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Abstract

In the presence of self-interested parties, mechanism
designers typically aim to achieve their goals (or social-
choice functions) in an equilibrium. In this paper,
we study the cost of such equilibrium requirements in
terms of communication, a problem that was recently
raised by Fadel and Segal [14]. While a certain
amount of information x needs to be communicated just
for computing the outcome of a certain social-choice
function, an additional amount of communication may
be required for computing the equilibrium-supporting
prices (even if such prices are known to exist).

Our main result shows that the total communication
needed for this task can be greater than x by a factor
linear in the number of players n, i.e., n · x. This is
the first known lower bound for this problem. In fact,
we show that this result holds even in single-parameter
domains (under the common assumption that losing
players pay zero). On the positive side, we show that
certain classic economic objectives, namely, single-item
auctions and public-good mechanisms, only entail a
small overhead. Finally, we explore the communication
overhead in welfare-maximization domains, and initiate
the study of the overhead of computing payments that
lie in the core of coalitional games.

1 Introduction

Consider the goal of implementing algorithms in
environments with self-interested players. We seek
algorithms that admit the following two preliminary
properties: First, tractability in the information-
theoretic sense, i.e., a low amount of informa-
tion needs to be communicated in order to realize
the outcome of the algorithm. Second, incentive
compatibility, i.e., the existence of some payment
scheme that supports the implementation of the
algorithm in equilibrium. In this work, we show
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that tractability and the existence of incentive-
compatible payments are insufficient to establish
that implementing the algorithm in equilibrium
will indeed be simple. This is due to the fact
a non-trivial amount of additional communication
between the different parties may be required in
order to compute the equilibrium-supporting prices.

The question of how much overhead one incurs
from the computation of incentive-compatible pay-
ments was recently introduced by Fadel and Segal
[14], who termed this overhead the communication
cost of selfishness. In their paper, they studied the
communication overhead both for Bayesian equilib-
ria and for ex-post equilibria. In this work we focus
only on ex-post equilibria - i.e., situations in which
players would not want to change their behavior
in retrospect, even if they were told (after the fact)
everything about the other players. Our main result
shows that the amount of communication that is
required to compute equilibrium-supporting prices
may increase the communication complexity of the
algorithm by a factor that is linear in the number
of players.

Theorem: [Informal] There are social-choice
functions such that their outcome can be computed
by communicating x bits, but determining both
the outcome and equilibrium-supporting prices may
require about n · x bits of communication, where n
is the number of players.

We prove that this result holds even for very sim-
ple single-parameter domains, where in each pos-
sible outcome every player either “wins”or “loses”.
The theorem is proven under the common normal-
ization assumption, which in the single-parameter
domain we consider simply means that “losers” pay
zero. While this assumption does not seem very
restrictive at first glance, we currently do not know
how to relax it. Whether a similar result can
be proven without the normalization assumption
is left as an open question. Our lower bound is
the first evidence that the communication overhead
due to the demand for incentive compatibility may
be significant. This linear factor in the number
of players may become substantial in large-scale
electronic-commerce systems.



Informally, in order to prove our main result we
needed to construct a social-choice function f for
which the following requirements hold:

1. f can be implemented in ex-post equilibrium
(in single-parameter domains this means that
f should be monotone, see Section 2).

2. f can be computed with low communication
complexity.

3. Computing the equilibrium-supporting prices
requires high communication complexity.

The difficulty in finding such a social-welfare
function is demonstrated by contrasting such desir-
able functions with two classic economic problems,
public goods and single-item auctions. For these
problems, we show that the requirements are not
met. This enables us to prove upper bounds
for these two problems, by showing that that the
additional information required to compute the
equilibrium-supporting prices is low (up to a small
constant multiplicative factor). This claim is proven
in an inherently different way for each one of these
problems.

Public goods: Consider a social planner who
wants to know whether a bridge should be built or
not. A set of players have privately known utilities
from using the bridge v1, ..., vn and the bridge
should be built only if

∑n
i=1 vi ≥ C where C is

its construction cost. We prove that computing the
outcome plus the payments merely requires about
three times the communication requirements of
computing the outcome alone. Hence, the overhead
in this case is small.

Single-item auction: In a single-item auction,
players have private values v1, ..., vn for the item on
sale, and our goal is to sell the item to the player
with the highest value. We prove that determining
the right allocation and the appropriate payments
requires at most three times the communication
needed to determine the allocation alone. For the
special case of n = 2, we prove an even better
upper bound. The 2-player problem turns out to
be equivalent to the following interesting commu-
nication complexity problem: There are 2 players,
each holding a number represented by k bits. What
is the communication complexity of computing the
minimum of these two numbers (such that both
players will know the result)? While a proving an
upper bound of k+O(

√
k) is fairly easy, we improve

this bound to k + O(log k).

As these two problems illustrate, coming up
with a social-welfare function for which all of our
requirements hold is a non-trivial task. We stress
that achieving a better lower bound than the n
lower bound shown in this paper may be hard. This
is due to the fact that it is likely to involve the
construction of multi-parameter non-welfare maxi-
mizing social-choice functions, a class of functions
that is little understood.

Welfare Maximizing Social-Choice
Functions. Finally, we turn our attention to
welfare-maximizing environments. This is the
prominent example of an objective function that
can always be implemented in equilibrium (using
the family of VCG mechanisms). We discuss
two well studied pricing schemes: (1) prices that
support an ex-post Nash equilibrium. (2) price
levels in the core.

Fadel and Segal[14] showed that maximizing so-
cial welfare in ex-post equilibrium incurs a low
communication overhead. However, their simple
solution, that belongs to the VCG family (each
player is paid the sum of the values of the others),
is impractical in many settings since it involves
paying the players. Under the assumption of No-
Positive-Transfers, we argue that the solution to
this problem is not straightforward anymore. We
show a simple linear upper bound on the infor-
mational overhead of computing the equilibrium-
supporting prices, for a special case of this problem,
and pose the following two open questions: (1) can a
similar linear upper bound can be proven for general
valuations? (2) does a matching lower-bound exist,
even for our special case?

Finally, we initiate the study of the complexity of
computing payment schemes that lie in the core of
the respective coalitional game. A payment scheme
is in the core if there is no subset of players that can
deviate (with the “seller”) and reach an outcome
that betters their payoffs. We present a simple
argument showing that computing core outcomes
incurs, in general, a low informational overhead.
Unfortunately, this positive result necessitates the
computation of points in the core that are un-
reasonable in practice. A more reasonable core
outcome is the one defined by Ausubel and Milgrom
[1]. We show that the communication overhead of
computing such core points is unbounded.

1.1 Related Work

Fadel and Segal [14] were the first to study the
communication overhead of incentive compatibility.
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They proved exponential upper bounds, both for
Bayesian-Nash equilibria and an ex-post equilibria.
They presented a surprising matching exponential
lower bound for the Bayesian case, but their only
lower bound for the ex-post equilibrium case was 1
extra bit. The main open question posed in their
paper remains unsolved: can the exponential upper
bound for the communication overhead in ex-post
implementation be matched by a lower bound?1 [14]
also proves a linear (in the number of players) upper
bound on the communication overhead of incentive
compatibility in single-parameter domains. Both
[14] and our paper belong to a more general line
of research studying communication and informa-
tion aspects of various economic environments, for
example in auctions [11, 5, 6] and in more general
economic domains [4, 13]. A recent survey on this
line of research in the context of combinatorial
auctions is found in [12]. The basic model for
communication complexity was presented by Yao
[15]. A survey on communication complexity can
be found in [9].

The question of the computational burden of
computing payments in social-welfare maximizing
environments has received some attention in the
past: One of the open questions raised in the
seminal paper by Nisan and Ronen [10] is whether
VCG payments could be discovered with a smaller
computational cost than that of the in näıve so-
lution that solves n + 1 separate problems (once
for determining the outcome, and n additional
solutions where players are excluded in turns).
Indeed, [8] proved that when auctioning shortest
paths, VCG prices can be determined by solving
a single shortest-path problem (see also the recent
work by [7]). [3] showed, via linear-programming
duality, that calculating VCG prices can be done
in certain domains by solving 2 optimization prob-
lems. The above results consider computational
complexity, while in this paper we measure the
additional communication complexity of computing
the appropriate payments.

1.2 Organization of the Paper

The rest of the paper is organized as follows: We
present our model and notations in Section 2. We

1This question appears to be hard to solve. The overhead
in known to be at most linear (in the number of players)
for welfare-maximization objectives and in single-parameter
domains [14]. In other (multi-dimensional, arbitrary ob-
jectives) domains, the space of implementable social-choice
function is not well understood. Therefore, constructing such
a negative example is hard.

prove a constant upper bound on the informational
overhead of incentive-compatibility for the classic
model of single-item auctions in Section 3. In
Section 4 we prove our results for public goods
problems. We present a construction that proves
a linear lower bound in Section 5. Finally, in
Section 6 we explore welfare-maximizing social-
choice functions.

2 Background and The Model

2.1 Mechanism Design

The mechanism design setting considered in this
paper is as follows: There n players, and a set of
outcomes O. Each player i has a valuation function,
or type, vi : O → R≥0, that belongs to a set of
valuation functions Vi. A social-choice function
(SCF) is a function that assigns every n-tuple of
players’ valuation functions v = (v1, ..., vn) ∈ V1 ×
. . . × Vn (“type-profile”) an outcome o ∈ O. Each
vi is private and only known to i.

A payment function is a function p : V1 × . . . ×
Vn → R

n.

Definition 1. A social-choice function f is said
to be implementable (in the ex-post Nash sense) if
there is a payment function p such that the following
holds:

∀v = (v1, ..., vn) ∈ V1 × . . .×Vn, ∀i ∈ [n], ∀v′i ∈ Vi,

vi(f(v)) − p(v) ≥ vi(f(v′i, v−i)) − p(v′i, v−i)

(where (v′i, v−i) is the type profile in which i has
type v′i and every player j 6= i has type vj)

Informally, f is implementable if it is possible to
come up with a payment scheme that incentivizes
players to report truthful information. For example,
the social-choice function in single-item auctions
(where the item should be sold to the player with
the highest value) is f(v1, ..., vn) ∈ arg maxi∈[n]vi

(breaking ties lexicographically), where vi is the
value of agent i for the item. The payment scheme
in a second-price (Vickrey) auction is known to im-
plement this social-choice function in equilibrium.

In this paper we provide several examples of
single-parameter domains, where the type on a
player can be represented by a single scalar. We
consider specific single-parameter environments
where every outcome defines whether each player
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“wins” or “loses” (f(v) ⊆ [n] is the set of winners).
The player gains a value of vi ≥ 0 if she wins, and
she gains 0 when losing. We focus on normalized
mechanisms in which losers pays 0. The following
is a well known characterization of implementable
single-parameter social-choice functions.

Definition 2. A single parameter SCF f is
monotone if for every player i ∈ [n], all v−i ∈ V−i

and all v′i > vi s.t. v′i, vi ∈ Vi it holds that if
i ∈ f(vi, v−i) then i ∈ f(v′i, v−i).

The following observation is well known.

Observation 2.1. A single parameter SCF f is
implementable if and only if it is monotonic. In the
case of normalized mechanisms a winner has to pay
the minimal bid she has to declare in order to win.

2.2 Communication Overhead of Incen-
tive Compatibility

We consider the communication problem in which
each vi is private and only known to i, and the
players need to exchange information in order to
compute the outcome of f . We work in the
broadcast (“number on the forehead”) model in
which each sent bit is received by all players (and
not addressed only to one player). Let CC(f)
denote the communication complexity of computing
the outcome of f (see [9] for an introduction to
communication complexity). Informally, the com-
munication complexity of a function is the minimal
number of bits that is required to compute the
function (for any input).

How much additional communication burden is
imposed by the necessity to compute payments that
guarantee truthfulness? Let CC(f, p) denote the
communication complexity of computing the out-
come of f and payments that guarantee incentive-
compatibility (that is, computing the outcome of
both f and some payment function that leads to
the implementability of f .).

In order to formally define the informational
overhead of incentive-compatibility we need to be
concrete about the information each player holds:
Let fk be a social-choice function with n players
such that each player’s valuation is represented
using k bits of information, for some fixed k ∈
N. Formally, fk : {0, 1}k×n → O, i.e., for every
(v1, v2, ..., vn) with each vi ∈ {0, 1}k, fk picks an
outcome fk(v1, v2, ..., vn).

Definition 3. The informational overhead of
incentive-compatibility (IOIC) of fk is defined to

be IOIC(fk) = CC(fk,p)
CC(fk) .

Our main result shows that for some social-choice
functions fk a significant informational overhead
may be incurred, and we prove that this holds
even in single parameter domains. Formally, in
such domains the valuation of a player is given by
a number in [0, 1] represented by k bits (k is the
precision in the representation of vi). That is, for
every player i there is some ti ∈ {0, ..., 2k −1}, such
that vi = ti · 2−k.

2.3 Communication Complexity: Back-
ground and Basic Observations

This section presents some basic background of
some of the tools we use from the theory of commu-
nication complexity. For a comprehensive survey on
the subject we refer the reader to [9].

Observation 2.2. If the range of function f is of
size m (|Range(f)| = m), then any communication
protocol for f requires at least log(m) bits.

Observation 2.3. For any implementable function
fk with n players each holding k bits it holds
that CC(fk) ≤ k(n − 1) + ⌈log(|Range(fk)|)⌉ and
CC(fk, p) ≤ kn (Range(fk) is the set of different
outcomes in the range of fk).

Proof. This is shown by considering two trivial
protocols: To compute fk, each of the players but
the last one transmits all his information, and the
last player computes the outcome and transmits the
outcome. As there are |Range(fk)| possible rele-
vant outcomes, ⌈log(|Range(fk)|)⌉ bits are clearly
sufficient to encode all these outcomes. To compute
CC(fk, p) simply let all players transmit all of their
private information.

Our proofs use a common communication-
complexity technique called fooling sets. Intuitively,
a fooling set is a large set of possible inputs such
that any communication protocol must be able to
distinguish between every two of them. Fooling
sets arguments are based on following well known
property of communication protocols. If a protocol
executes exactly the same on two inputs, it must
do so on any possible “combinations” of these
inputs, thus must output the same outcome. For
completeness, we give a formal definition of the
fooling-set technique in Appendix A.1. More
details can be found in the textbook [9].
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3 Overhead in Single-Item Auctions

A well known economic setting is the single-item
auction, where a seller aims to sell an item to the
bidder who values it the most.

Definition 4 (Single-Item-Auction).
Input: valuations v1, ..., vn ∈ N

Output: a bidder with the highest value, i.e.,
arg maxi∈[n]vi (breaking ties lexicographically).

If bidder i wins his value for the outcome is vi,
otherwise his value for the outcome is 0. From
Single-Item-Auction we can derive the function
Single-Item-Auctionk for the case that vi =
ti · 2−k for some integer ti ∈ {0, ..., 2k − 1} and is
represented by a k-bit string. It is well known that
if the winner pays the second highest price then the
auction is truthful.

Next we show that for Single-Item-Auction

the informational overhead of of incentive-
compatibility is at most a small constant (3).

Proposition 3.1. The informational overhead of
incentive-compatibility for the social-choice function
Single-Item-Auction is at most 3.

Proof. To prove the claim we show that for every k,
it holds for the social-choice function fk =Single-

Item-Auctionk that CC(fk, p) ≤ 2 ·CC(fk)+k ≤
3 · CC(fk). The last weak inequality is a result of
the following claim:

Claim 1. For every n ≥ 2, CC(Single-Item-

Auctionk)≥ k

Proof. We shall prove that CC(fk) is large by con-
structing a “fooling set” of size 2k. By Theorem A.1
this shows that CC(fk) ≥ k. Consider all pairs
(v1, v2) such that v1 = v2. No two such pairs can
be mapped by a protocol that computes f to the
same monochromatic rectangle (exactly the same
execution of the protocol which leads to the same
outcome). Let (v1, v2) and (v′1, v

′
2) be two such

type-profiles that are mapped to the same rectangle.
Observe, that for all these type-profiles bidder 1
wins and bidder 2 loses. W.l.o.g., let v1 < v′1.
Then, (v1, v

′
2) should also be mapped to the same

rectangle. However, this leads to a contradiction
because in this case player 2 should win. Hence,
there are at least 2k rectangles, and so any protocol
that computes f must transmit at least k bits.

To show that CC(fk, p) ≤ 2CC(fk) + k we
present a simple protocol for CC(fk, p): run the
protocol for fk to find the player with highest value.

Remove the highest bidder and run the protocol for
fk again. Now the players know who is the player
with the second highest value. Finally, this player
transmits his value, which requires k more bits.

3.1 An improved analysis for n = 2

Auctioning a single item is probably the most
fundamental problem in mechanism design. In this
section we present a better analysis of the commu-
nication burden in second-price auctions with two
players. We present an iterative mechanism where
players broadcast their information in turns, and
an alphabet-changing trick that allows us to save
in information (a similar protocol without changing
alphabets proves a 1 + O(

√
k) bound).

Theorem 3.2. For the social-choice function
Single-Item-Auctionk and n = 2, the
information overhead of incentive compatibility is

at most 1 + O( log(k)
k

).

The proof appears in Appendix B. We note
that the proof of this result implies that the infor-
mational overhead of of incentive-compatibility for
Single-Item-Auction with n = 2 is extremely
small and tend to 1 very fast with k.

4 Overhead in the Public-Good

Model

We now consider another classic economic setting -
the construction of a public project (”public good”).
Each player in a set of players has a “benefit” of vi

from using the public good, and the social planner
aims to build it only if the sum of benefits exceeds
the construction cost C. The function is defined
given the parameter C ≥ 0.

Definition 5 (C-Public-Good).
Input: valuations v1, ..., vn ∈ N.
Output: ”Build” if

∑n

i=1 vi ≥ C, ”Do not build”
Otherwise.

It is easy to observe that the payments that
implement this SCF in a normalized mechanism are
pi = C − ∑

j 6=i vj in the case of ”Build” (and all
players win). Again, we consider the derived SCF
C-Public-Goodk for the case that vi = ti ·2−k for
some integer ti ∈ {0, ..., 2k − 1} and is represented
by a k-bit string.

In the next section we consider the problem for
the case of 2 agents. We show that the informa-
tional overhead of incentive-compatibility for that

5



case is almost 2. Yet, in the following section we
show that when moving to an n-player setting the
overhead remains constant and does not grow with
n.

4.1 A Lower Bound for 2-Player Set-
tings

We start by considering the case of only 2 play-
ers and show that there is lower bound that is
almost 2 on the informational overhead of incentive-
compatibility.

Proposition 4.1. Assume n = 2. For any
ǫ > 0, for any large enough k there exists a
cost C such that the informational overhead of
incentive-compatibility for the social-choice function
C-Public-Goodk is at least 2 − ǫ.

Proof. To prove the claim we consider the SCF
fk =C-Public-Goodk for the case that the cost
C of the public good is 1 − 2−k.

By Observation 2.3 it holds that CC(fk) ≤
k + 1 (as there are only 2 possible outcomes
|Range(fk)| = 2). In order to prove the propo-
sition we show below that CC(fk, p) ≥ 2k − 1.
This implies that the informational overhead of
incentive-compatibility of C-Public-Goodk is at
least 2k−1

k+1 = 2 − 3
k+1 . Clearly for any ǫ > 0

there is a k such that this is larger than 2 − ǫ. To
conclude the proof of the theorem we next show
that CC(fk, p) ≥ 2k − 1.

Claim 2. When n = 2 and C = 1 − 2−k,
CC(C-Public-Goodk, p) ≥ 2k − 1.

Proof. Figure 1 describes the function fk. We
shall call any pair of possible values (v1, v2) a type-
profile. Observe, that there are 22k possible type-
profiles, out of which 22k−1 + 2k−1 > 22k−1 are
type profiles in which v1 + v2 ≥ C. We shall prove
that for every two type-profiles v = (v1, v2) and
v′ = (v′1, v

′
2), such that v1 + v2 > C, v′1 + v′2 > c,

and v 6= v′, it must hold that any protocol that
computes incentive-compatible payments outputs
p(v1, v2) = (p1(v1, v2), p2(v1, v2)) 6= p(v′1, v

′
2) =

(p′1(v1, v2), p
′
2(v1, v2)). This would imply that fk

has at least 22k−1 different outcomes in its range,
which means that at least log(22k−1) = 2k − 1 bits
must be transmitted (by Observation 2.2).

Let v = (v1, v2) and v′ = (v′1, v
′
2) be two type-

profiles such that v1 + v2 > C, v′1 + v′2 > C, and
v 6= v′ (different type-profiles in which both players
win). W.l.o.g. assume that v1 6= v2. Then, we
shall show that p2(v1, v2) 6= p2(v

′
1, v

′
2). As shown in

Figure 1, the payment of a winning player must be
the minimal value it needed in order to win. That is,
the payment of player 1 is the horizontal projection
on the diagonal line, and the payment of player 2 is
the vertical projection on the diagonal line. Hence,
if the value of player 1 is v1 then the payment of
player 2, p2(v1, v2), is exactly C − v1 (that is, the
minimal value of player 2 for which they both win).
Similarly, p2(v

′
1, v

′
2) = C − v′1. Since v1 6= v′1 we

conclude that p2(v1, v2) 6= p2(v
′
1, v

′
2).

The theorem follows.

4.2 A Constant Upper Bound for n-
Player Settings

As we have seen, for n = 2 the informational
overhead of the public good function is essentially
2.2 One might hope that a generalization of this
function to an n-player setting leads to a lower
bound of n. Yet we show that this is not the case.

Theorem 4.2. Fix ǫ > 0. For any C, the
informational overhead of incentive-compatibility of
the social-choice function C-Public-Goodk with
n ≥ 3 agents and k that is large enough is at most
2 · n

n−1 + ǫ ≤ 3 + ǫ.

We refer the reader to Appendix C for the proof
of the theorem.

5 Main Result: A Linear Lower

Bound

In order to prove a lower bound of n we must
identify a social-choice function f such that CC(f)
is substantially (essentially factor n) smaller that
CC(f, p).

5.1 Another Lower Bound for 2 Players

The reader may expect a straightforward gener-
alization of the 2-player public-good problem to
enable us to get an Ω(n) lower bound for general
single-parameter domains. However, as shown in
Section 4.2 this is not the case. In fact, the n-
player public-good problem is such that the com-
munication cost of selfishness is never greater than
3 + ǫ.

2It is relatively easy to derive a matching upper bound
of about 2 as it is clear that 2k bits are always sufficient to
compute the payments and it is relatively easy to show that
k bits are necessary to compute the outcome.

6



We will now present a construction that does
extend to n players, and thus obtains a linear lower
bound. We will start by presenting the construction
and the proof for 2 players, and then we will
describe the genera construction and proof.

Consider the 2-player social-choice function de-
picted in Figure 1. As before, we have 2 players
1, 2, each holding a value vi = ti · 2−k for an integer
t ∈ {0, ..., 2k − 1}, represented by a k-bit string.
Player i’s utility from winning is vi, and his utility
from losing is 0. Player 1 wins if and only if v2 ≥ 1/2
and v1 ≥ v2 − 1/2. Similarly, player 2 wins if and
only if v1 ≥ 1/2 and v2 ≥ v1 − 1/2. We shall
refer to fk as the “Not-Too-Fark” social-choice
function. It is easy to check that Not-Too-Fark

is monotone and thus its informational overhead of
incentive-compatibility is finite.

Proposition 5.1. For any ǫ > 0, for any k large
enough the informational overhead of incentive-
compatibility for the social-choice function Not-

Too-Fark is at least 2 − ǫ.

Proof. Let fk =Not-Too-Fark. By Observa-
tion 2.3 it holds that CC(fk) ≤ k + 2 as there are
4 outcomes in the range (any subset of the player
can win).

We show below that CC(fk, p) ≥ 2k − 2. From

this we derive that CC(fk,p)
CC(fk) ≥ 2k−2

k+2 = 2 − 6
k+2 .

Clearly as this a monotonic function of k that
converge to 2, for any ǫ > 0 there is a k such that
this is larger than 2−ǫ. We next derive the promised
lower bound on CC(fk, p).

Claim 3. For n = 2, CC(Not-Too-Fark, p) ≥
2k − 2.

Proof. Consider the type-profiles (v1, v2) such that
both v1 and v2 are at least 1/2. Observe, that there
are exactly 22k−2 such type-profiles, and that both
players win for each such type profile.

We shall prove that for every two such type-
profiles v = (v1, v2) and v′ = (v′1, v

′
2) it must hold

that any communication protocol that computes
incentive-compatible payments outputs p(v1, v2) 6=
p(v′1, v

′
2). Therefore, any such protocol has at least

22k−2 outcomes in its range. By Observation 2.2
this implies that the minimal number of bits that
must be transmitted by any such protocol is at least
log(22k−2) = 2k − 2.

W.l.o.g., assume that v1 6= v′1. From Figure 1
one can deduce that in the event that both players
win the payment of each is the other’s player’s
value minus 1/2. We shall show that p2(v1, v2) 6=

p2(v
′
1, v

′
2). Clearly p2(v1, v2) = v1 − 1/2 (the

minimal value for which 2 would win). Similarly,
p2(v

′
1, v

′
2) = v′1 − 1/2. Since v1 6= v′1 we conclude

that p2(v1, v2) 6= p2(v
′
1, v

′
2).

The theorem follows.

5.2 A Linear Lower Bound for n Players

We are now ready to prove the main theorem of this
paper. The social-choice function for which we shall
prove a lower bound of about n is an extension of
2-Not-Too-Fark to n-player settings.

Definition 6 (Not-Too-Fark).
Input: valuations v0, ..., vn−1 ∈ N represented by
strings of k bits.
Output: A set of winning players from [n]. Player i
wins if one of the following happen:

1. vj ≥ 1/2 for every j ∈ [n].

2. vj ≥ 1/2 for every j ∈ [n], j 6= i, and vi ≥
vi+1 (mod n) − 1/2.

We first observe that the function Not-Too-

Fark is implementable, and therefore the informa-
tional overhead of incentive compatibility is well
defined. Indeed, it is easy to see that if player i
wins in Not-Too-Fark and increases its bid, i will
still win.

Observation 5.2. The social-choice function
Not-Too-Fark is monotone.

We are now ready to present the main result, a
linear lower bound on the informational overhead of
incentive-compatibility for a single-parameter SCF.
This is done by showing that computing both the
function and the payments (CC(f,p)) requires lots of
communication since there are many different price-
vectors the mechanism should distinguish between;
also, computing the function alone (CC(f)) requires
a low amount of communication since after all
players declared if their value exceeds 1/2 using 1
bit each, the only relevant information is held by up
to two players (vi and vi+1 for some i).

Theorem 5.3. For any ǫ > 0 and for k large
enough, the informational overhead of incentive-
compatibility for the social-choice function Not-

Too-Fark is at least n − ǫ.

Proof. Let fk =Not-Too-Fark. We show below
that CC(fk, p) ≥ n(k − 1) (Claim 4) and that
CC(fk) ≤ n + k + 1 (Claim 5). From these two
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facts we derive that CC(fk,p)
CC(fk) ≥ n(k−1)

k+n+1 = n− n(n+2)
n+k+1 .

Clearly for any ǫ > 0 there is a k such that this is
larger than n − ǫ. We next derive the promised
bounds on CC(fk, p) and CC(fk).

Claim 4. CC(Not-Too-Fark, p) ≥ n(k − 1).

Proof. There are 2n(k−1) type-profiles
(v0, . . . , vn−1) such that each vi is at least
1/2. For all these type-profiles all players win.
Let (v0, . . . , vn−1) and (v′0, . . . , v

′
n−1) be two

different such type-profiles. Let p(v0, . . . , vn−1)
and p(v′0, . . . , v

′
n−1) be the incentive-compatible

payments outputted by a communication protocol
for these two type-profiles. We shall show
that these two payment vectors must be
different. This is derived from the fact that
pi(v0, . . . , vn−1) = vi+1 (mod n) −1/2, and similarly,
pi(v

′
0, . . . , v

′
n−1) = v′i+1 (mod n) − 1/2. Hence,

as shown in Theorem ??, if any coordinate
j ∈ {0, 1, ..., n− 1} is such that vi 6= v′i this implies
that pj−1(v0, v2, ..., vn−1) 6= pj−1(v

′
0, v

′
2, ..., v

′
n−1).

Therefore, any protocol that computes incentive-
compatible payments has at least 2n(k−1) outcomes
in the range of fk and thus requires at least
n(k − 1) bits (by Observation 2.2). We conclude
that CC(fk, p) ≥ n(k − 1).

Claim 5. CC(Not-Too-Fark) ≤ n + k + 1.

Proof. We show that CC(fk) ≤ k + n + 1 by
exhibiting a communication protocol that computes
fk and only requires k+n+1 bits: First, each player
i transmits a single bit bi that indicates whether his
value is at least 1/2 (i transmits 1 if vi ≥ 1/2). If
bi = 1 for all i then all players win. If for two or
more players bi = 0 then all players lose. If there is a
player j such that bj = 0 and for all other players it
holds that bi = 1 then all other players (but j) lose.
In this case, in order to determine whether player
j wins, player j + 1 (mod n) transmits all of his
bits. Player j (who now knows vj+1 (mod n)) checks
whether vj ≥ vj+1 (mod n) − 1/2 (in which case
player j wins). He now broadcasts an additional
bit informing the others of the result (1 indicating
“I win” and 0 indicating “I lose”). Observe, that
overall k + n + 1 bits were transmitted, and that
the protocol does indeed compute Not-Too-Fark.
So, CC(fk) ≤ k + n + 1.

The theorem follows.

6 Overhead in Welfare Maximiza-

tion: VCG and the core

In this section we study social-choice functions of
a particular type – social choice functions that
maximize the social welfare. We consider two
payment scheme for such environments. In Subsec-
tion 6.1 we study prices supporting ex-post Nash
equilibria (which are VCG payments under some
conditions). In Subsection 6.2, we introduce the
problem of measuring the communication overhead
of computing points in the core.

Recall that we consider mechanism-design set-
tings with a social-choice function f , outcome set
O and valuation spaces V1, ..., Vn. Note that in this
section we allow multi-parameter valuations.

Definition 7. A social choice function
f is welfare maximizing if for every v,
f(v) ∈ argmaxo∈O

∑n
i=1 vi(o).

6.1 Ex-post equilibrium: VCG prices

6.1.1 VCG prices: Overview

Recall that with VCG prices the welfare maxi-
mizing outcome o is chosen, and each player pays
hi(v−i) −

∑

j 6=i vj(o) (where the hi(·) is a function
that does not depend on vi). It is well known
that such payments, for any choice of the hi’s,
supports a dominant strategy equilibrium (in our
case, the mechanisms are iterative and the ex-post
equilibrium concept is used).

Probably the most common choice for the hi

terms for VCG mechanisms is the Clarke pivot
rule, where the payment of each player becomes
maxa∈O

∑

j 6=i vi(a)−∑

j 6=i v(o). This choice of the
hi’s implies that the mechanism has the following
important property:3

Definition 8. A payment scheme has No Positive
Transfers (NPT) if for every valuation profile v and
every player i, pi(v) ≥ 0.

6.1.2 Communication Overhead

Fadel and Segal [14] gave an elegant solution to
the communication overhead of computing some
equilibrium prices. They show that the overhead is
very small: it is an additive term that is not related
to the complexity of the social-choice function, but
only depends on the representation of values by the

3It also guarantees another close property of individual

rationality, that is, the utility of the players is never negative.
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players. Recall that the value each player has for
an alternative is represented by at most k bits.

Proposition 6.1 ([14]). For any welfare maximiz-
ing function, CC(f, p) ≤ CC(f) + n · k.

However, Proposition 6.1 computes VCG prices
with positive transfers to the players. When this is
not allowed, the bound on the communication level
is no longer trivial. Under the NPT assumptions,
we were able to bound the communication overhead
for settings where every bidder has a zero valuation.
That is, a player with such a valuation will never af-
fect the outcome. For example, in a combinatorial-
auction model, if the player may have a valuation
that gives him a value of 0 for every possible bundle
of items he gets, this is a zero valuation. Note that
settings may exist where the valuation space has
no such valuation (e.g., in combinatorial auction a
player may always have a value of 10 for either item
a or item b).

A player that reports a valuation function where
the value for every bundle is zero, will actually
ensure that the outcome is computed regardless of
his preferences.

Definition 9. We say that a player i has a zero
valuation if there exists v0

i ∈ Vi such that for every
v−i, f(v0

i , v−i) ∈ argmaxo∈O

∑

j 6=i vi(o).

Let CCNPT (f, p) denote the communication
complexity of computing the social-choice function
f and some payments with no positive transfers.
Note that this definition allows us to find payments
that are not necessarily VCG with the Clarke pivot
rule; this makes the construction of lower bounds
for this measure actually harder.

Proposition 6.2. Assume that every player has a
zero valuation. Then, for every welfare maximizing
function f , CCNPT (f, p) ≤ (n + 1)CC(f) + n · k.

Proof. We are given a ”black-box” that computes
the function f(v) using CC(f) bits for every val-
uation profile v. We will use this black box once
for computing f(v), and n more times for (v0

i , v−i),
where i = 1, ..., n. For computing the VCG prices,
we should also ask the players for vi(o) (o is the
chosen alternative), which may take up to ǫ = n · k
bits (again, k is the precision or number of bits of
the value of a player for a single alternative) and
this term is independent of CC(f) and is therefore
negligible.

We direct the attention of the reader to the
following open questions. Any non-linear upper

or lower bounds in this context will be considered
surprising.

Open questions: For welfare maximizing social-
choice functions, can equilibrium supporting prices
that admit NPT can be computed:

1. with a linear communication overhead, even
without assuming the zero-valuation property?

2. with o(n) communication overhead, even with
the zero-valuation property?

6.2 Core Outcomes

Consider a coalitional game with a set of n + 1
players N+ = {0, 1, ..., n} (player i is interpreted as
the ”seller”) – where the coalitional value is defined
as follows:

• w(S) = maxo∈O

∑

i∈S vi(o), if 0 ∈ S.

• w(S) = 0, if 0 /∈ S.

A vector π ∈ R
n+1 is in the core of this coalitional

game, if w(N+) =
∑

i∈N+ πi and for every S ⊂ N+

we have w(S) ≤ ∑

i∈S πi. Intuitively, π should be
thought of as a vector of payoffs (utilities), and this
payoff vector is in the core if no subset of players
can have a better deal with the social planner (the
”seller”). It is knows ([1]) that the core of this
game is non-empty, and that every core allocation
is welfare maximizing.

Definition 10. We say that a social-choice func-
tion f and a payment scheme p are in the core, if
for every profile of valuations v, the vector of pay-
offs (v1(o) − p1(v), v2(o) − p2(v), ..., vn(o) − pn(v))
is in the core of the respective coalitional game
(where f(v) = o).

We denote the communication complexity of de-
termining the function f and some set of payments
p in the core as CCcore(f, p).

It turns out that computing a core outcome can
be done with a small communication overhead that
is independent of the communication complexity of
f . We can thus prove a result that is similar in
spirit to Proposition 6.1.

Theorem 6.3. CCcore(f, p) ≤ CC(f) + n · k

Proof. The payoff vector (0,...,0) is always in the
core (i.e., every player pays his exact value for
the outcome: pi(v) = vi(o) ). It is easy to
see that no coalition can then deviate. Thus, we
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can first compute the welfare-maximizing outcome
using CC(f) bits, and then ask each bidder to
report his value from this outcome using k bits.

As in the VCG case, the above positive result
is unrealistic, since eliciting the exact valuation
of rational players seems to be impossible. A
probably more reasonable point in the core is
the one described by Ausubel and Milgrom [1].
Their payment method can be computed using an
iterative ascending-price bidding process, and also
have some desired incentive properties (see more
details in [1, 2]). These prices are computed by
an ascending-price auctions that uses personalized
bundle prices. A formal definition of this pricing
scheme can be found in [1], together with a detailed
comparison to VCG payments. We denote the
communication complexity of computing a welfare-
maximizing allocation and the Ausubel-Milgrom
core payments by CCAM

core(f, p). We show by a
trivial example that the communication overhead
of computing the Ausubel-Milgrom outcome over
computing the welfare-maximizing outcome is un-
bounded.

Proposition 6.4.
CCAM

core
(f,p)

CC(f) cannot be bounded

from above by any number α (even when α is
allowed to be a function of the input).

Proof. It is known that for auctions with (gross)
substitutes valuations, the Ausubel-Milgrom core
prices coincide with VCG prices. We will show a
trivial example where the optimal allocation can
be computed with out any communication (i.e.,
known in advance), but computing VCG prices
requires positive amount of communication. Note
that this does not prove the same claim for finding
equilibrium-supporting prices, since if the outcome
is known in advance, any set of prices is incentive
compatible. The example: consider an auction
for one item among two bidders 1,2. V1 = {10},
V2 = {0, 1}. Bidder 1 clearly wins, but the VCG
prices need to disclose v2.
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A Background

A.1 The fooling sets techniques

Suppose that some communication protocol that
computes a social function f for a two-player setting
cannot distinguish between (v1, v2) and (v′1, v

′
2),

then, that protocol cannot also tell the difference
between these inputs and (v′1, v2), (v1, v

′
2). This

suggests a way for proving lower bounds on the com-
munication complexity of social-choice functions:
Find a subset of the inputs and prove that every
member in this subset is assigned the same outcome,
but a combination of every two members is assigned
a different outcome. This will imply that any
communication protocol must distinguish between
every two members of the subset of inputs. This, in
turn, would mean that the logarithmic value of the
cardinality of this subset is a lower bound on the
number of bits that need to be transmitted in order
to compute f . Formally, let f be a social-choice
function. Let v, v′ be two valuation functions. Let

Vv,v′ = {v′′ = (v′′1 , ..., v′′n)|∀i ∈ [n] v′′i = vi or v′′i = v′i}

A well known fact in communication complexity
(see [9]) is the following:

Theorem A.1. [Fooling Set Argument] Let f :
V = V1 × . . .× Vn → O be a social-choice function.
For every V ′ ⊆ V such that:

• there is an outcome o∗ ∈ O such that for every
v′ ∈ V ′ f(v′) = o∗.

• for every v, v′ ∈ V ′ ∃v′′ ∈ Vv,v′ such that
f(v′′) 6= o∗

it holds that CC(f) ≥ log(|V ′|).

B An Improved Upper Bound For

Single Item Auctions With Two

Players: The Proof

In this section we prove Theorem 3.2.

Theorem B.1. For the social-choice function
Single-Item-Auctionk and n = 2, the
information overhead of incentive compatibility is

at most 1 + O( log(k)
k

).

Proof. By Observation 1 proved in the proof
for Proposition 3.1, CC(fk) ≥ k. The
theorem is a direct result of the following
communication-complexity lemma. In the
terms of our model, it shows that for n = 2,

CC(Single-Item-Auctionk, p) ≤ k + O(log(k))
(recall that in single-item auctions, an equilibrium-
supporting price is well known to be the second-
highest price).

Lemma 1. Consider two players 1 and 2, each
holds a number represented by k bits v1, v2 (resp.).
Both players can realize min{v1, v2} with communi-
cation of at most k + O(log(k)) bits.

Proof. We present a protocol that computes fk

and incentive-compatible payments, and requires
the transmission of at most k + O(log(k)) bits. It
is well known that if the winning bidder is charged
the value of the losing bidder then incentive-
compatibility is guaranteed (this is the celebrated
“second-price auction”). So, computing fk and
incentive-compatible payments can be done by
finding the identity and value of the bidder with
the lowest value.

We consider the following communication proto-
col: Let m = ⌈log(k)⌉. The two parties (bidders)
encode their inputs (values) using an alphabet of
size 2m − 1. The two parties now take turns
sending the symbols (“blocks”) of their input values
(from most significant to least significant). The
alphabet symbols are encoded using m bits and are
represented by the strings 0m through 1m−10. The
string 1m is assigned a reserved meaning: “your
previous string was not equal to mine”. If one
party sends the 1m string, then it also sends an
additional bit indicating who has the larger value,
and that party then sends all of its remaining
symbols (encoded normally).

What is the maximal cost of this protocol in bits?
We are wasting at most two blocks and one more bit
when one party discovers the differing blocks (the
most wasteful possibility is if the non-sending party
realizes that its input is smaller, in which case he
needs to send the string with the reserved meaning,
an additional bit indicating that he has the smaller
value, and repeat the last symbol). The cost is
therefore at most m × R + 2m + 1, where R is the
length of the k-bit input encoded in the alphabet
of size 2m − 1. That is, the number of symbols
(blocks) sent times the number of bits needed to
represent each symbol, plus the number of bits in
two additional blocks, and another bit. The size
of R must be such that (2m − 1)R ≥ 2k, that is,
we can set R to be ⌈k/ log(2m − 1)⌉. Hence, the
total cost in bits (setting m = ⌈log(k)⌉) is at most
⌈log(k)⌉× ⌈k/ log(k− 1)⌉+2⌈log(k)⌉+O(1), which
is k + O(log(k)).
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The theorem follows.

C A Constant Upper Bound for n-

Player Settings: The Proof

In this section we prove Theorem 4.2.

Theorem C.1. Fix ǫ > 0. For any C, the
informational overhead of incentive-compatibility of
the social-choice function C-Public-Goodk with
n ≥ 3 agents and k that is large enough is at most
2 · n

n−1 + ǫ ≤ 3 + ǫ.

Proof. The players values v1, ..., vn are all in [0, 1]
and we are interested in figuring out whether Σivi ≥
C. Obviously in C = 0 or C ≥ n then the answer
is trivial. So, we can consider the case C ∈ (0, n).
For any integer k′ that is large enough, we can pick
k such that C · 2k ∈ [2k′−1, 2k′

]. We now consider
the function fk and normalize the input by 2k, that
is, we think about the input as if each agent i has
integer value vi ∈ {0, ..., 2k − 1} and the cost C is
⌈C · 2k⌉ ∈ [2k′−1, 2k′

]. (note that as the values are
now integers we can round up C ·2k while being left
with the same decision problem). The communi-
cation complexity of the original problem is clearly
equivalent to the communication complexity of the
new problem after normalization.

It is easy to see that CC(fk, p) is at most nk′+n,
because of the following protocol: Ask each player
if his value is at least C (this requires n bits). Ask
all the players whose values are lower than C to
transmit their vi’s (this requires k′ bits per player,
i.e., at most n × k′ bits). An easy observation is
that this simple protocol provides us with sufficient
information to calculate the prices for all players.
We shall now prove a lower bound on CC(fk) that
will imply the theorem.

We prove the following lemmas:

Lemma C.2. If C ≤ n
2 , then for large enough

k′ the communication complexity of determining
whether Σivi ≥ C is at least (n

2 − 1) · k′ − f(n)
for some function f(·).

Proof. We shall construct a large fooling set and
invoke Theorem A.1. Consider all the possible type-
profiles (v1, . . . , vn) such that Σivi = C. Obviously
for all these type-profiles Σivi ≥ C. However, any
protocol that tries to determine whether Σivi ≥ C
cannot place any two such type-profiles in the same
monochromatic rectangle (see [9]) for the following
reason: Let v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
n)

be two different such type-profiles. Let j be a

coordinate such that vj 6= v′j . W.l.o.g, assume that
vj < v′j . Then, if v and v′ are in the same rectangle
then so is the type profile v′′ = (v′′1 , . . . , v′′n) in which
v′′i = v′i for every i 6= j and v′′j = vj . However, this
leads to a contradiction because Σiv

′′
i < C (since

the outcome of the protocol cannot be the same for
v and v′′).

Hence, by finding a lower bound L on the num-
ber of possible type-profiles (v1, . . . , vn) such that
Σivi = C, we also find a lower bound on the number
of monochromatic rectangles of any protocol that
computes C-Public-Goodk. This implies that
log L is a lower bound on the number of bits
transmitted by any such protocol. We reach L as
follows: First, consider the case that C ≤ 2k − 1.
We consider the following family of type-profiles:
v1 = C − 2k′−1, v2 = ... = vn

2
−1 = 0, and

Σn
i= n

2
vi = 2k′−1. Observe, that any type-profile in

this family is such that Σn
i=1vi = C. How many

such type-profiles are there? There are
(2k

′
−1+ n

2
n

2

)

ways to distribute 2k′−1 between n
2 + 1 players.

This is bounded from below by 2(k′
−1) n

2

( n

2 )
n

2
. So, any

protocol that determines whether Σivi ≥ C needs

to transmit at least log(2(k′
−1) n

2

( n

2 )
n

2
) = n

2 k′− n
2 (log(n))

bits.

What if C ≥ 2k −1? Recall that C ≤ n
2 ·2k (after

the normalization) so in this case observe that for
large enough k we can distribute C − (2k − 1) to
players 1, ..., n

2 (in some arbitrary way). This is so as
these n

2 agent can split up to (2k−1)·n2 , and for large
enough k it holds that (2k−1)· n

2 ≥ 2k · n
2 −(2k−1) ≥

C − (2k − 1). So now we are left with a cost of
C′ = 2k−1 to distribute between agents n

2 +1, ..., n.
We can now achieve L by looking at the different
ways to distribute C′ between players n

2 + 1, ..., n,
i.e., such that Σn

i= n

2 +1vi = C′. How many such

type-profiles are there? There are
(

C′+n

2 −1
n

2 −1

)

ways

to distribute C′ between n
2 players. Now

(

C′ + n
2 − 1

n
2 − 1

)

=

(

(2k − 1) + (n
2 − 1)

n
2 − 1

)

≥ (2k − 1)(
n

2 −1)

(n
2 − 1)(

n

2 −1)

So, any protocol that determines whether Σivi ≥
C needs to transmit at least a logarithmic factor of
this number, which is (n

2 − 1) log(2k − 1) − (n
2 −

1) log(n
2 − 1). Note that n

2 · 2k ≥ C ≥ 2k′−1 thus

2k ≥ 2k
′

n
. We conclude that this number is at least

(
n

2
− 1) log(

2k′

n
− 1) − (

n

2
− 1)(log(n) − 2)

12



≥ (
n

2
− 1)k′ − (

n

2
− 1)(2 log(n) − 1)

Lemma C.3. If C ≤ n
2 , then for large enough

k′ the communication complexity of determining
whether Σivi ≤ C is at least (n

2 − 1) · k′ − f(n)
for some function f(·).

Proof. The proof of this lemma is almost identical
to that of the previous one (it involves the construc-
tion of the very same fooling set).

The theorem will now follow because if C ≥ n
2 in

the original formulation then Lemma C.2 implies
that CC(f, p) is at least (n

2 − 1) · k′ − f(n) for
some function f(·). If C > n

2 then the problem is
equivalent to figuring out whether n−Σivi ≥ n−C.
That is, it is equivalent to the problem in which
every player has the value 1−vi and the players are
trying to figure out whether the sum of their values
is at most n − C. This problem is just as hard as
the original problem, as shown by Lemma C.3. By
plugging in the values of CC(fk, p) and CC(f, p)

we get an IOIC of at most nk′+n
( n

2 −1)·k′−f(n) , which

converges to 2 n
n−1 as k′ goes to infinity.

Figure 1: The description of the 2-Not-Too-Far

social-choice function. For every profile of values for
the players, the figure shows whether A wins, B wins or
both. In all other profiles both lose. The hardness of
this example is due to the fact that every two profiles
of values for which the two players win (e.g., x and y

in the picture) is associated with different prices. Note
that the prices are determined by a projection on the
diagonals defined by the social-choice function.
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