we can obtain a total ranking
of configurations in two steps. First, we assign to each config
ration a “rank” equal to the number of solutions which donténa
it3. As an example, Figure 3(b) shows the rankings of all the two-
dimensional vectors shown in Figure 3(a). This ranking aedua
partial order, where each vector with rankinigelongs to an equiv-
alence clasg,;, and every element ih; goes before every element
in L; fori < j (see Figure 3(c) for a graphical illustration of such
equivalence classes). The final ranking is then obtained tlyap
bilistically choosing a total order consistent with thetfzrorder
given by equivalence classés (see Figure 3(d) for an exampfe)
The pseudo-code below implements this idea.

RankConfigurations (C=cy,ca,...,cn:configurations)
Output R: a ranked list of configurations

01 for each ¢; € C

02 rank(c;) = |{c; € C':c; dominates c;}|

03 R=1[]

04 for each ¢ € {l..n}

05 L; = {c€ C: rank(c) =1}

06 LP; = random permutation of L;

06 append LP; to R

07 return R

Our search strategy relies on the ability to rank configaretiat
two specific points. First, in Step 3 in Figure 1 we need to ek
transformation that would result in the most promising cgunfa-
tion. Second, after pruning the current configuration imp&en
Figure 1, we need to pick, among the partially explored config
rations, the most promising one to backtrack to. Wheneverewe
quire to rank a set of configurations, we proceed as follovirst,F
we evaluate (or approximate) the values of all ¢thebjectivesas
explained in Sections 3.1.1 and 3.1.3. Then, using the jpseoade
above we obtain a partial order and probabilistically clecmsank-
ing consistent with this partial order.

4.4 Search Space Pruning

In Section 3 we described a mechanism to prune a given con-

figuration, which relied on identifying when future transfations

3 A variation of this approach is used in [14, 17] in the contebdonstrained
evolutionary algorithms.

4We shuffle element ranks in each equivalence class to dectieashance
of getting caught in local minima due to some arbitrary ardgscheme.

Constraint templatd Instance | D(C, F)
F<K,FZK |FO)>K | Tor—
F>K,F#AK | F(C)<K | |ore

Table 2: Sufficient pruning conditions for hard constraints.

were not able to improve the current configuration. We novereckt
this technique to work with multiple, rich constraints. Wé&roduce

a functionD that takes a configuration and the left-hand-side func-
tion F' of anAsskeRT clause, and returns one of four possible values
(which intuitively represent the “direction” on whidi moves after
applying transformations to the input configuration). Thus

D :: configurationx function— {1, |, <, 7}

Recall that, for any given configuration instan€g, we evaluate
the valueF'(Cy) by binding the free variablein F (i.e., the desired
configuration on top of which constraints are defined) Wigh The
semantics oD (C, F) are as follows:

T if F(C") > F(C)forall C’ € closure(C)
D(C, F) = | if F(C") < F(C)forall C’ € closure(C)
/T)« if F(CT) = F(C)forall ¢! € closure(C)

? otherwise

As an example, consider the following constraint:
ASSERT size(C) - size(COrig) < 200M

In this situation,D(C, F) =| for any C because any sequence
of transformations starting witt’ will result in a smaller config-
uration, and therefore the value of functidhalways decreases.
Although the definition ofD is precise, in practice it might be un-
feasible to evaluat® for arbitrary values of". We adopt a best-
effort policy, and try to inferD values. If we cannot prove that
D(C,F) € {1, |, <} we return the unknown value “?". Opera-
tionally, we evaluateéD in an inductive manner. We first assi@h
values for the base numeric function calls, such as, foaires:

D(C, size(C)) =]

D(C, size(Tables["R’])) =~

D(C, cost(Q, C)) = if type(Q) is SELECT then else?

and propagate results through operators using standagsl guch
as for instance (i) + =1, (i) 7+|=?, and (iij) max(T, «»)=1. (We
handle constraints with generators and aggregation sigilaut
omit details for simplicity.)

Using the definition ofD, Table 2 specifies sufficient conditions
to prune the current configuration for a given hard constr&on-
sider the constraint below:

ASSERT cost(W[1], C) / cost(W, COrig) < 0.1

In this case D(C, F) =1 if w[1] is aSELECT query. The reason
is thatD(C, cost(W[1], C))=T, D(C, cost(W, COrig))=«, and fi-
nally T / <=1. If, during the search procedure, the current config-
urationC satisfiesF'(C') > 0.1 (i.e.,C violates the constraint), we
can guarantee that no element in clogareobtained by transform-
ing C would ever be feasible, because valueg¢€’) are always
larger thanF'(C) for any C’ transformed fronC. Therefore, prun-
ing C'is safe (see Figure 4 for an illustration of this reasoning).

Soft Constraintsin addition to the conditions stated in Table 2,
pruning a configuratior based on a soft constraint additionally
requires that” satisfy all the hard constraints (since any value of
the c-objectiveassociated with the soft constraint is acceptable, we
might otherwise miss overall valid solutions).

4.4.1 Additional Pruning Guidance

Although the above technique safely prunes configurationas-g
anteed to be invalid, there are certain situations in whiehlieguire

\
\

(a) Original Points. (b) Pareto ranking.

\j

(c) Pareto layers. (d) Instance ranking.

Figure 3: Inducing a partial order from the dominance relati onship.

A
—F(©)
2(C F)=1
Constraint.F* < K
F(C)>K
TK D(C, F) =1
)) Result: Prune
Valid region
]

Figure 4: Sample pruning condition.

additional support. Suppose that we want to minimize thé cios
workload with updates using the constraint below:

SOFT ASSERT cost(W, C) < 0

Since the workload has updat&3(C, cost(W, C'))=7. However,
suppose that the initial configuration does not contain aex
on tableR, and all updates queries refer exclusively to tahle
In this situation weknowthat the cost of the workload would al-
ways increase as we apply transformations, but our systemota
infer it. To address such scenarios, we augment the comiskaai-
guage with annotations that override the default prunirttabr.
Specifically, by adding the keywordonoTONIC_UP (respectively,
MONOTONIC_DOWN) before theasseRT clause, we specify that the re-
spective constraint functioft' satisfiesD(C, F') =1 (respectively
D(C,F) =]|). Of course, our framework has no way to verify
whether the annotation is correct (otherwise it would haeglithis
knowledge upfront!) and implicitly trusts the annotation zeing
correct. The example above can then be augmented as follows:

SOFT MONOTONIC_UP ASSERT cost(W,C) < O

4.4.2 Heuristic Pruning

To allow for additional flexibility in defining the search ategy,
in this section we present annotations that heuristicaltyrict the
search space. In contrast to the previous section, thestadioms
result in a trade-off between search space coverage andfthe e
ciency of the search procedure, and are interesting wheeaat |
one constraint satisfieB(C, F') =?. Recall that our search strat-
egy keeps applying transformation rules to the current gardi
tion with the objective to obtain the best configuration getisfies
all constraints. Since-objectivesare usually conflicting, a config-
uration that improves some objectives might move away frtm o
ers. However, if the transformed configuration does not awer
any objective, there might not be an incentive to continyglax
ing beyond that point (of course, this is a heuristic and ab $u
might prune valid solutions). Instead, we might consider¢hn-
figuration an end-point and backtrack to a previously seerfigo
uration. This pruning condition can be succinctly exprdasging
the notion of dominance. Suppose that the current confiiguoraf
was obtained by using some transformation over configuratio
Then, wheneve€’,, dominatesC' we pruneC' and backtrack. We

can enable this heuristic pruning by annotating the globastraint
specification with the valugSE_DOMINANCE_PRUNING.

To provide even additional flexibility into the search st we
enable two annotations that modify how pruning is handledrfo
dividual constraints that satisf(C, F') =?. Specifically, we can
specify the following behaviors:

HILL_CLIMB: If a constraintis marked agLL_CLIMB, any transfor-
mation fromCj, to C that results in a value of the constraint
in C' that is worse than that af', gets pruned, even though
C,, does not dominaté€'.

KEEP_VALID: Values of a constraint marked &sEP_VALID can go
up or down fromC, to C'. However, ifC), satisfies the con-
straint and”' does not, we prun€’'.

The annotations discussed in this section effectively ghahe
search strategy and require a non-trivial understanditiggofearch
space, its relationship with constraints, and even theriatevork-
ings of the framework. Providing guidance to assist useeven
propose the usage of such annotations is a very importahtgmmo
that lies outside the scope of this work.

4.4.3 Transformation Guidance

Suppose that we want an existing indgodI to appear in the
final configuration. We can achieve this by using a constraint
FOR I in C
WHERE name(I) = "goodI"
ASSERT count(I) = 1
This is such a common situation that we provide an altereatnd
more direct approach to achieve the same goal:

AVOID delete(I) WHERE name(I)="goodI"

would mechanically ignore any transformation that matcties
specification above. In general the syntax of such spedditad:

AVOID transformations [WHERE predicate]

As a less trivial example, to avoid merging large indexes am@ c
use the following fragment:

AVOID merge(I1,I2)

WHERE size(I1)>100M OR size(I2)>100M
As with other heuristic annotations, the usage of thesergitives
should be guided by special knowledge about the search space
its impact on the input constraints.

5. IMPLEMENTATION DETAILS

In this section we provide some implementation details afoa p
totype built using the constraint optimization framewosdsdribed
earlier. We also explain some extensions that enable addltilex-
ibility and performance. Figure 5 illustrates the differeequired
steps to go from a problem specification tega script that deploys
the resulting physical design. Initially, we provide a dfieation

Constraint Language Specification
C++ Code Initialization Constraints Other Constraints
T
|
|
\—¢ ¢—‘
A J
. User Defined Search
Object Code Instance Framework
vy
Constrained | \
Executable Optimizer g) DBMS
Deployment
SQL + Text Reports %C%pt

Figure 5: From Problem Specification to Results.

for the constrained optimization problem. A full specifioatcon-
tains a header, which includes database and workload iatiwm
(e.g., the location to find the DBMS and the workload), and the
main body, which includes the initial configuration and b# ton-
straints specified in the language of Section 2. A specigigse
compiler consumes the specification and produces dwofiles.
One file provides the necessary plumbing mechanism to liaitia
the search framework and perform the optimization and therot
specifies each of the constraints by using classes (more de-
tails are discussed in Section 5.1). Note that it is possiblei-
rectly specify constraints in++, which provides more flexibility
at the expense of simplicity. After all constraints are $tated

The baseconstraint class exposes three virtual methods. The
first one,pruning, returns the valu®(C, F'). By default it always
returnsTNONE (i.e., corresponds t®(C, F') =7) and its definition
implements the inference mechanism and the heuristic ations
discussed in Section 4.4. The second anere, is called every
time we need to obtain the value of tbebjectiveassociated with
the constraint. It takes a configuration as an input and metar
real number. The result value frogaore should be zero when the
constraint is satisfied, and larger than zero otherwisen@gnitude
should reflect the degree of constraint violation). CledHg sim-
plicity of the constraint language makes the compilati@pshto
derived classes fully mechanical. As an example, conshdefdi-
lowing constraint, which enforces that no index is largemtihalf
the size of the underlying table:

FOR I in C
ASSERT size(I) < 0.5 * size(table(I))

In this case, the generated function would look as follows:

class Cl: public Constraint {
double score(Conf* conf) {
double result = 0;
for (int i=0; i<conf->numIndexes(); i++) {
double f = size(conf[i]);

double ¢ = 0.5 * size(table(confl[il));
double partialResult = MAX(0.0, f - c);
result += partialResult;

}

return result;

}

}s
The third function in the baseonstraint class,estScore, IS
called every time we need to estimate thebjectivefor a given

into c++ classes, the next step compiles this intermediate code andtransformation. It takes as inputs the original configaratithe

links the result with the search framework library. Thispspo-
duces a program that connects to the database system amgtatte
to solve the constrained optimization problem. Upon cotiqe
the executable returnssaL script, which can be used to deploy the
best configuration, and additional reports that provideitiedn the
configuration to be deployed and the overall search process

5.1 Compilation into C++ classes

An important extensibility mechanism results from usirg as
an intermediate language to specify constraints. In fagtcan use
c++ to directly specify constraints that are too complex to be-ha
dled inside the constraint language, or constraints tltire spe-
cific extensions for performance. We now describe the catipii
step from the original specification language inte. Each con-
straint is translated into a class derived from the b@s@traint
class, which is defined as follows:

class Constraint {
protected:
typedef enum {INONE, TUP, TDOWN, ...} TPruning;
virtual TPruning pruning(Conf* conf) {return TNONE;}
virtual double score(Conf* conf) = 0;
virtual double estScore(Conf* fromConf,
Conf* toConf,
Transformation* t);

5Reports additionally describe suboptimal configuratigmssent tradeoffs
in terms of constraint violation, and allow DBAs to analymeélative depth
the benefits of a particular configuration.

transformation, and the resulting configuration, and retw& real
number. There is a default implementatioreefScore that mimics
almost exactly the implementation efore working on the trans-
formed configuration. A subtle point is that the methods twihin
the cost of the workload under a given configuration are aatom
cally replaced irestScore with those that exploit local transforma-
tions from the original configuration, and therefore theadéfim-
plementation is very efficient. We can, however, replaceldfault
implementationestScore with a customized version that further
improves efficiency. Consider again the storage constraint

FOR I in C
ASSERT sum(size(I)) < 200M

and suppose that the transformation merfjeand I, into Is. Us-
ing the following equality:

Z size(l) = size(I3)—size(l1) —size(I2)+ Z size(I)

I etoConf IefromConf

we can compute the size of the transformed configuration iir co
stant time, provided that we have the size of the originafigara-
tion available. Note that all transformations follow thergagen-
eral pattern, i.e Catter = CheforeU I — I, wherel ™ andl ™~ are
set of indexes. Therefore, in many situations we can incréafig
evaluateasserT functions by reusing previously computed values.

6. EXPERIMENTAL EVALUATION

We now report an experimental evaluation of the search frame
work described in this paper.

¥
S

6.1 Experimental Setting

Our experiments were conducted using a client prototype tha
connects to an augmented version of Microsoft SQL Servee Th
server code-base was extended to support the techniques/irtd
provide what-if functionality and the ability to exploitdal trans-
formations. For our experiments we usedre-H database and
workloads generated with th@en utility®.

6.2 Single Storage Constraint 1seB 268 2568 3GB 3sGB 4GB

We fi_rst consider the traditional scenario v_vith a single azger Figure 7: Efficienc;m;g:icig:rméi:t alternatives.
constraint, and compare our framework against previousk ior
the literature. We used a 1GBc-H data and tuned a 22-query 2500 e=n
workload with both our framework and the relaxation apphoac
of [4] augmented with the techniques of [7] so that both apphes
rely on the same underlying query optimization strategy. us&d
three minutes for each tuning session, and simulated th®agp
in [4] with the following constraint specification:

-
o

& -
v \ g & o

=& Constrained PDT
- Traditional PDT

w

Explored Configurations/sec.
.
o

©

2000

1500 ——1.5GB
——2GB
——3GB

! «—4GB

1000

Expected Cost

500

Initial = CSelectBest
SOFT ASSERT cost(W,C) = 0
ASSERT size(C) < B

0

0 20 40 60

Time

wheres is the storage bound (note that the last line is the only Figure 8: Quality of recommendations over time.
strictly required one, since the other two are always inetlty
default). Figure 6 shows the resulting execution cost ofitbek-
load for different values ok. We can see that the results are vir-
tually indistinguishable for storage bounds that cover whmle
spectrum of alternatives. Figure 7 compares the efficiefibpth
approaches. We can see that our framework can evaluatelyough
half of the number of configurations in the approach of [4,arid 3000
the trends are similar in both approaches. The additionsd per
configuration in our approach comes from additional layérs-o
frastructure required to generalize the approach in [4]ddkwwith
arbitrary constraints (in other words, many componentshare-
wired in [4]). Considering that our framework is substalhfienore
general and there are many opportunities for performanpeoive-
ment, we believe that our approach is very competitive.

6000

5000

4000

Expected Size

2000 T T T T 1
400 500 600 700 800 900

Expected Cost
Figure 9: Backtracking to an earlier configuration.

Finally, Figure 10 shows the number of candidate transferma
tions against the number of indexes of the originating cométion

3000

P rS—— for the first 300 configurations evaluated in Figure 9. We @ s
2500 T Qraditional Por | that the number of candidate transformations is indeed rqtiad
2000 | |- in the number of indexes (due to tineergetransformations), but

the quadratic coefficient is significantly less than one -#9.Rig-
ure 10- due to restrictions in the set of feasible transftioma
(e.g., we cannot merge indexes on different tables).

1500 -

Expected Cost

1000 1+

500 -

600

0

500

12GB 15GB 2GB 2.5GB 3GB 3.5GB 4GB Max k o
Storage Constraint K= 400 '.'.
Figure 6: Quality of recommendations for storage constrait. ; 300 .,-"'
.] S 200 i!ﬁli"
Figure 8 shows the expected cost of the best explored coafigur 2 0 i I“".;Llll-

tion over time, for different storage constraints (we doinctude
in the figure the start-up cost required to optimize eachyqtmr
the first time). We can see that usually the search procecus fi
an initial solution relatively quickly, and then it refingsier time.
Itisimportant to note that after only 60 seconds, the sestreltegy
converged to very competitive solutions in all cases.

Figure 9 illustrates the six initial iterations/backtramk when 6.3 Multiple, Richer Constraints
tuning the same workload with a storage constraint of 3GB. In
many cases, the most promising configuration is not alwags th
best one, and therefore the stochastic backtracking meschds
crucial in exploring the search space.

]
..on-l""‘..'
T T

0 T T T T 1

0 10 20 30 40 50 60 70

Numhb

of Indexes in Config

Figure 10: Number of candidate transformations.

We now explore more complex scenarios that require addition
constraints. Consider the tuning session with a 3GB stdraged
that we described in the previous section. The dark barsgn Fi
ure 11 show the number of indexes per table in the resultinfgo
®Available athttp: //www. tpc. org. uration. We can see that many tables have 6 or 7 indexes. Seippo

BIPT Unbounded
OIPT<=4

Number of Indexes
B

lineitem supplier part nation customer region partsupp orders

Tables
Figure 11: Number of indexes per table in two configurations.

that we want to limit the number of indexes in any given table b
four. We can then search for a configuration that additigreatis-
fies the following constraint, denotadt for indexes-per-table:

FOR T TABLES
FOR I in indexes(T)
ASSERT count(I) < 4

Since the specification contains a single soft-constrtiete is
a single optimal configuration. Figure 12 shows this sotutat the
bottom-left of the figure) along with all non-dominated coufia-
tions that are cheaper but do not satisfy all constraintgs Vikual-
ization provides additional insights to DBAs, who might biling
to trade-off efficiency for some slight violation of a corasit.

Expected Cost

300

250

200

150

100

I

®

I

50

1234567 8 910111213141516171819202122

Queries

Figure 13: Expected query costs fonpT < 4.

query under the currently deployed configuration (we detiuaé
constraintS70below). The specification looks as follows:

FOR I IN C ASSERT sum(size(I)) < 2G

FOR Q IN W ASSERT cost(Q, C) < 0.7 * cost(Q, COrig)

Size

3800 -

L4
3300
$,

2800

2300

1800

&,

6000
[]
5500 - .
[]
®
5000 covoee8®
& 4500 - o° ooccee’
(7] (]]]
4000 J05888° °
(T11)
3500 - g°°
PYL]]
3000 eSeessese
0 5 10 15 20 25 30 35

IndexSurplus
Figure 12: Non-dominated set of configurations forrpT < 4.

The chosen configuration at the top-left of Figure 12 satisfie
new IPT constraint, as shown with the lighter bars in Figure 11.
Note that the resulting configuration is not a strict subgethe
original one, in which we simply removed indexes until thevne
constraint was satisfied. This is clearly observed in Fidl8e
which depicts the cost of each query under both configuratiBor
each query in the figure there is a narrow line, which bounds th
cost of the query undemBase from above, and undeselectBest
from below (forseLECT queries, any configuration results in an ex-
pected cost between these two values). Each query is alsoi-ass
ated in the figure with a wider bar, whose extremes mark the cos
of the query under the configuration obtained with just aagjer
constraint, and the configuration obtained by additionbfiynd-
ing the number of indexes per table to four (i®T < 4). If the
configuration obtained withpT < 4 is the cheaper one, the bar is
painted black; otherwise it is painted white. Since the figton-
tains both black and white bars, we conclude that there aggegp.
that are more efficiently executed under either the originafigu-
ration andIPT < 4. Of course, theotal cost of the workload under
the original configuration (676 units) is smaller than thader the

600 800 1000

Execution Cost
Figure 14: Non-dominated configurations forS70.

1200 1400

Running the tool for five minutes produced no feasible sotuti
to this specification. Instead, the search procedure reditire non-
dominated unfeasible configurations in Figure 14 (eactecindhe
figure corresponds to one configuration, and the area of thkeci
represents the degree of violation of thé0constraint). We might
infer that the constraints might be too strict. Specificalhe tight
storage constraint is preventing simultaneously satigfyheS70
constraint. To relax the problem, we replaced the hard géocan-
straint by the following one:

FOR I IN C SOFT ASSERT sum(size(I)) < 2G

Essentially we transform the problem into a multi-objeetprob-
lem (reducing execution timand storage) with a singl&70con-
straint. As there are multipleoft-constraintsthe search strategy is
not guaranteed to return a single solution. Instead, itmstthe set
of non-dominated configurations shown in Figure 15. These co
figurations present the best trade-offs between size armitep
cost that satisfy th&70constraint (it also shows why the original
specification resulted in no solutions — the smallest corditgpn
requires 2.4GB).

Suppose that we pick thismallestconfiguration in Figure 15
(after all, our initial hard constraint limited the storatge2GB).
Figure 16 contrasts the execution cost of the queries in tr&-w
load under both this configuration and the one obtained whén o
optimizing for storage (i.e., when dropping t8&0constraint), but
giving the 2.4GB storage bound that t8@0configuration required.
Each query in the figure is associated with a light bar thaesgnts
70% of the cost of the query under the base configuration {he.

IPT < 4 configuration (775 units), because the space of solutions baseline under th870constraint). Additionally, each query in the

for IPT < 4 is more restrictive than that of original specification.

As another example, suppose that we want to find a good con-

figuration under 2GB that additionally satisfies that no guar-
der the final configuration execute slower than 70% the timaef

figure is associated in the figure with a narrower black/whie
whose extremes mark the cost of the query under the configarat
obtained with just a storage constraint, and the configumatb-
tained by additionally enforcin§70Q If the configuration obtained

6000

5000 A

4000

Size

3000

2000 T T T T T T 1
400 500 600 700 800 900 1000 1100

Expected Cost
Figure 15: Non-dominated configurations for relaxedS70.

with S70is the cheaper one, the bar is painted black; otherwise it

is painted white. We can clearly see that the configuratidis-sa
fying S70is always under the baseline (as expected). The figur
also helps understand the trade-offs in cost for queriesvthe
S70constraint is additionally enforced. As with the previous e
ample, theS70constraint is worse than the storage-only constraint
overall (901 vs 1058 units) because the search space is more r
stricted. However, some queries in the “830 configuration fall

to enforce the 70% bound that is required.

200

Expected Cost

1234567 8 910111213141516171819202122

Queries

Figure 16: Expected query costs forS70.

6.4 Scalability

We now analyze the scalability of our search strategy with re
spect to the number and complexity of the input constrailite.
first generated specifications with varying numbers of singbbr-
age constraints (strictly speaking, the most restrictivehese im-
plies the rest, but our framework cannot make this inferearu
considers each one individually). Figure 17 shows the impéc
the number of input constraints on the search efficiencyelsing
the number of constraints by 50x only reduces the numberadfiev
ated configurations per second from eight to around two. B@én
simultaneous constraints result in more than one (speltyfita39)
configurations being analyzed per seconit is important to note
that the approach in [4] without the optimizations in [7] Bazas
1.09 configurations per second for a single storage constrai

We next explore the scalability of our approach for varyinge
plexity of the constraints. For that purpose, we createduatfiiy”
constraint, parameterized ky, 3) that is always satisfied but takes
« milliseconds to evaluate each configuration (Section 3andl 3
milliseconds to estimate the promise of each candidatsfema-
tion (Section 3.1.3). Figure 18 shows the number of confiipma
evaluated per second when varying the values of parametansl
[for the dummy constraint. Clearly, the larger the valuesvof
and 3 the fewer configurations are evaluated per unit of time. We
can see from the picture that it is feasible to have evalodtiac-
tions (i.e.,«) values in the second range, and our strategy would

"Note that a fraction of the overhead arises from using suaptcode
to maintain non-dominated configurations, so the resultnmore careful
implementation of our prototype would be even better.

10

4 N
N

2 —~—

Explored Configurations/sec.

1 5 10 50 100

Number of Constraints
Figure 17: Scalability with respect to number of constrains.

still evaluate one configuration per second, which is simdahe

o Performance in [4]. Higher values ¢f, however, degrade the ef-

ficiency of our strategy much more rapidly, because the esidm
function is called multiple times per configuration to rankthe
candidate transformations. Therefore, it is crucial to effieient
procedures to estimate configuration promise. We note thitea
constraints discussed in this paper result in sub-mikisdex and
(8 values. Specifically, consider the soft constraint thatimizes
execution cost. This is a expensive constraint, since itireg per-
forming local transformations to estimate candidate psasiand
either optimizing queries or using the techniques in [7] vale
uate configurations. Our experiments showed average values
«=9.2 ms an@3=0.008 ms for this constraint.

8

1.0 =& Varying Evaluation Delay
"‘\\‘ == Varying Estimation Delay
6 (16,6)

(100,0)
‘w\ \
, (10,1)

(10,5)

(1000,0)

Evaluated Configurations/sec.
IS

/

11T S S——__§ et 2

Figure 18: Scalability with respect to constraint complexty.

7. RELATED WORK

With the aim of decreasing the total cost of ownership of bizse
installations, physical design tuning has become an irapbdnd
active area of research. Several pieces of work (e.g., [4,08,
15, 18, 20]) present solutions that consider different astruc-
tures, and some of these ideas found their way into commercia
products (e.g., [1, 2, 8, 9, 10, 12, 18, 19, 20]). In contrath this
work, most of previous research has focused on a singleg&ora
constraint.

References [4, 5, 6, 7] introduce some of the building blaufks
our search strategy. Specifically, [4] introduces the cphoé a
transformational engine and the notion ofs@lectBest configu-
ration. Reference [6] exploits the techniques in [4] in toatext
of local optimizations, by transforming a final executiomaminto
another that uses different physical structures. Referjccon-
siders a unified approach of primitive operations over iedetat
can form the basis of physical design tools. Finally, refeeg[7]
introducesConfiguration-Parametric Query Optimizatiowhich is
a light-weight mechanism to re-optimize queries for difarphys-
ical designs at very low overhead. By issuing a single opttidn
call per query, [7] is able to generate a compact representat
the optimization space that can then produce very effigieante-
cution plans for the input query under arbitrary configumasi

The field of constrained optimization has been extensiveig-s 9. REFERENCES
ied in the past, and the approaches vary depending of theenatu [1] s. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Nazgya, and

of both constraints and the optimization function. Wherialaes M. Syamala. Database Tuning Advisor for Microsoft SQL Serve
are continuous and the optimization function and congsatan 2005. InProceedings of the International Conference on Very Large
be expressed as linear functions, the simplex algorithnphased Databases (VLDB)R004. _

to be an effective tool. When the unknown variables are requi 2] ﬁq Qegrﬁszéasv}ecﬁsiﬂmﬂazrx‘gs\?nN;éTssggs gggm;m%g %ff
_to be integer, the problem is callédteger programmingwhich . the International Conference on Very Large Databases (V).DB

is NP-Hard and can be solved by branch and bound and cutting- 2000.

plane methods. Non linear but twice differentiable cornistsacan [3] S.Borzsonyi, D. Kossmann, and K. Stocker. The skylinerator. In
be solved using the non-linear optimization techniquedliy.[A Proceedings of the International Conference on Data Ereying
sub-field more closely related to ours is combinatorial rojta- (ICDE), 2001.

tion, which is concerned with problems where the set of fdasi [4] N.Bruno and S. Chaudhuri. Automatic physical databaséng: A
solutions is discrete. Combinatorial optimization al¢fumis solve relaxation-based approach. fmoceedings of the ACM International

Conference on Management of Data (SIGMQOZ)05.
[5] N.Bruno and S. Chaudhuri. Physical design refinemeng Th
“Merge-Reduce” approach. International Conference on

instances of problems that are believed to be hard in ge(refal
erence [16] proves that the general physical design prolsex-

Hard). For that reason, usually heuristic search methatisiéta- Extending Database Technology (EDBZ)06.
heuristic algorithms) have been studied. Examples of such tech- [6] N. Bruno and S. Chaudhuri. To tune or not to tune? A Ligtighe
nigues are simulated annealing, tabu search, or evolutiaigo- Physical Design Alerter. IRroceedings of the International
rithms (e.g., see [14, 17]). Conference on Very Large Databases (VLDE)06.
[7] N. Bruno and R. Nehme. Configuration-parametric query

8. CONCLUSIONS AND FUTURE WORK optimization for physical design tuning. Proceedings of the ACM

In this paper we introduced the constrained physical desigi- 8] g‘teérr?:jgﬁﬁliiﬂzfgeﬁgfagg M:”:geeTﬁi ?;::C%?ta d(riSIGMQ{DDB'
lem a”“.' proposgd a language that e.nalloles the speCIf!Catrmhpf sélection tool for Mi.crosoft Sy(gL.Server. Proceedings of the
constraints easily. As DBMS applications become incraggin International Conference on Very Large Databases (VLOBY7.
complex and varied, we believe that constrained physicsigde [9] S.Chaudhuri and V. Narasayya. Autoadmin 'What-if’ indenalysis
tuning is an important addition to the repertoire of toolsaof utility. In Proceedings of the ACM International Conference on
vanced DBAs. As discussed in this paper, many new scenaios ¢ Management of Data (SIGMOD)}998.
be successfully and efficiently handled by our framework.alge [10] S. Chaudhuriand V. Narasayya. Index mergingPtaceedings of
explained how a transformation-based search strategy asdxl the International Conference on Data Engineering (ICDEJ99.
to solve the constrained physical design problem. Thersereral [11] A.R.Conn, N. . M. Gould, and P. L. Toint. Large-scalenfinear

constrained optimization: a current surveyAlgorithms for
continuous optimization: the state of the,ar994.

[12] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and Miaziddin.
Automatic SQL Tuning in Oracle 10g. PRroceedings of the

open challenges where further work is needed. We mentiore som
of these below:

Analysis of Constrain_ts. The ability to reason abou@ rel_ationships International Conference on Very Large Databases (VLBDA.
among constraints can result in large benefits in search ef- [13] B. buncan. Deadlock Troubleshooting (Part 3). Acdalssat
ficiency. For instance, if we recognize that some constraint http://blogs.msdn.com/bartd/archive/2006/09/25/
is implied by others, or that certain constraints are posifi deadlock-troubleshooting-part-3.aspx. _

(or negatively) correlated, we can exploit this informatto [14] C. 'I\:l E_on?_eca ar:_d P. Jt-_ Flef::ﬁmg- ?iheﬂcdfcllgomhnr]j for
uide the search strategy more effectively. muitiobjective optimization: Formulation, discussiortan
9 9y y generalization. IfProceedings of the Conference on Genetic
Monitoring of constraints. In the context of an evolving system, Algorithms 1993.

it would be very interesting to devise monitoring mecha- [1°] S: Papadomanolakis ar?d%A“gmakg An i”teglfrr:i”ear
. A i to dat: igivdm
nisms that can alert whenever a constraint is no longer sat- brogramming approach 1o database desig shop on

. L A Self-Managing Database Syster2607.
isfied due to changes in either the workload or the data dis- 16] G. P. Shapiro. The optimal selection of secondary ieslis

tribution, and therefore a tuning session would be required NP-Complete. I'SIGMOD Record 13(2)1983.

similar to the work in [6]. [17] P.D. Surry, N. J. Radcliffe, and I. D. Boyd. A Multi-Olgjive
Approach to Constrained Optimisation of Gas Supply Network

Incremental constrained tuning. Suppose that the representative The COMOGA Method. IrEvolutionary Computing. AISEL995.

workload or data distribution changes only slightly. Insthi [18] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skey. DB2

case, it would be beneficial to incrementally refine the cur- advisor: An optimizer smart enough to recommend its ownxaede

rently deployed configuration rather than re-tune the syste In Proceedings of the International Conference on Data Ergjing

from scratch obtaining, perhaps, a configuration that ig ver (ICDE), 2000.

[19] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 design advisorghated
automatic physical database designPhceedings of the

different from the current one. The rationale is that DBAs
might deeply understand the currently deployed configura-

tion and they will have a high bar before accepting significan International Conference on Very Large Databases (VLIBpA4.
changes to the physical design. [20] D. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. Lohman,®chrane,
. . . . H. Pirahesh, L. Colby, J. Gryz, E. Alton, D. Liang, and G. Viie.
Higher level user interaction. Although the constraint language Recommending materialized views and indexes with IBM DB2
is simple and powerful, it might not always be the preferred design advisor. liinternational Conference on Autonomic
alterative to interact with a database system. Novel mecha- Computing 2004.

nisms to simplify specification of constraints, through pow
erful user interfaces or macros (which would then be com-
piled down into our constraint language) might be beneficial
in easing the path to adoption.

