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ABSTRACT
Existing solutions to the automated physical design problem in
database systems attempt to minimize execution costs of input work-
loads for a given a storage constraint. In this paper, we argue that
this model is not flexible enough to address several real-world sit-
uations. To overcome this limitation, we introduce a constraint
language that is simple yet powerful enough to express many im-
portant scenarios. We build upon an existing transformation-based
framework to effectively incorporate constraints in the search space.
We then show experimentally that we are able to handle a rich class
of constraints and that our proposed technique scales gracefully.

1. INTRODUCTION
In the last decade, automated physical design tuning becamea

relevant area of research. As a consequence, several academic and
industrial institutions addressed the problem of recommending a set
of physical structures that would increase the performanceof the
underlying database system. The central physical design problem
statement has been traditionally stated as follows:

Given a workloadW and a storage budgetB, find the
set of physical structures (or configuration), that fits in
B and results in the lowest execution cost forW .

This problem is very succinctly described and understood. Conse-
quently, it has recently received considerable attention resulting in
novel research results and industrial-strength prototypes in all ma-
jor DBMS. Despite this substantial progress, however, the problem
statement and existing solutions cannot address importantreal-life
scenarios. Consider, as a simple example, the following query:

SELECT a, b, c, d, e
FROM R
WHERE a=10

and suppose that a single tuple fromR satisfiesa=10. If the space
budget allows it, a covering indexIC over (a, b, c, d, e) would be
the best alternative forq, requiring a single I/O to locate the qual-
ifying row and all the required columns. Now consider a narrow
single-column indexIN over (a). In this case, we would require
two I/Os to answer the query (one to locate the record-id of the
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qualifying tuple from the secondary indexIN , and another to fetch
the relevant tuple from the primary index). In absolute terms, IC

results in a better execution plan compared to that ofIN . How-
ever, the execution plan that usesIN is only slightly less efficient
to the one that usesIC (specially compared to the naı̈ve alterna-
tive that performs a sequential scan over tableR), and at the same
time it incurs no overhead for updates on columnsb, c, d, or e. If
such updates are possible, it might make sense to “penalize”wide
indexes such asIC from appearing in the final configuration. How-
ever, current techniques cannot explicitly model this requirement
without resorting to artificial changes. For instance, we could sim-
ulate this behavior by introducing artificialUPDATE statements in
the workload. This mechanism, however, is not general enough to
capture other important scenarios that we discuss below.

Note, however, that the previous example does not lead itself to
a new “golden rule” of tuning. There are situations for whichthe
covering index is the superior alternative (e.g., there could be no
updates on tableR by design). In fact, an application that repeat-
edly and almost exclusively executes the above query can result in
a 50% improvement when using the covering indexIC rather than
the narrow alternativeIN . A more subtle scenario that results in
deadlocks when narrow indexes are used is described in [13].

In general, there are other situations in which the traditional
problem statement for physical design tuning is not sufficient. In
many cases we have additional information that we would liketo
incorporate into the tuning process. Unfortunately, it is often not
possible to do so by only manipulating either the input workload or
the storage constraint. For instance, we might want to tune agiven
workload for maximum performance under a storage constraint, but
ensuring that no query degrades by more than 10% with respectto
the original configuration. Or we might want to enforce that the
clustered index on a tableT cannot be defined over certain columns
of T that would introduce hot-spots (without specifying which of
the remaining columns should be chosen). As yet another example,
in order to decrease contention during query processing, wemight
want to avoid any single column from a table from appearing in
more than, say, three indexes (the more indexes a column appears
in, the more contention due to exclusive locks during updates).

The scenarios above show that state-of-the-art techniquesfor
physical design tuning are not flexible enough. Specifically, a sin-
gle storage constraint does not model many important situations in
current DBMS installations. What we need is a generalized version
of the physical design problem statement that accepts complex con-
straints in the solution space, and exhibit the following properties:

Expressiveness.It should be easy to specify constraints with suf-
ficient expressive power.

Effectiveness.Constraints should be able to effectively restrict the
search process (e.g., a naı̈ve approach that tests a-posteriori
whether constraints are satisfied would not be viable).



Specialization. In case there is a single storage constraint, the re-
sulting configurations should be close to those obtained by
current physical design tools in terms of quality.

In this paper we introduce a framework that addresses these chal-
lenges. For simplicity, we restrict our techniques to handle primary
and secondary indexes as the physical structures that definethe
search space (extensions to materialized views and other physical
structures are part of future work). Specifically, the main contri-
butions of the paper are as follows. First, in Section 2 we present
a simple language to specify constraints that is powerful enough
to handle many desired scenarios including our motivating exam-
ples. Second, we review a previously studied transformation-based
search framework (Section 3) and adapt it to incorporate constraints
into the search space (Sections 4 and 5). Finally, in Section6 we
report an extensive experimental evaluation of our techniques.

2. CONSTRAINT LANGUAGE
Our design approach has been to provide a simple constraint lan-

guage that covers a significant fraction of interesting scenarios (in-
cluding all the motivating examples in the previous section). We
also provide a lower-level interface to specify more elaborate con-
straints as well as more efficient ways to evaluate constraints. In the
rest of this section we introduce our language by using examples.

2.1 Data Types, Functions, Constants
Our constraint language understands simple types such as num-

bers and strings, and also domain-specific ones. Specifically, we
natively handle data types that are relevant for physical design,
such as database tables, columns, indexes and queries. We also
support sets of elements, which are unordered homogeneous col-
lections (e.g., workloads are sets of queries, and configurations are
sets of indexes). These sets can be accessed using either positional
or associative array notation (e.g.,W[2] returns the second query in
W, andW["QLong"] returns the query inW whose id isQLong).

Our language supports a rich set of functions over these data
types. As an example, we can obtain the columns of tableT using
cols(T), the expected size of indexI usingsize(I), and the ex-
pected cost of queryq under configurationC usingcost(q, C). In
the rest of this section, we introduce additional functionsas needed.

Finally, there are useful constants that can be freely referenced
in the language. We useW to denote the input workload, and the fol-
lowing constants to specify certain commonly used configurations:

- C: denotes the desired configuration, on top of which con-
straints are typically specified.

- COrig: This is the configuration that is currently deployed in
the database system.

- CBase: The base configuration only contains those indexes
originating from integrity constraints. Therefore, it is the
worst possible configuration forSELECT queries in the work-
load, and the one with lowestUPDATE overhead.

- CSelectBest: This configuration is the best possible one for
SELECT queries in the workload. Specifically,CSelectBest
contains the indexes resulting from access-path requests gen-
erated while optimizing the input workload (see [4] for more
details). Intuitively, indexes in this configuration are the most
specific ones that can be used in some execution plan for
a query in the workload. For instance, the two indexes in
CSelectBest for query:

SELECT a,b,c FROM R
WHERE a<10
ORDER BY b

would be(a,b,c), from the access-path request that attempts
to seek columna for all tuples that satisfya<10 followed by
a sort byb, and(b,a,c), from the access-path-request that
scansR in b-order and filtersa<10 on the fly.

2.2 Language Features
We next illustrate the different features of our constraintlan-

guage by using examples.

Simple Constraints.We can specify the storage constraint used
in virtually all physical design tuning tools as follows:

ASSERT size(C) ≤ 200M

wheresize(C) returns the combined size of the final configuration.
Constraints start with the keywordASSERT and follow the pattern
function-comparison-constant. As another example, the constraint
below ensures that the cost of the second query in the workload
under the final configuration is not worse than twice its cost under
the currently deployed configuration:

ASSERT cost(W[2], C) ≤ 2 * cost(W[2], COrig)

Note that, for a fixed queryQ, the valuecost(Q, COrig) is constant,
so theASSERT clause above is valid.

Generators.Generators allow us to apply a template constraint
over each element in a given collection. For instance, the following
constraint generalizes the previous one by ensuring that the cost of
each queryunder the final configuration is not worse than twice its
cost under the currently deployed configuration:

FOR Q IN W
ASSERT cost(Q, C) ≤ 2 * cost(Q, COrig)

In turn, the following constraint ensures that every index in the final
configuration has at most four columns:

FOR I in C
ASSERT numCols(I) ≤ 4

Filters. Filters allow us to choose a subset of a generator. For
instance, if we only want to enforce the above constraint forin-
dexes that have leading columncol3, we can extend the original
constraint as follows:

FOR I in C
WHERE I LIKE "col3,*"
ASSERT numCols(I) ≤ 4

whereLIKE performs “pattern matching” on the index columns.

Aggregation.Generators allow us to duplicate a constraint mul-
tiple times by replacing a free variable in theASSERT clause with
a range of values given by the generator. In many situations,we
want a constraint acting on anaggregatevalue calculated over the
elements in a generator. As a simple example, we can rewrite the
original storage constraint used in physical design tools using gen-
erators and aggregates as follows:

FOR I in C
ASSERT sum(size(I)) ≤ 200M

As a more complex example, the following constraint ensuresthat
the combined size of all indexes defined over tableT is not larger
than four times the size of the table itself:

FOR I in C
WHERE table(I) = TABLES["T"]
ASSERT sum(size(I)) ≤ 4 * size(TABLES["T"])

whereTABLES is the collection of all the tables in the database, and
functionsize on a table returns the size of its primary index.



Nested Constraints.Constraints can have free variables that
are bound by outer generators, effectively resulting in nested con-
straints. The net effect of the outer generator is to duplicate the in-
ner constraint by binding each generated value to the free variable
in the inner constraint. As an example, the following constraint
generalizes the previous one to iterate over all tables:

FOR T in TABLES
FOR I in C
WHERE table(I) = T
ASSERT sum(size(I)) ≤ 4 * size(T)

Soft Constraints.The implicit meaning of the language defined
so far is that a configuration has to satisfy all constraints to be
valid. Among those valid configurations, we keep the one with
the minimum expected cost for the input workload. There are sit-
uations, however, in which we would prefer a relaxed notion of
constraint. For instance, consider a constraint that enforces that
every non-UPDATE query results in at least 10% improvement over
the currently deployed configuration. In general, there might be no
configuration that satisfies this constraint, specially in conjunction
with a storage constraint. In these situations, a better alternative is
to specify asoft constraint, which states that the final configuration
should get as close as possible to a 10% improvement (a configu-
ration with, say, 8% improvement would still be considered valid).
We specify suchsoft constraints by adding aSOFT keyword in the
ASSERT clause. The resulting constraint thus becomes:

FOR Q in W
WHERE type(Q) = SELECT
SOFT ASSERT cost(Q, C) ≤ cost(Q, COrig) / 1.1

Note that the traditional optimization function (i.e., minimizing the
cost of the input workload), can be then specified as follows:

FOR Q IN W
SOFT ASSERT sum(cost(Q, C)) = 0

If no soft constraints are present in a problem specification, we im-
plicitly add the above soft constraint and therefore optimize for the
expected cost of the input workload. In general, however, soft con-
straints allow significantly more flexibility while specifying a phys-
ical design problem. For instance, suppose that we are interested in
the smallest configuration for which the cost of the workloadis at
most 20% worse than that for the currently deployed configuration
(as shown in [5], this problem statement is useful to eliminate re-
dundant indexes without significantly degrading the expected cost
of the workload). We can specify this scenario using soft con-
straints as follows:

FOR Q IN W
ASSERT sum(cost(Q, C)) ≤ 1.2 * sum(cost(Q, COrig))

SOFT ASSERT size(C) = 0

2.3 Generic Constraint Language
In general, a constraint is defined by the grammar below, where

bold tokens are non-terminals (and self-explanatory), non-bold to-
kens are literals, tokens between brackets are optional and“|” rep-
resents choice:

constraint:=[SOFT] ASSERT [agg] function (≤|=|≥) constant
| FOR var IN generator
[WHERE predicate]
constraint

We next show that although our language is simple, it is able to
specify all the motivating examples in the previous section. In Sec-
tion 5 we discuss how we can handle constraints that lie outside the
expressive power of the language by using a specialized interface.

2.4 Motivating Examples Revisited
We now specify constraints for the motivating examples in Sec-

tion 1. The following constraint ensures that no column appears in
more than three indexes to decrease the chance of contention:

FOR T in TABLES
FOR col in cols(T)

FOR I in C WHERE I LIKE "*,col,*"
ASSERT count(I) ≤ 3

The next constraint enforces that the clustered index on table T

must have eithera, b, or c as its leading column:

FOR I in C
WHERE clustered(I)
ASSERT I LIKE "(a,*)|(b,*)|(c,*)"

Note that theASSERT clause is a predicate and does not follow
the pattern“function-comparison-constant”introduced earlier. We
thus implicitly replace a predicateρ with δ(ρ)=1, whereδ is the
characteristic function (δ(true)=1 andδ(false)=0).

The constraint below enforces that noSELECT query degrades by
more than 10% compared to the currently deployed configuration:

FOR Q in W
WHERE type(Q) = SELECT
ASSERT cost(Q, C) ≤ 1.1 * cost(Q, COrig)

The last constraint enforces that no index can be replaced byits
narrow version without at least doubling the cost of some query:

FOR I in C
FOR Q in W
ASSERT cost(Q, C - I + narrow(I))/cost(Q, C) ≤ 2

wherenarrow(I) results in a single-column index withI’s leading
column (e.g.,narrow((a,b,c)) = (a)).

3. SEARCH FRAMEWORK
In this section we review the general architecture of our search

framework, which we adapted from [4, 5]. For presentation pur-
poses, we address in this section the traditional physical design
problem (i.e., we assume that there is a single storage constraint
and we optimize for expected cost). Then, in Section 4 we explain
how to incorporate multiple constraints into the search framework.

3.1 General Architecture
Figure 1 shows a high-level architectural overview of our search

framework. An important component of the framework is the global
cache of explored configurations (shown at the bottom of Figure 1).
This global cache is structured in three tiers, which respectively
contain (i) the best configuration found so far, (ii) the set of non-
dominated configurations in case there are multiple soft constraints,
and (iii) the remaining suboptimal configurations.

We begin the search from an initial configuration (step 1 in the
figure), which becomes the current configuration. After that, we
progressively explore the search space until a stopping condition is
satisfied (typically a time bound). Each exploration iteration con-
sists of the following steps. First, we evaluate the currentconfigu-
ration and store it in the global cache (step 2 in the figure). Then,
we perform a pruning check on the current configuration. If wede-
cide to prune the current configuration, we keep retrieving from the
global cache previously explored configurations until we obtain one
that is not pruned (this step effectively implements a backtracking
mechanism). At this point, we use transformation rules to gener-
ate new candidate configurations from the current one (step 3in
the figure). We rank candidate configurations based on their ex-
pected promise and pick the best candidate configuration that is not
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Figure 1: Architecture of the Search Framework.

already in the global cache, which becomes the current configura-
tion. This cycle repeats until the stopping criterium is met, and we
output the best configuration(s) found so far (step 4 in the figure).

Looking at the search strategy at a high level, we start with some
configuration (either the initial one or a previously explored one)
and keep transforming it into more and more promising candidates
until a pruning condition is satisfied. At this point we pick anew
configuration and begin a new iteration. In the rest of this section
we discuss additional details on the search framework.

3.1.1 Configuration Evaluation
Each step in the search process requires evaluating a previously

unexplored configuration, which in itself consists of two tasks.
First, we need to determine whether the storage constraint is sat-

isfied, and if not, how close is the current configuration to a viable
state. With a storage constraint ofB, we simply estimate the size
of the current configuration,size(C). If size(C) ≤ B, the storage
constraint is satisfied. Otherwise, the valuesize(C)−B quantifies
how close we are to a valid configuration.

Second, we need to evaluate the optimizing function, that is, the
expected cost of the workload under the current configuration. In
order to do so, we need to optimize the queries in the workloadin
a what-if mode [9], which returns the expected cost of each query
without materializing the configuration. This step is usually the
bottleneck of the whole process, since optimizer calls are typically
expensive. There are several ways to reduce this overhead. One ap-
proach is to use information about previous optimizations to infer,
in some cases, the cost of a query under a given configuration with-
out issuing an optimization call (examples of such techniques use
atomic configurations [8] or a top-down relaxation approach[4]).
A recent approach introduced in [7] results in accurate approxima-
tions of the cost of a query at very low overhead (typically orders
of magnitude faster than a regular optimization call).

3.1.2 Transformations
After evaluating the current configuration, we apply transforma-

tion rules to generate a set of new, unexplored configurations in the
search space. For that purpose, we use themerge-reducefamily of
transformations introduced in [5]. Specifically, the transformations
that are considered for the current configuration are as follows:

Merging rules: Merging has been proposed as a way to eliminate
redundancy in a configuration without losing significant effi-
ciency during query processing [5, 10]. The (ordered) merg-
ing of two indexesI1 andI2 defined over the same table is
the best index that can answer all requests that eitherI1 and
I2 do, and can efficiently seek in all cases thatI1 can. Specif-
ically, the merging ofI1 andI2 is a new index that contains

all the columns ofI1 followed by those inI2 that are not
in I1 (if one of the original indexes is a clustered index, the
merged index will also be clustered). For example, merg-
ing (a, b, c) and(a, d, c) returns(a, b, c, d). Index merging
is an asymmetric operation (i.e., in general merge(I1,I2) 6=
merge(I2,I1)). LetC be a configuration and(I1, I2) a pair of
indexes defined over the same table such that{I1, I2} ⊆ C.
Then, the merging rule induced byI1 andI2 (in that order)
on C, denotedmerge(C, I1, I2) results in a new configura-
tion C′ = C − {I1, I2} ∪ {merge(I1, I2)}.

Reduction rules: Reduction rules replace an index with another
that shares a prefix of the original index columns. For in-
stance, the reductions of index(a, b, c, d) are(a), (a, b), and
(a, b, c). A reduction rule denoted asreduce(C, I, k), where
k is the number of columns to keep inI , replacesI in C with
its reduced versionreduce(I, k).

Deletion rules: Deletion rules, denotedremove(C, I), remove in-
dexI from configurationC. If the removed index is a clus-
tered index, it is replaced by the corresponding table heap.

The number of transformations for a given configurationC is
O(n · (n + m)) wheren is the number of indexes inC andm
is the maximum number of columns in an index inC. Of course,
in real situations this number is likely to be much smaller, because
indexes are spread throughout several tables (and therefore merging
is valid for only a subset of the possible cases), and also because
not all reductions need to be considered. To clarify the latter point,
consider indexI on (a, b, c, d, e) and the single-query workload:

SELECT a,b,c,d,e
FROM R
WHERE a=10

In this situation, the only useful reduction for the index isI ′ on(a),
since any other prefix ofI is going to be both larger thanI ′ and less
efficient for answering the query.

3.1.3 Candidate Configuration Ranking
After generating all valid transformations for the currentconfig-

uration, we need to rank them in decreasing order of “promise”, so
that more promising configurations are chosen and explored first.
For that purpose, we estimate both the expected cost of the work-
load and the expected size (i.e., the storage constraint) ofeach
resulting configuration. While estimating sizes can be doneeffi-
ciently, estimating workload costs is much more challenging. The
reason is that often there are several candidate configurations to
rank (typically one per transformation), and the cost of optimiz-
ing queries (even using the optimizations described earlier) is too
costly. To address this issue, we use the local transformation ap-
proach of [4, 6] and obtain upper bounds on the cost of queriesfor
each candidate transformation. Consider a queryq and a configu-
ration C′ obtained fromC. The idea is to analyze the execution
plan ofq underC and replace each sub-plan that uses an index in
C − C′ with an equivalent plan that uses indexes inC′ only.

As an example, consider the execution planP at the left of Fig-
ure 2 under configurationC. Index I on (a, b, c) is used to seek
tuples that satisfya < 10 and also to retrieve additional columns
b andc, which would eventually be needed at higher levels in the
execution plan. Suppose that we are evaluating a configuration C′

obtained by reducingI to I ′ on (a, b). We can then replace the
small portion of the execution plan that usesI with a small com-
pensating plan that usesI ′ (specifically, the replacement sub-plan
usesI ′ and additional rid-lookups to obtain the remaining required
c column). The resulting planP ′ is therefore valid and at most as
efficient as the best plan found by the optimizer underC′.
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Figure 2: Local transformations to obtain upper-bound costs.

Once we obtain estimates for both the optimizing function and
the deviation from the storage constraint for each of the alternative
configurations, we need to put together these values to rank the dif-
ferent candidate transformations. In the context of a single storage
constraint, reference [4] uses the value∆cost/∆size to rank trans-
formations, where∆cost is the difference in cost between the pre-
and post-transformation configuration, and∆size is the respective
difference in required storage (reference [4] adapts this metric from
the greedy solution for the fractional knapsack problem).

3.1.4 Configuration Pruning
As explained in Figure 1, we keep transforming the current con-

figuration until it is pruned, at which point we backtrack to aprevi-
ous configuration and start another iteration. Consider a single stor-
age constraintB, and assume aSELECT-only workload. Suppose
that the current configurationC exceedsB, but after transforming
C into C′ we observe thatC′ is within the storage boundB. In
this case, no matter how we further transformC′, we would never
obtain a valid configuration that is more efficient thanC′. The
reason is that all the transformations (i.e., merges, reductions and
deletions) result in configurations that are less efficient for the in-
put workload. Therefore,C′ dominates the remaining unexplored
configurations, and we can stop the current iteration by pruning
C′. When there are multiple rich constraints, the pruning condition
becomes more complex, and is discussed in Section 4.

3.1.5 Choosing the Initial Configuration
Although any configuration can be chosen to be the starting point

in our search, the initial configuration effectively restricts the search
space. Specifically, our search framework is able to eventually con-
sider any configuration that is a subset of the closure of the initial
configuration under the set of transformations. Formally, let C be
a configuration and letCi (i ≥ 0) be defined as follows:

- C0 = C

- Ci+1 = Ci ∪ {merge(I1, I2) for eachI1, I2 ∈ Ci}

∪ {reduce(I, K) for eachI ∈ Ci, K < |I |}

We defineclosure(C) = Ck, wherek is the smallest integer that
satisfiesCk = Ck+1. The closure of a configurationC is then
the set of all indexes that are either inC or can be derived fromC
through a series of merging and reduction operations. For that rea-
son, if no subset of theclosureof the initial configuration satisfies
all the constraints, the problem is unfeasible. Unless a specific ini-
tial configuration is given, the default starting point isCSelectBest,
which contains the most specific indexes that can be used anywhere
by the query optimizer for the input workload, and thus should be
appropriate to handle all but non-standard constraints1.

1An example of such constraint would be the requirement that some index
not useful for any workload query be present in the final configuration.

Constraint Objective
F (C) ≤ K max(0, F (C) − K)
F (C) = K |F (C) − K|
F (C) ≥ K max(0, K − F (C))

Table 1: Converting constraints into c-objectives.

4. CONSTRAINED PHYSICAL TUNING
In the previous sections we introduced a constraint language and

reviewed a general transformation-based strategy to traverse the
space of valid configurations. In this section we explain howto in-
tegrate constraints into the search framework. In short, weconvert
constraints into objective functions and avoid directly comparing
multiple objectives together by using Pareto optimality concepts.

4.1 From Constraints to C-Objectives
Constrained physical design is a multi-constraint multi-objective

optimization problem (recall that soft-constraints naturally lead to
more than a single optimization function). A common approach to
handle such problems is to transform constraints into new objec-
tive functions (we call thesec-objectivesfor short) and then solve
a multi-objective optimization problem. Note that thefunction-
comparison-constantpattern forASSERT clauses enables us to as-
sign a non-negative real value to each constraint with respect to
a given configuration. It is in fact straightforward to create a c-
objectivethat returns zero if the constraint is satisfied and positive
values when it is not (and moreover, the higher the value the more
distant the configuration to one that satisfies the constraint). Ta-
ble 1 shows this mapping, whereF (C) andK denote, respectively,
the function (of the current configuration) and the constantin the
ASSERT clause. For constraints that iterate over multipleASSERT

clauses, we sum the values of the individualASSERT clauses2.
By proceeding as before, each configuration is now associated

with ns + nh values forns soft constraints andnh hard (i.e., non-
soft) constraints. Minimizing thenh c-objectivesdown to zero re-
sults in a valid configuration that satisfies all hard constraints, while
minimizing thens c-objectivesresults in the most attractive config-
uration (which might not satisfy some hard constraint). Usually, the
nh c-objectivesare in opposition to thens c-objectivesand also to
each other, and therefore our search problem is not straightforward.

A common approach to address multi-objective problems is to
combine allc-objectivestogether into a new single objective func-
tion. In this way, the resulting optimization function might become:

singleObjective(C) =
n

∑

i=1

wi · αi(C)

whereαi(C) denotes thei-th c-objectiveandwi are user-defined
weights. While this approach is universally applicable, itsuffers
from a series of problems. The choice of weights is typicallya
subtle matter, and the quality of the solution obtained (or even the
likelihood of finding a solution whatsoever) is often sensitive to
the values chosen. A deeper problem arises from the fact thatusu-
ally c-objectivesare non-commensurate, and therefore trade-offs
between them range from arbitrary to meaningless.

For this reason, we do not reduce the original problem to a single-
optimization alternative. Instead, we rely on the concept of Pareto
optimality, which in general does not search for a single solution
but instead the set of solutions with the “best possible trade-offs”.
We next explain this notion and how we use it to reason with con-
figurations within our search strategy.

2Instead, we could consider eachASSERT within a generator individually.
Our experiments show that this alternative results in additional complexities
without improving the effectiveness of the search strategy.



4.2 Pareto Optimality for Configurations
The concept of Pareto optimality can be explained by using the

notion of dominance. We say that vectorx = (x1, . . . , xn) dom-
inates vectory = (y1, . . . , yn) if the value of each dimension of
x is at least as good as that ofy, and strictly better for at least one
dimension. Therefore, assuming that smaller values are better:

x dominatesy ⇐⇒ ∀i : xi ≤ yi ∧ ∃j : xj < yj

An elementx ∈ X is said to bePareto Optimalin x if it is not dom-
inated by any other vectory ∈ X. (ThePareto Optimalelements
of a set are also said to form theskyline[3] of the set).

In our scenario, each configuration is associated with a vector of
sizens + nh for ns soft constraints andnh hard constraints, and
thus we can talk about dominance of configurations. If there is a
single soft constraint and all hard constraints are satisfiable, there
must be a uniquePareto optimalsolution. In fact, for a configu-
ration to be valid, each of thenh c-objectivesmust be zero, and
thus the valid configuration with the smallestc-objectivevalue for
the soft-constraint dominates every other configuration. (Even for
a single soft constraint, however, there can be multiplePareto opti-
mal configurations among the explored ones during the search.)

4.3 Configuration Ranking
Using the notion of dominance, we can obtain a total ranking

of configurations in two steps. First, we assign to each configu-
ration a “rank” equal to the number of solutions which dominate
it3. As an example, Figure 3(b) shows the rankings of all the two-
dimensional vectors shown in Figure 3(a). This ranking induces a
partial order, where each vector with rankingi belongs to an equiv-
alence classLi, and every element inLi goes before every element
in Lj for i < j (see Figure 3(c) for a graphical illustration of such
equivalence classes). The final ranking is then obtained by proba-
bilistically choosing a total order consistent with the partial order
given by equivalence classesLi (see Figure 3(d) for an example)4.
The pseudo-code below implements this idea.

RankConfigurations (C=c1, c2, . . . , cn:configurations)
Output R: a ranked list of configurations
01 for each ci ∈ C
02 rank(ci) = |{cj ∈ C : cj dominates ci}|
03 R = []
04 for each i ∈ {1..n}
05 Li = {c ∈ C : rank(c) = i}
06 LPi = random permutation of Li

06 append LPi to R
07 return R

Our search strategy relies on the ability to rank configurations at
two specific points. First, in Step 3 in Figure 1 we need to pickthe
transformation that would result in the most promising configura-
tion. Second, after pruning the current configuration in Step 2 in
Figure 1, we need to pick, among the partially explored configu-
rations, the most promising one to backtrack to. Whenever were-
quire to rank a set of configurations, we proceed as follows. First,
we evaluate (or approximate) the values of all thec-objectivesas
explained in Sections 3.1.1 and 3.1.3. Then, using the pseudo-code
above we obtain a partial order and probabilistically choose a rank-
ing consistent with this partial order.

4.4 Search Space Pruning
In Section 3 we described a mechanism to prune a given con-

figuration, which relied on identifying when future transformations
3A variation of this approach is used in [14, 17] in the contextof constrained
evolutionary algorithms.
4We shuffle element ranks in each equivalence class to decrease the chance
of getting caught in local minima due to some arbitrary ordering scheme.

Constraint template Instance D(C, F )
F ≤ K, F 6= K F (C) > K ↑ or ↔
F ≥ K, F 6= K F (C) < K ↓ or ↔

Table 2: Sufficient pruning conditions for hard constraints.

were not able to improve the current configuration. We now extend
this technique to work with multiple, rich constraints. We introduce
a functionD that takes a configuration and the left-hand-side func-
tion F of anASSERT clause, and returns one of four possible values
(which intuitively represent the “direction” on whichF moves after
applying transformations to the input configuration). Thus,

D :: configuration× function→ {↑, ↓,↔, ?}

Recall that, for any given configuration instanceC0, we evaluate
the valueF (C0) by binding the free variableC in F (i.e., the desired
configuration on top of which constraints are defined) withC0. The
semantics ofD(C, F ) are as follows:

D(C, F ) =











↑ if F (C′) ≥ F (C) for all C′ ∈ closure(C)
↓ if F (C′) ≤ F (C) for all C′ ∈ closure(C)
↔ if F (C′) = F (C) for all C′ ∈ closure(C)
? otherwise

As an example, consider the following constraint:

ASSERT size(C) - size(COrig) ≤ 200M

In this situation,D(C, F ) =↓ for any C because any sequence
of transformations starting withC will result in a smaller config-
uration, and therefore the value of functionF always decreases.
Although the definition ofD is precise, in practice it might be un-
feasible to evaluateD for arbitrary values ofF . We adopt a best-
effort policy, and try to inferD values. If we cannot prove that
D(C, F ) ∈ {↑, ↓,↔} we return the unknown value “?”. Opera-
tionally, we evaluateD in an inductive manner. We first assignD
values for the base numeric function calls, such as, for instance:

D(C, size(C)) =↓
D(C, size(Tables[”R”])) =↔
D(C, cost(Q, C)) = if type(Q) is SELECT then↑ else?

and propagate results through operators using standard rules, such
as for instance (i)↑ + ↑=↑, (ii) ↑+↓=?, and (iii)max(↑,↔)=↑. (We
handle constraints with generators and aggregation similarly, but
omit details for simplicity.)

Using the definition ofD, Table 2 specifies sufficient conditions
to prune the current configuration for a given hard constraint. Con-
sider the constraint below:

ASSERT cost(W[1], C) / cost(W, COrig) ≤ 0.1

In this case,D(C, F ) =↑ if W[1] is a SELECT query. The reason
is thatD(C, cost(W[1], C))=↑, D(C, cost(W, COrig))=↔, and fi-
nally ↑ / ↔=↑. If, during the search procedure, the current config-
urationC satisfiesF (C) > 0.1 (i.e.,C violates the constraint), we
can guarantee that no element in closure(C) obtained by transform-
ing C would ever be feasible, because values ofF (C′) are always
larger thanF (C) for anyC′ transformed fromC. Therefore, prun-
ing C is safe (see Figure 4 for an illustration of this reasoning).

Soft Constraints.In addition to the conditions stated in Table 2,
pruning a configurationC based on a soft constraint additionally
requires thatC satisfy all the hard constraints (since any value of
thec-objectiveassociated with the soft constraint is acceptable, we
might otherwise miss overall valid solutions).

4.4.1 Additional Pruning Guidance
Although the above technique safely prunes configurations guar-

anteed to be invalid, there are certain situations in which we require
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Figure 3: Inducing a partial order from the dominance relati onship.
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Constraint:F ≤ K

F (C) > K

D(C, F ) =↑
Result: Prune

Figure 4: Sample pruning condition.

additional support. Suppose that we want to minimize the cost of a
workload with updates using the constraint below:

SOFT ASSERT cost(W, C) ≤ 0

Since the workload has updates,D(C, cost(W, C))=?. However,
suppose that the initial configuration does not contain any index
on tableR, and all updates queries refer exclusively to tableR.
In this situation weknow that the cost of the workload would al-
ways increase as we apply transformations, but our system cannot
infer it. To address such scenarios, we augment the constraint lan-
guage with annotations that override the default pruning behavior.
Specifically, by adding the keywordMONOTONIC UP (respectively,
MONOTONIC DOWN) before theASSERT clause, we specify that the re-
spective constraint functionF satisfiesD(C, F ) =↑ (respectively
D(C, F ) =↓). Of course, our framework has no way to verify
whether the annotation is correct (otherwise it would have used this
knowledge upfront!) and implicitly trusts the annotation as being
correct. The example above can then be augmented as follows:

SOFT MONOTONIC UP ASSERT cost(W,C) ≤ 0

4.4.2 Heuristic Pruning
To allow for additional flexibility in defining the search strategy,

in this section we present annotations that heuristically restrict the
search space. In contrast to the previous section, these annotations
result in a trade-off between search space coverage and the effi-
ciency of the search procedure, and are interesting when at least
one constraint satisfiesD(C, F ) =?. Recall that our search strat-
egy keeps applying transformation rules to the current configura-
tion with the objective to obtain the best configuration thatsatisfies
all constraints. Sincec-objectivesare usually conflicting, a config-
uration that improves some objectives might move away from oth-
ers. However, if the transformed configuration does not improve
any objective, there might not be an incentive to continue explor-
ing beyond that point (of course, this is a heuristic and as such it
might prune valid solutions). Instead, we might consider the con-
figuration an end-point and backtrack to a previously seen config-
uration. This pruning condition can be succinctly expressed using
the notion of dominance. Suppose that the current configuration, C
was obtained by using some transformation over configuration Cp.
Then, wheneverCp dominatesC we pruneC and backtrack. We

can enable this heuristic pruning by annotating the global constraint
specification with the valueUSE DOMINANCE PRUNING.

To provide even additional flexibility into the search strategy, we
enable two annotations that modify how pruning is handled for in-
dividual constraints that satisfyD(C, F ) =?. Specifically, we can
specify the following behaviors:

HILL CLIMB: If a constraint is marked asHILL CLIMB, any transfor-
mation fromCp to C that results in a value of the constraint
in C that is worse than that ofCp gets pruned, even though
Cp does not dominateC.

KEEP VALID: Values of a constraint marked asKEEP VALID can go
up or down fromCp to C. However, ifCp satisfies the con-
straint andC does not, we pruneC.

The annotations discussed in this section effectively change the
search strategy and require a non-trivial understanding ofthe search
space, its relationship with constraints, and even the internal work-
ings of the framework. Providing guidance to assist users oreven
propose the usage of such annotations is a very important problem
that lies outside the scope of this work.

4.4.3 Transformation Guidance
Suppose that we want an existing indexgoodI to appear in the

final configuration. We can achieve this by using a constraint:

FOR I in C
WHERE name(I) = "goodI"
ASSERT count(I) = 1

This is such a common situation that we provide an alternative and
more direct approach to achieve the same goal:

AVOID delete(I) WHERE name(I)="goodI"

would mechanically ignore any transformation that matchesthe
specification above. In general the syntax of such specification is:

AVOID transformations [WHERE predicate]

As a less trivial example, to avoid merging large indexes we can
use the following fragment:

AVOID merge(I1,I2)
WHERE size(I1)≥100M OR size(I2)≥100M

As with other heuristic annotations, the usage of these alternatives
should be guided by special knowledge about the search spaceand
its impact on the input constraints.

5. IMPLEMENTATION DETAILS
In this section we provide some implementation details of a pro-

totype built using the constraint optimization framework described
earlier. We also explain some extensions that enable additional flex-
ibility and performance. Figure 5 illustrates the different required
steps to go from a problem specification to aSQL script that deploys
the resulting physical design. Initially, we provide a specification
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Figure 5: From Problem Specification to Results.

for the constrained optimization problem. A full specification con-
tains a header, which includes database and workload information
(e.g., the location to find the DBMS and the workload), and the
main body, which includes the initial configuration and all the con-
straints specified in the language of Section 2. A special-purpose
compiler consumes the specification and produces twoC++ files.
One file provides the necessary plumbing mechanism to initialize
the search framework and perform the optimization and the other
specifies each of the constraints by usingC++ classes (more de-
tails are discussed in Section 5.1). Note that it is possibleto di-
rectly specify constraints inC++, which provides more flexibility
at the expense of simplicity. After all constraints are translated
into C++ classes, the next step compiles this intermediate code and
links the result with the search framework library. This step pro-
duces a program that connects to the database system and attempts
to solve the constrained optimization problem. Upon completion,
the executable returns aSQL script, which can be used to deploy the
best configuration, and additional reports that provide details on the
configuration to be deployed and the overall search process5.

5.1 Compilation into C++ classes
An important extensibility mechanism results from usingC++ as

an intermediate language to specify constraints. In fact, we can use
C++ to directly specify constraints that are too complex to be han-
dled inside the constraint language, or constraints that require spe-
cific extensions for performance. We now describe the compilation
step from the original specification language intoC++. Each con-
straint is translated into a class derived from the baseConstraint

class, which is defined as follows:

class Constraint {
protected:

typedef enum {TNONE, TUP, TDOWN, ...} TPruning;
virtual TPruning pruning(Conf* conf) {return TNONE;}
virtual double score(Conf* conf) = 0;
virtual double estScore(Conf* fromConf,

Conf* toConf,
Transformation* t);

...
}

5Reports additionally describe suboptimal configurations,present tradeoffs
in terms of constraint violation, and allow DBAs to analyze in relative depth
the benefits of a particular configuration.

The baseConstraint class exposes three virtual methods. The
first one,pruning, returns the valueD(C, F ). By default it always
returnsTNONE (i.e., corresponds toD(C, F ) =?) and its definition
implements the inference mechanism and the heuristic annotations
discussed in Section 4.4. The second one,score, is called every
time we need to obtain the value of thec-objectiveassociated with
the constraint. It takes a configuration as an input and returns a
real number. The result value fromscore should be zero when the
constraint is satisfied, and larger than zero otherwise (itsmagnitude
should reflect the degree of constraint violation). Clearly, the sim-
plicity of the constraint language makes the compilation step into
derived classes fully mechanical. As an example, consider the fol-
lowing constraint, which enforces that no index is larger than half
the size of the underlying table:

FOR I in C
ASSERT size(I) ≤ 0.5 * size(table(I))

In this case, the generated function would look as follows:

class C1: public Constraint {
...

double score(Conf* conf) {
double result = 0;
for (int i=0; i<conf->numIndexes(); i++) {

double f = size( conf[i] );
double c = 0.5 * size( table(conf[i]) );
double partialResult = MAX(0.0, f - c);
result += partialResult;

}
return result;

}
...
};

The third function in the baseConstraint class,estScore, is
called every time we need to estimate thec-objectivefor a given
transformation. It takes as inputs the original configuration, the
transformation, and the resulting configuration, and returns a real
number. There is a default implementation ofestScore that mimics
almost exactly the implementation ofscore working on the trans-
formed configuration. A subtle point is that the methods thatobtain
the cost of the workload under a given configuration are automati-
cally replaced inestScore with those that exploit local transforma-
tions from the original configuration, and therefore the default im-
plementation is very efficient. We can, however, replace thedefault
implementationestScore with a customized version that further
improves efficiency. Consider again the storage constraint:

FOR I in C
ASSERT sum( size(I) ) ≤ 200M

and suppose that the transformation mergesI1 andI2 into I3. Us-
ing the following equality:

∑

I∈toConf

size(I) = size(I3)−size(I1)−size(I2)+
∑

I∈fromConf

size(I)

we can compute the size of the transformed configuration in con-
stant time, provided that we have the size of the original configura-
tion available. Note that all transformations follow the same gen-
eral pattern, i.e.,Cafter = Cbefore∪ I+ − I−, whereI+ andI− are
set of indexes. Therefore, in many situations we can incrementally
evaluateASSERT functions by reusing previously computed values.

6. EXPERIMENTAL EVALUATION
We now report an experimental evaluation of the search frame-

work described in this paper.



6.1 Experimental Setting
Our experiments were conducted using a client prototype that

connects to an augmented version of Microsoft SQL Server. The
server code-base was extended to support the techniques in [4, 7] to
provide what-if functionality and the ability to exploit local trans-
formations. For our experiments we used aTPC-H database and
workloads generated with theQGen utility6.

6.2 Single Storage Constraint
We first consider the traditional scenario with a single storage

constraint, and compare our framework against previous work in
the literature. We used a 1GBTPC-H data and tuned a 22-query
workload with both our framework and the relaxation approach
of [4] augmented with the techniques of [7] so that both approaches
rely on the same underlying query optimization strategy. Weused
three minutes for each tuning session, and simulated the approach
in [4] with the following constraint specification:

Initial = CSelectBest
SOFT ASSERT cost(W,C) = 0
ASSERT size(C) ≤ B

whereB is the storage bound (note that the last line is the only
strictly required one, since the other two are always included by
default). Figure 6 shows the resulting execution cost of thework-
load for different values ofB. We can see that the results are vir-
tually indistinguishable for storage bounds that cover thewhole
spectrum of alternatives. Figure 7 compares the efficiency of both
approaches. We can see that our framework can evaluate roughly
half of the number of configurations in the approach of [4, 7],and
the trends are similar in both approaches. The additional time per
configuration in our approach comes from additional layers of in-
frastructure required to generalize the approach in [4] to work with
arbitrary constraints (in other words, many components arehard-
wired in [4]). Considering that our framework is substantially more
general and there are many opportunities for performance improve-
ment, we believe that our approach is very competitive.
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Figure 6: Quality of recommendations for storage constraint.

Figure 8 shows the expected cost of the best explored configura-
tion over time, for different storage constraints (we do notinclude
in the figure the start-up cost required to optimize each query for
the first time). We can see that usually the search procedure finds
an initial solution relatively quickly, and then it refines it over time.
It is important to note that after only 60 seconds, the searchstrategy
converged to very competitive solutions in all cases.

Figure 9 illustrates the six initial iterations/backtracking when
tuning the same workload with a storage constraint of 3GB. In
many cases, the most promising configuration is not always the
best one, and therefore the stochastic backtracking mechanism is
crucial in exploring the search space.
6Available athttp://www.tpc.org.
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Figure 7: Efficiency of different alternatives.
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Figure 8: Quality of recommendations over time.
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Figure 9: Backtracking to an earlier configuration.

Finally, Figure 10 shows the number of candidate transforma-
tions against the number of indexes of the originating configuration
for the first 300 configurations evaluated in Figure 9. We can see
that the number of candidate transformations is indeed quadratic
in the number of indexes (due to themergetransformations), but
the quadratic coefficient is significantly less than one –0.2in Fig-
ure 10– due to restrictions in the set of feasible transformations
(e.g., we cannot merge indexes on different tables).
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Figure 10: Number of candidate transformations.

6.3 Multiple, Richer Constraints
We now explore more complex scenarios that require additional

constraints. Consider the tuning session with a 3GB storagebound
that we described in the previous section. The dark bars in Fig-
ure 11 show the number of indexes per table in the resulting config-
uration. We can see that many tables have 6 or 7 indexes. Suppose
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Figure 11: Number of indexes per table in two configurations.

that we want to limit the number of indexes in any given table by
four. We can then search for a configuration that additionally satis-
fies the following constraint, denotedIPT for indexes-per-table:

FOR T TABLES
FOR I in indexes(T)
ASSERT count(I) ≤ 4

Since the specification contains a single soft-constraint,there is
a single optimal configuration. Figure 12 shows this solution (at the
bottom-left of the figure) along with all non-dominated configura-
tions that are cheaper but do not satisfy all constraints. This visual-
ization provides additional insights to DBAs, who might be willing
to trade-off efficiency for some slight violation of a constraint.
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Figure 12: Non-dominated set of configurations forIPT ≤ 4.

The chosen configuration at the top-left of Figure 12 satisfies the
new IPT constraint, as shown with the lighter bars in Figure 11.
Note that the resulting configuration is not a strict subset of the
original one, in which we simply removed indexes until the new
constraint was satisfied. This is clearly observed in Figure13,
which depicts the cost of each query under both configurations. For
each query in the figure there is a narrow line, which bounds the
cost of the query underCBase from above, and underCSelectBest
from below (forSELECT queries, any configuration results in an ex-
pected cost between these two values). Each query is also associ-
ated in the figure with a wider bar, whose extremes mark the cost
of the query under the configuration obtained with just a storage
constraint, and the configuration obtained by additionallybound-
ing the number of indexes per table to four (i.e.,IPT ≤ 4). If the
configuration obtained withIPT ≤ 4 is the cheaper one, the bar is
painted black; otherwise it is painted white. Since the figure con-
tains both black and white bars, we conclude that there are queries
that are more efficiently executed under either the originalconfigu-
ration andIPT ≤ 4. Of course, thetotal cost of the workload under
the original configuration (676 units) is smaller than that under the
IPT ≤ 4 configuration (775 units), because the space of solutions
for IPT ≤ 4 is more restrictive than that of original specification.

As another example, suppose that we want to find a good con-
figuration under 2GB that additionally satisfies that no query un-
der the final configuration execute slower than 70% the time ofthe
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Figure 13: Expected query costs forIPT ≤ 4.

query under the currently deployed configuration (we denotethat
constraintS70below). The specification looks as follows:

FOR I IN C ASSERT sum(size(I)) ≤ 2G
FOR Q IN W ASSERT cost(Q, C) ≤ 0.7 * cost(Q, COrig)
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Figure 14: Non-dominated configurations forS70.

Running the tool for five minutes produced no feasible solution
to this specification. Instead, the search procedure returned the non-
dominated unfeasible configurations in Figure 14 (each circle in the
figure corresponds to one configuration, and the area of the circle
represents the degree of violation of theS70constraint). We might
infer that the constraints might be too strict. Specifically, the tight
storage constraint is preventing simultaneously satisfying theS70
constraint. To relax the problem, we replaced the hard storage con-
straint by the following one:

FOR I IN C SOFT ASSERT sum(size(I)) ≤ 2G

Essentially we transform the problem into a multi-objective prob-
lem (reducing execution timeand storage) with a singleS70con-
straint. As there are multiplesoft-constraints, the search strategy is
not guaranteed to return a single solution. Instead, it returns the set
of non-dominated configurations shown in Figure 15. These con-
figurations present the best trade-offs between size and execution
cost that satisfy theS70constraint (it also shows why the original
specification resulted in no solutions – the smallest configuration
requires 2.4GB).

Suppose that we pick thissmallestconfiguration in Figure 15
(after all, our initial hard constraint limited the storageto 2GB).
Figure 16 contrasts the execution cost of the queries in the work-
load under both this configuration and the one obtained when only
optimizing for storage (i.e., when dropping theS70constraint), but
giving the 2.4GB storage bound that theS70configuration required.
Each query in the figure is associated with a light bar that represents
70% of the cost of the query under the base configuration (i.e., the
baseline under theS70constraint). Additionally, each query in the
figure is associated in the figure with a narrower black/whitebar,
whose extremes mark the cost of the query under the configuration
obtained with just a storage constraint, and the configuration ob-
tained by additionally enforcingS70. If the configuration obtained
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Figure 15: Non-dominated configurations for relaxedS70.

with S70is the cheaper one, the bar is painted black; otherwise it
is painted white. We can clearly see that the configuration satis-
fying S70is always under the baseline (as expected). The figure
also helps understand the trade-offs in cost for queries when the
S70constraint is additionally enforced. As with the previous ex-
ample, theS70constraint is worse than the storage-only constraint
overall (901 vs 1058 units) because the search space is more re-
stricted. However, some queries in the “no-S70” configuration fail
to enforce the 70% bound that is required.
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Figure 16: Expected query costs forS70.

6.4 Scalability
We now analyze the scalability of our search strategy with re-

spect to the number and complexity of the input constraints.We
first generated specifications with varying numbers of simple stor-
age constraints (strictly speaking, the most restrictive of these im-
plies the rest, but our framework cannot make this inferenceand
considers each one individually). Figure 17 shows the impact of
the number of input constraints on the search efficiency. Increasing
the number of constraints by 50x only reduces the number of evalu-
ated configurations per second from eight to around two. Even100
simultaneous constraints result in more than one (specifically, 1.39)
configurations being analyzed per second7. It is important to note
that the approach in [4] without the optimizations in [7] analyzes
1.09 configurations per second for a single storage constraint.

We next explore the scalability of our approach for varying com-
plexity of the constraints. For that purpose, we created a “dummy”
constraint, parameterized by(α, β) that is always satisfied but takes
α milliseconds to evaluate each configuration (Section 3.1.1) andβ
milliseconds to estimate the promise of each candidate transforma-
tion (Section 3.1.3). Figure 18 shows the number of configurations
evaluated per second when varying the values of parametersα and
β for the dummy constraint. Clearly, the larger the values ofα
andβ the fewer configurations are evaluated per unit of time. We
can see from the picture that it is feasible to have evaluation func-
tions (i.e.,α) values in the second range, and our strategy would
7Note that a fraction of the overhead arises from using suboptimal code
to maintain non-dominated configurations, so the results ina more careful
implementation of our prototype would be even better.
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Figure 17: Scalability with respect to number of constraints.

still evaluate one configuration per second, which is similar to the
performance in [4]. Higher values ofβ, however, degrade the ef-
ficiency of our strategy much more rapidly, because the estimation
function is called multiple times per configuration to rank all the
candidate transformations. Therefore, it is crucial to useefficient
procedures to estimate configuration promise. We note that all the
constraints discussed in this paper result in sub-millisecondα and
β values. Specifically, consider the soft constraint that minimizes
execution cost. This is a expensive constraint, since it requires per-
forming local transformations to estimate candidate promises and
either optimizing queries or using the techniques in [7] to eval-
uate configurations. Our experiments showed average valuesof
α=9.2 ms andβ=0.008 ms for this constraint../0/1 .20/1 .2/0/1 .2//0/1 .2///0/1.2/0 /321 .2/0 /341 .2/0 21 .2/0 41 .2/0 2/1/56
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Figure 18: Scalability with respect to constraint complexity.

7. RELATED WORK
With the aim of decreasing the total cost of ownership of database

installations, physical design tuning has become an important and
active area of research. Several pieces of work (e.g., [2, 8,10,
15, 18, 20]) present solutions that consider different physical struc-
tures, and some of these ideas found their way into commercial
products (e.g., [1, 2, 8, 9, 10, 12, 18, 19, 20]). In contrast with this
work, most of previous research has focused on a single storage
constraint.

References [4, 5, 6, 7] introduce some of the building blocksof
our search strategy. Specifically, [4] introduces the concept of a
transformational engine and the notion of aCSelectBest configu-
ration. Reference [6] exploits the techniques in [4] in the context
of local optimizations, by transforming a final execution plan into
another that uses different physical structures. Reference [5] con-
siders a unified approach of primitive operations over indexes that
can form the basis of physical design tools. Finally, reference [7]
introducesConfiguration-Parametric Query Optimization, which is
a light-weight mechanism to re-optimize queries for different phys-
ical designs at very low overhead. By issuing a single optimization
call per query, [7] is able to generate a compact representation of
the optimization space that can then produce very efficiently exe-
cution plans for the input query under arbitrary configurations.



The field of constrained optimization has been extensively stud-
ied in the past, and the approaches vary depending of the nature
of both constraints and the optimization function. When variables
are continuous and the optimization function and constraints can
be expressed as linear functions, the simplex algorithm hasproved
to be an effective tool. When the unknown variables are required
to be integer, the problem is calledinteger programming, which
is NP-Hard and can be solved by branch and bound and cutting-
plane methods. Non linear but twice differentiable constraints can
be solved using the non-linear optimization techniques in [11]. A
sub-field more closely related to ours is combinatorial optimiza-
tion, which is concerned with problems where the set of feasible
solutions is discrete. Combinatorial optimization algorithms solve
instances of problems that are believed to be hard in general(ref-
erence [16] proves that the general physical design problemis NP-
Hard). For that reason, usually heuristic search methods (or meta-
heuristicalgorithms) have been studied. Examples of such tech-
niques are simulated annealing, tabu search, or evolutionary algo-
rithms (e.g., see [14, 17]).

8. CONCLUSIONS AND FUTURE WORK
In this paper we introduced the constrained physical designprob-

lem and proposed a language that enables the specification ofrich
constraints easily. As DBMS applications become increasingly
complex and varied, we believe that constrained physical design
tuning is an important addition to the repertoire of tools ofad-
vanced DBAs. As discussed in this paper, many new scenarios can
be successfully and efficiently handled by our framework. Wealso
explained how a transformation-based search strategy can be used
to solve the constrained physical design problem. There areseveral
open challenges where further work is needed. We mention some
of these below:

Analysis of Constraints. The ability to reason about relationships
among constraints can result in large benefits in search ef-
ficiency. For instance, if we recognize that some constraint
is implied by others, or that certain constraints are positively
(or negatively) correlated, we can exploit this information to
guide the search strategy more effectively.

Monitoring of constraints. In the context of an evolving system,
it would be very interesting to devise monitoring mecha-
nisms that can alert whenever a constraint is no longer sat-
isfied due to changes in either the workload or the data dis-
tribution, and therefore a tuning session would be required,
similar to the work in [6].

Incremental constrained tuning. Suppose that the representative
workload or data distribution changes only slightly. In this
case, it would be beneficial to incrementally refine the cur-
rently deployed configuration rather than re-tune the system
from scratch obtaining, perhaps, a configuration that is very
different from the current one. The rationale is that DBAs
might deeply understand the currently deployed configura-
tion and they will have a high bar before accepting significant
changes to the physical design.

Higher level user interaction. Although the constraint language
is simple and powerful, it might not always be the preferred
alterative to interact with a database system. Novel mecha-
nisms to simplify specification of constraints, through pow-
erful user interfaces or macros (which would then be com-
piled down into our constraint language) might be beneficial
in easing the path to adoption.
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