
White-Box Testing
of Behavioral Web Service Contracts with Pex

Tool Demo

Nikolai Tillmann
nikolait@microsoft.com

Jonathan de Halleux
jhalleux@microsoft.com

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

ABSTRACT
A web service exposes a public API that can be accessed by poten-
tially hostile clients over the internet. Pex, a white-box test gener-
ation tool for .NET, can automatically create test inputs that cover
corner cases of a web service implemented in .NET, simulating a
malicous attacker.

Categories and Subject Descriptors
D2.5 [Software Engineering]: Testing and Debugging—Testing
tools

General Terms
Testing, Security

Keywords
testing, unit testing, symbolic execution, web service

1. OVERVIEW
Manual testing of web-services is costly. Tools can automate

the required work. Recently, white-box test input generation tools
have become popular [3, 2, 4, 9]. In this tool demo, we show how
Pex [10, 8], a dynamic symbolic execution tool for .NET, can be
used to generate test cases for a web service.

We apply Pex in the context of the Windows Communication
Foundation (WCF) [7] library, a programming model for building
service-oriented applications, including web services.

2. WEB SERVICE EXAMPLE
A WCF service contract is defined by a .NET interface, whose

methods represent the operations that service provides. The con-
tract can be customized using .NET attributes. Each operation may
have parameters.

The following is an example of a WCF service contract. This
contract describes the signature of the service. Some attributes,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TAV-WEB – Workshop on Testing, Analysis and Verification of Web Soft-
ware, July 21, 2008
Copyright 2008 ACM 978-1-60558-052-4/08/07 ...$5.00.

e.g. FaultContract may indicate exceptional behavior. (We omit
visibility modifiers throughout this article.)

[ServiceContract]
interface IProperNamesService
{

[OperationContract]
[FaultContract(typeof(ProperNameRecord))]
void AddProperName(

String properName,
int ownerID);

[OperationContract]
bool IsProperName(String properName);
[OperationContract]
int GetTotalByOwner(Int32 ownerID);
...

}

A WCF service implementation realizes a service contract. The
service can then be hosted by a web server.

Web services defined by WCF service contracts have several
properties which make them well-suited for automated test-input
generation tools:

• By default, all operations performed on a service are serial-
ized by its host. Thus, the test-input generation tool only has
to analyze a single-threaded program.

• All parameter types of an operation must be serializable. The
consequence is that most operation parameter types are either
primitive, or collections of primitive types.

• WCF service contracts hide the complexity of the underlying
network protocols. The WCF host takes care of marshalling
the data. As a result, a white-box test generation tool like
Pex can be directly applied on the service implementation,
without having to deal with the involved network protocols.

In this tool demo, we will show how Pex can be used to test the
above IProperNamesService WCF web service.

3. PARAMETERIZED UNIT TESTING
Pex generates test inputs for parameterized unit tests (PUTs) [11,

13]. In the context of a web service, a PUT is simply a method that
takes parameters, invokes a sequence of web service operations,
and asserts properties of the expected behavior of the operations.

For example, the following PUT describes how the two opera-
tions AddProperName and IsProperName of a web service should
relate:

[PexMethod]
void AddAndCheckProperName(

47

string properName, int ownerID)
{

ProperNamesService service =
new ProperNamesService();

service.AddProperName(properName, ownerID);
Assert.IsTrue(service.IsProperName(properName));

}

Such a PUT is in fact a behavioral contract that the web service
must fulfill for all possible values of properName and ownerID.

While Pex has a wizard that can automatically generate basic
PUTs for all operations of a WCF web service, meaningful asser-
tions and non-trivial behavioral contracts must be written by a hu-
man being.

4. DYNAMIC SYMBOLIC EXECUTION
Pex explores the reachable statements of a PUT using dynamic

symbolic execution [3, 2]. This technique consists in executing the
program, starting with very simple inputs, while performing a sym-
bolic execution in parallel to collect symbolic constraints over in-
puts, obtained from conditional branches along the execution. Then
Pex uses a constraint solver to compute variations of the previous
inputs in order to steer future program executions along different
execution paths. In this way, all execution paths will be exercised
eventually.

Dynamic symbolic execution extends conventional static sym-
bolic execution [5] with additional information that is collected at
runtime, which makes the analysis more precise [3].

5. UNIT TEST GENERATION
Pex is a test input generator, but it persists the generated data as

executable code in the form of traditional (parameterless) unit tests.
For example, for an implementation of the above service con-

tract, Pex may generate test cases such as the following.

[TestMethod]
void AddAndCheckProperName1() {

this.AddAndCheckProperName("a", 2);
}

[TestMethod]
[PexRaisedException(

typeof(FaultException<ProperNameRecord>))]
void AddAndCheckProperName2() {

this.AddAndCheckProperName("a", -214748348);
}

Each generated test case calls a PUT with certain arguments.
When Pex generated these tests, the first one passed, and the sec-
ond one raised an exception. Pex’ white box analysis found the
corner case caused by the argument -214748348. At this point,
the user can either change the PUT to reflect the actual implemen-
tation behavior, or the user can correct the implementation to reflect
the specified behavior.

6. LIMITATIONS
Pex can only explore deterministic, single-threaded service im-

plementations, whose compiled code can be instrumented.

7. RELATED WORK
Behavioral contracts for web services have been proposed be-

fore, see e.g. [1]. In this tool demo, we wrote behavioral contracts
in the same language as the web service implementation, which
avoids the potential semantical gap between a specification and an
implementation language.

Automatic test generation for web services was previously done
by random black-box test generation, see e.g. [6].

The distributed nature of web services makes white-box testing
difficult to apply. Pex enables exhaustive testing of each service in
isolation by automatic generation of mock object behavior for other
web services [12].

The idea of symbolic execution was pioneered by [5]. Dynamic
symbolic execution was first suggested in DART [3]. Several re-
lated approaches followed [2, 4, 9]. They differ between each
other in their target platforms (C programs, Java programs, machine
code), and in the extent of their symbolic reasoning capabilities.

8. REFERENCES
[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.

Schmidt, A. Sheth, and K. Verma. Web service semantics -
wsdl-s version 1.0.
http://www.w3.org/Submission/WSDL-S/,
November 2005.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: automatically generating inputs of death. In
CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 322–335,
New York, NY, USA, 2006. ACM Press.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. SIGPLAN Notices,
40(6):213–223, 2005.

[4] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. In Proceedings of NDSS’08 (Network
and Distributed Systems Security), pages 151–166, 2008.

[5] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, 1976.

[6] E. Martin, S. Basu, and T. Xie. Automated testing and
response analysis of web services. In Proc. the IEEE
International Conference on Web Services (ICWS 2007),
Application Services and Industry Track, pages 647–654,
July 2007.

[7] Microsoft Corporation. Windows Communication
Foundation. http://msdn.microsoft.com/en-us/
netframework/aa663324.aspx. [accessed
05-June-2008].

[8] Pex development team. Pex.
http://research.microsoft.com/Pex, 2007.

[9] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit
testing and explicit path model-checking tools. In CAV,
pages 419–423, 2006.

[10] N. Tillmann and J. de Halleux. Pex – white box test
generation for .NET. In Proc. of Tests and Proofs (TAP’08),
volume 4966 of LNCS, pages 134–153, Prato, Italy, April
2008. Springer.

[11] N. Tillmann and W. Schulte. Parameterized unit tests. In
Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering,, pages 253–262. ACM, 2005.

[12] N. Tillmann and W. Schulte. Mock-object generation with
behavior. In ASE ’06: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software
Engineering, pages 365–368, Washington, DC, USA, 2006.
IEEE Computer Society.

[13] N. Tillmann and W. Schulte. Unit tests reloaded:
Parameterized unit testing with symbolic execution. IEEE
Software, 23(4):38–47, 2006.

48

