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ABSTRACT

Automated physical design tuning for database systems das r
cently become an active area of research and developmeistinigx
tuning tools explore the space of feasible solutions by atguty
optimizing queries in the input workload for several camadicon-
figurations. This general approach, while scalable, ofesulis in
tuning sessions waiting for results from the query optimizeer
90% of the time. In this paper we introduce a novel approach,
called Configuration-Parametric Query Optimizatipthat drasti-
cally improves the performance of current tuning tools. 8suing
asingle optimization calper query, we are able to generate a com-
pact representation of the optimization space that canpgheuce
very efficiently execution plans for the input query unddsitmary
configurations. Our experiments show that our techniquedspe
up query optimization by 30x to over 450x with virtually ncsko

in quality, and effectively eliminates the optimizationttbeneck in
existing tuning tools. Our techniques open the door for maare
sophisticated optimization strategies by eliminating itiein bot-
tleneck of current tuning tools.

Categories and Subject Descriptors

H.2.2 [Physical Desigf: Access Methods; H.2.48ystem$: Query
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offer automated tools to tune the DBMS physical design asgiar
their products (e.g., [1, 8, 15]). Although each solutioovites
specific features and options, all the tools address a conpmuin
lem (see Figure 1): given a query workloEdand a storage budget
B, the task is to find the set of physical structures, or condition,
that fits in B and results in the lowest execution cost ¥or.

Workload W ———p»|

poysical What-if
Storage Bound B ——— | Design Tuning — DBMS
Tool optimization

Configuration C <——

Figure 1: Architecture of existing physical design tools.

The physical design problem as stated above can then be trans
lated into a complex search over a potentially very largesmd
feasible configurations. Although there are different apphes to
conduct this search (e.g., see [3, 6, 14]), a common reqeinemn
all existing solutions is the ability to evaluate the expélctost of
a query under a given candidate configuration in the seam@btesp
Of course, it has been long established that materializieh ean-
didate configuration in the DBMS and executing queries taiobt
their costs is unfeasible in practice. Therefore, existnlytions
rely on (i) awhat-if optimization component [7] that is able $on-
ulate a hypothetical configuratiod’ in the DBMS and optimize
queries as if” were actually materialized, and (ii) the assumption
that the optimizer’s estimated cost of a query is a good atdicto
the actual execution cost.

Having awhat-if abstraction enabled the research community to
focus on complex search algorithms that relied on thistastie of
evaluating candidate configurations for the input workloBidw-
ever, the overhead ofwhat-if optimization call is essentially that

Database management systems (DBMSs) increasingly supportOf a regular optimization call, which for relatively comglgueries

varied and complex applications. As a consequence of thiglir
there has been considerable research on reducing the ¢stabic
ownership of database installations. In particular, ptalsilesign
tuning has recently become relevant, and most vendors raysad
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can be important. In fact, there is anecdotal evidence thebine
cases, over 90% of the tuning time is spent isswitt-if opti-
mization calls and waiting for results. Clearly, optimizatls are a
bottleneck in current physical design tools.

A closer inspection of the optimization calls issued by tgni
tools reveals that each query in the workload is optimizettipie
times for different candidate configurations. Moreovetenfthese
configurations are not so different across each other ¢eug.con-
figurations might share all but a couple of indexes). Inaly, it
would seem that the optimization of a querynder two similar
configurationg”; andC> would result in substantial duplication of
work (such as query parsing and validation, join reorderamgl in
general any index-independent process inside the optijréxe,
relatively, just a little amount of configuration-specifiork.



This situation bears some resemblance to the classicahptiia
query optimization problem, or PQO [11]. In such contexgrigs
might have unbound parameters at compilation tin@ptimizing
a parametric query each time it is executed with differerapeter
values is very expensive. On the other hand, optimizing thexyg
once and reusing the execution plan can be suboptimal ifatrep
eter values are different from those assumed at optimizaitioe.

To overcome this problem, PQO optimizes a query once (plgssib
at a higher overhead than that of a regular optimizatior) aati ob-
tains back, not a single execution plan, but a structuregheddes

a set of candidates that are optimal in some region of thenpetex
space. Later, when the query is executed with specific paeame
values, an appropriate plan is extracted from this strectwhich

is much faster than re-optimizing the query from scratch.

In this work, we propose a technique inspired by PQO, which
we call Configuration-PQQ or C-PQOfor short. The idea is to
issue a single optimization call per query (possibly wittaeyér
overhead than that of a regular optimization call), andiolifack a
compact representation of the optimization search spatatiows
us to very efficiently generate execution plans for arbjtanfig-
urations. Then, the modest overhead during the first (ang) onl
optimization call is more than amortized when the same qigery
re-optimized for different configurations. Our experinaragvalu-
ation shows that this approach speeds-up query optimizhgi@0x
to over 450x with virtually no loss in accuracy. We then shbatt
incorporatingC-PQOQinto existing physical design tools is straight-
forward and effectively shifts the overhead away from ojtan
tion calls, opening the door for new and more sophisticatedch
strategies at no perceived additional cost.

We make two assumptions in the rest of this paper. First, we
assume that we operate over a top-down, transformatioralyqu
optimizer (our techniques are in principle applicable toentopti-
mization architectures, but we exploit certain featureslatle in
top-down optimizers in our algorithms). Second, we resthie
physical structures in candidate configurations to prinsany sec-
ondary indexes (but see Section 4.4 for extensions to othgs-s
tures).

The rest of the paper is structured as follows. Section 2 re-
views theCascades Optimization Framewonkhich is the most
well-know example of a top-down transformational optimiZ&ec-
tion 3 discusses how to extend a Cascades-based optimiear to
ableC-PQQ Section 4 explains how to infer execution plans and
estimated costs for varying configurations i€@QOenabled op-
timizer. Section 5 details how to incorporafePQQOinto current
physical design tools. Section 6 reports an experimentduation
of our techniques. Finally, Section 7 reviews related work.

2. THE CASCADES FRAMEWORK

In this section we describe the main features of the Cascapes
timization Framework, developed in the mid-nineties anelduas
the foundation for both industrial (e.g., Tandem’s NonS3ajL [5]
and Microsoft SQL Server [10]) and academic (e.g., Colurfitfia
query optimizers. Rather than providing a detailed detoripof
all the features in Cascades, we will give a high level ovembf
the framework followed by a focused description of the compo
nents that are relevant to this work (see [9, 13] for moreildta

The Cascades Optimization framework results in top-doamstr
formational optimizers that produce efficient executioansl for
input declarative queries. These optimizers work by mdatmg
operators which are the building blocks afperator treesand are

1Traditionally, parameters can be either system parametach as avail-
able memory, or query-dependent parameters, such prediekctivity.

used to describe both the input declarative queries andutpmib
execution plans. Consider the simplg. query:

SELECT * FROM R,S,T
WHERE R.x=S.x AND S.y=T.y

Figure 2(a) shows a tree of logical operators that specifgni al-
most one-to-one correspondence, the relational algepragenta-
tion of the query above. In turn, Figure 2(c) shows a tree g&ph
cal operators that corresponds to an efficient executiamfplathe
above query. In fact, the goal of a query optimizer is to tiams
the original logical operator tree into an efficient physimaerator
tree. For that purpose, Cascades-based optimizers relyooroim-
ponents: theleMo data structure (which keeps track of the explored
search space) araptimization taskswhich guide the search strat-
egy. The following sections discuss these notions in motailde

2.1 The Memo Data Structure

The MEMO data structure in Cascades provides a compact rep-
resentation of the search space of plans. In addition toliagab
memoization (a variant of dynamic programming)g#o provides
duplicate detection of operator trees, cost managemedtpter
supporting infrastructure needed during query optimizati

A MEMO consists of two mutually recursive data structures, which
we callgroupsandgroupExpressionsA grouprepresents all equiv-
alent operator trees producing the same output. To reduneonye
requirements, groupdoes not explicitly enumerate all its operator
trees. Instead, it implicitly represents all the operatees by using
groupExpressionsA groupExpressiolis an operator having other
groups (rather than other operators) as children. As an example,
consider Figure 2(b), which showsmMo for the simple query in
the previous section (logical operators are shaded andqathyp-
erators have white background). In the figuyegup 1 represents
all equivalent expressions that return the contents oét&blSome
operators irgroup1 are logical (e.gGet R, and some are physical
(e.g.,Table Scanwhich reads the contents &f from the primary
index or heap, an8orted Index Scanvhich does it from an exist-
ing secondary index). In turgroup 3 contains all the equivalent
expressions foR > S. Note thatgroupExpressior.1, Join(1,2)
represents all operator trees whose rodbis, first child belongs to
group 1, and second child belongs ¢gmoup 2. In this way, aMEMO
compactly represents a potentially very large number ofaipe
trees. Also note that the children of physigabupExpressionalso
point to the most efficiengroupExpressionn the corresponding
groups For instancegroupExpressior8.8 represents a hash join
operator whose left-hand-child is the secayrdupExpressiorin
group1 and whose right-hand-child is the secgrdupExpression
in group 2.

In addition to representing operator trees, #EB0 provides ba-
sic infrastructure for management gifoupExpressiormproperties.
There are two kinds of properties. On one hdodical properties
are shared by airoupExpressions1 agroupand are therefore as-
sociated with theroupitself. Examples of logical properties are
the cardinality of group, the tables over which thgroupoperates,
and the columns that are output by tp@up. On the other hand,
physicalproperties are specific to physiagdoupExpressionand
typically vary within agroup. Examples of physical properties are
the order of tuples in the result of a physigabupExpressiormand
the cost of the best execution plan rooted gt@pExpression

We introduce additional functionalities of tieMo data structure
as needed in the rest of the paper.

2.2 Optimization Tasks

The optimization algorithm in Cascades is broken into saver
tasks which mutually depend on each other. Intuitively, the opti
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Figure 2: The MEMO data structure in a Cascades-based optimizer.

mization of a query proceeds as follows. Initially, the kajiop-
erator tree describing the input querycigpied intothe initial MEMO
(see Figure 2(b)) for an example. Then, the optimizer sdesdu
the optimization of thgroup corresponding to the root of the orig-
inal query treedroup5 in the figure). This task in turn triggers the
optimization of smaller and smaller operator sub-treeseuethtu-
ally returns the most efficient execution plan for the inpuérny.
This execution plan isopied outfrom the finalMEMO and passed to
the execution engine. Figure 3 shows the five classes of lasks
Cascades-based optimizer, and the dependencies amongwfeem
next describe each of these tasks in some detail.

Optimizelnputs
——p»( OptimizeGroup I-l ApplyRule

Y

ExploreGroup ExploreExpression

Figure 3: Optimization tasks in a Cascades-based optimizer

OptimizeGroup: This task takes as inputgyeoupG, a cost bound
UB, and a set ofequired physical propertieRP. It re-
turns the most efficient execution plan (if exists) that ieapl
mentsgroup GG, costs no more thali B and satisfies the re-
quired propertiesRP. This task implements memoization
by caching the best execution plan for a given set of required
properties in thevinner circleof thegroup. Subsequent calls
to OptimizeGrougwith the same required physical properties
would return immediately with the best plan or a failure (de-
pending on the value di B). Operationally, optimizing a
group entails exploring thgroup (seeExploreGrouptask),
and then applying all implementation rules (s&gplyRule
task) to produce all the candidate physical operators that i
plement the logical counterparts in tgmup.

ExploreGroup: A groupis explored by iteratively exploring each
logical groupExpressioin thegroup (seeExploreExprtask).

ExploreExpr: Exploring a logicalgroupExpressiomgenerates all
logically equivalent alternatives of the inpyroupExpression
by applying exploration rules (sé@plyRuleask). This task

also uses memoization to avoid repeated work. Consider a
“join-commutativity” rule that transformgroupExpression

G into G2. When eventually exploring7z, it would not
make sense to apply “join-commutativity” again, since we
would obtainG; back. ExploreExpruses a bitmap, called
pattern memorythat keeps track of which transformation
rules are valid and which ones should not be applied.

ApplyRule: In general, each rule is a pair of an antecedent (to

match in theeM0) and a consequent (to generate and intro-
duce back in theeMo). An example is thoin-associativity
rule “JOIN(g1, JOIN(ga, g3)) — JOIN(JOIN(g1,g2),93)">.

The ApplyRuletask can be broken down into four compo-
nents. First, all the bindings for the rule’s antecedent are
identified and iterated over one by one (for complex rules,
there can be different ways of matching the antecedent of
the rule with operator trees in the curragrbup). Second,
the rule is applied to each binding generating one or more
new expressions (for the rule above, there is a single sub-
stitute per rule application, but in general there might be
more than one). Third, the resulting expressions are inte-
grated back into theemo, possibly creating new, unexplored
groups(as an example, applying the join associativity rule to
expression 5.1 in Figure 2(b) resultsgroupExpressios.2,
which points to a newly creategtoup 7). Finally, each new
groupExpressionriggers follow-up tasks, which depend on
its type. If it is a logical operator, the optimizer was explo
ing thegroup and thus arExploreExprtask is scheduled for
the newgroupExpression Otherwise, the expression inputs
are optimized and the cost of the physical plan is calculated
(seeOptlinputstask).

Optinputs: This task optimizes the inputs of a given physical op-

eratorp and computes the best execution plan rooteg. at
For each inpup;, it first calculates the required properties
of p; with respect tg and then schedules @ptimizeGroup
task for thegroup of p;. As an example, suppose that the
root of the tree is alergeJoin operator. SincelergeJoin
expects the inputs in a specific order, the current task gener
ates a required sort property for each of the inputs and opti-
mizes the correspondirgroupsunder this new optimization
context. TheOptlnputstask also implements a cost-based

*Thisis a very simple exploration rule. More complex rulespegially im-
plementation rules, have right sides that cannot be exgiless succinctly.



OptimizeGroup (group G, properties RP, double UB)
returns groupEzpression
01 p = winnerCircle[G, RP]
02 if ( p is not NULL )

if (p.cost < UB) return p

else return NULL
03 bestP = NULL // No precomputed solution, enumerate plans
04 for each enumerated physical groupEzpression candP

05 candP.cost = localCost(candP)
06 for each input p; of candP
07 if (candP.cost>UB) go back to 4 // outof bound
08 G; = group of p;
RP; = required properties for p;

09 bestP;= OptimizeGroup(G;, RP;,UB — candP.cost)
10 if (bestP; = NULL) break //no solution
11 candP.bestChild[i] = bestP;
12 candP.cost += bestP;.cost

/I Have valid solution, update state
13 if (candP.cost < UB and candP satisfies RP)

bestP = candP

UB = candP.cost
14 winnerCircle[G, RP] = bestP
15 return bestP

Figure 4: Simplified pseudocode for theOptimizeGroup task.

pruning strategy. Whenever it detects that the lower bound
of the expression that is being optimized is larger than the
cost of an existing solution, it fails and returns no plan for
that optimization goal.

As we can see, the five optimization tasks are non-trivial and
depend on each other. For clarity purposes, we now preseant-a ¢
ceptually simplified version of th®ptimizeGrougask that incor-
porates the portions of the remaining tasks that are reiégathis
work. Figure 4 shows a pseudocode foptimizeGroup which
takes as inputs group G, required propertieR P, and a cost
upper-bound/ B. OptimizeGroupG, RP, U B) returns the most
efficient physicalgroupExpressiorthat satisfiesR P and is under
U B in cost (otherwise, it returnguLL). Initially, line 1 checks the
winner circle (implemented as an associative array) foreaipus
call compatible withRP. If it finds one, it returns either the best
plan found earlier (if its cost is below B) or NULL otherwise. If
no previous task is reusable, line 4 iterates over all enatedr
physicalgroupExpressionin G' (note that, strictly speaking, line
4 encapsulateExploreGroup ExploreExpr and ApplyRul¢. For
each such rogjroupExpressiom, line 5 estimates the local cost of
candP (i.e., without counting its inputs’ costs). Then, line 8aal
lates the inpugroup and required properties for each @fndP’s
inputs and line 9 recursively cal3ptimizeGrougo optimize them
(note that the upper bound in the recursive call is decretasEd-
candP.cost). After each input is successfully optimized, lines 11
and 12 store the best implementation for eachaefd P’'s children
and update its partial cost. Note that, if at any moment thieeot
cost ofcand P becomes larger thali B, the candidate is discarded
and the next one is considered (line 7). Otherwise, afied P is
completely optimized, line 13 checks whethemdP is the best
plan found so far. Finally, after all candidates are proegsfine
14 adds the best plan to the winner circle édand RP, and line
15 returns such plan.

2.2.1 The Rule Set

One of the crucial components in a Cascades-based optiimizer
the rule set. In fact, the set of rules that are available ¢oatbti-
mizer is one of the determining factors in the quality of tesult-
ing plans. On one sidexplorationrules transform logical operator
trees into equivalent logical operator trees, and can ringesim-

ple rules like join commutativity to more complex ones likash-
ing aggregates below joins. On the other sidglementatiomules
transform logical operator trees into hybrid logical/plgs trees
by introducing physical operators into theMo. Again, implemen-
tation rules can range from simple ones like transforminogéchl
join into a physical hash join, to much more complex oneshin t
remainder of this section we provide additional details amall
subset of implementation rules that produce access pamait
tives, since these are relevant to our work.

One of such rules transforms a logical expression congistin
a selection over a single taBlento a physical plan that exploits
the available indexes (candidate plans include index scahs-
tersections and lookups among others). After binding tigectd
operator tree, this rule identifies the columns that occsangable
predicates, the columns that are part of a required soreptp@nd
the columns that are additionally referenced in non-saegatedi-
cates or upwards in the query tree. Then, it analyzes théablai
indexes and returns one or more candidate physical plarthdor
input sub-query.

Consider the application of such a rule fogeupExpression
that representsl.(c.—10(R)), and further suppose that colurbn
is arequired sort order. In this case, the rule identifiegroola in a
sargable predicate, colundras a required order, and columas an
additional column that is either output or referenced uplwam the
tree. This information allows the optimizer to identify theailable
indexes that might be helpful to implement an efficient slanfor
the sub-query. Suppose that an index on colunsavailable. The
optimizer can then generate a physical operator tree tlest the
index to retrieve all tuples satisfying=10, fetches the remaining
columns from a primary index, and finally sorts the resultuqges
in b order. If an index on column@, a, ¢) is also available, the
optimizer might additionally generate an operator tree¢ ftans
the index inb order and filters on the fly the tuples that satisfy
a=10. Depending on the selectivity af10, one alternative would
be more efficient than the other, and eventually the optinvizeild
pick the one that results in the smallest execution cost.

Note that the same mechanism is used in another equally impor
tant rule that transforms logical joins with single-takilght-hand-
sides into index-nested-loops execution plans (whichatsuly ac-
cess an index on the right-hand-side’s table for each tupldyced
by the left-hand-side input). In this case, the same prasadicon-
ducted with respect to the inner table only, and the joinddron
in the table is considered as part of a sargable (equaliggipate.
For instance, suppose that the logical sub-pld®is<io..=7.y T'),
whereQ represents an arbitrary complex expression. Conceptually
the rule produces an index-nested-loop plan and considerght-
hand-side as a single-table-selection,—-(7") as before (where
T.y is a column in a sargable predicate with an unspecified con-
stant value).

3. C-PARAMETRIC OPTIMIZATION

As explained in the previous section, among the large setie$r
in a Cascades-based optimizer there is a small subset tlatwith
access path selection. Intuitively, these are the onl\sithlat might
make a difference when optimizing the same query underrdifte
configurations. Figure 5 shows a high level, conceptuastith:
tion of our approach fo€-PQQ Consider the finateMo structure
after optimizing an input query. If we only consider physical
groupExpressionghis finalMeMo is simply a directed acyclic graph,
where each node is groupExpressiorand edges going out of a

3The antecedergroupExpressioris typically obtained after applying ear-
lier rules, such as pushing selections under joins.
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Figure 5: Conceptual description of C-PQO.

nodeG connectG with its best childrergroupExpressionsNow
suppose that we identify the nodes in #eeo that were a result of
applying some rule that deals with access path selectiesétiub-
graphs are marked d3, .. ., P, in Figure 5(a)). Then, everything
that is above thé; sub-graphs is independent of the configuration.
We can then modify the finalEMo structure by replacing each;
with a concise description of the logical operator tree ghatiuced
such physical execution plan (we denote such descripteAPR,
in Figure 5(b) and formally define them in Section 3.1). Whemne
we want to re-optimize the query under a different configaraive
can just focus on thAPR descriptions and infer small execution
plans that satisfy their requirements under the new corstgur
(denotedE P; in Figure 5(c)). We can then extract the best execu-
tion plan from the resultingeMo (whose bulk was pre-computed)
in a much more efficient manner.

Although the conceptual idea behi@dPQOQis simple, there are,
however, significant challenges to address. First, we neatgle
and accurate description of the properties of each physjiator

vant information about the logical operator tree that teiggl the
implementation rule. Specifically, we store in tA®R node the
tuple (S, O, A, N), whereS is the set of columns in sargable pred-
icates and the predicate cardinalitiésis the sequence of columns
for which an order has been requestédis the set of additional
columns used upwards in the execution plan, Ahi the number
of times the sub-plan would be executedllote that (i)S, O, and
A may intersect, and (iV is greater than one only if the sub-plan
is the right-hand-side of an index-nested-loop join. lialy, the
information inAPRnodes encodes the properties that any physical
execution sub-plan must satisfy in order to implement thygckd
operator tree that triggered the corresponding implentientaule.
Consider as an example the following query:

Hg.c,5.(0R.a=5(R) MNRra=s.y S)

Figure 6 shows a partialEMo when optimizing the above query.
There are fouAPRnodes resulting from different implementation
rules. As an exampl& PR, was generated by the rule that imple-

tree P; that is efficient to generate (see Section 3.1). Second, the ments index strategies for single-table selections. Tfurimtion
final MEMO should consider execution plans that can be generated contained in this operator specifies that (i) there is ongagse col-

by arbitrary configurations (also see Section 3.1). To bette
derstand this point, consider the rule that implementsinusted-
loop joins for logical joins with single-table right handles, which
we described in Section 2.2.1. If at optimization time themo in-
dex on the right-hand-side table, the optimizer would neheyen-
erate an execution plaf and we would miss this alternative when
later optimizing under a configuration that contains sudein
Third, as described in Figure 4, optimizers implement binazied-
bound techniques to prune the search space. In our situatanr
ever, we should not eliminate alternatives from considenainless
we can guarantee that no possible configuration might rasthe
alternative being useful (see Section 3.2). Finally, auroptimiz-
ers only keep the most efficiegroupExpressiorfor every child
group of a givergroupExpressionin the context ofC-PQQ there
is no single “most efficientyroupExpressionsince this would de-
pend on the underlying configuration. Thus, we should be &ble
track all possible alternatives that might become part effthal
execution plan (see Section 3.3). In the remainder of thiise
we explore each of these challenges.

3.1 Intercepting Access-Path Selection Rules

To isolate the variable portion of the optimization procesth
respect to varying configurations, we instrument the opmas
follows, extending the techniques in [3, 4]. We create a nbysp
ical operator, which we cal\PR (for access path request). Then,
we modify the generation of substitutes for all the ruleg ta
related to access path selection (see Section 2.2.1) sthehel-
waysreturn anAPR singleton operator tree rather than an actual
physical execution tree. In this way, we make access-paleiion
rules configuration-independent, and we do not miss anynfiate
execution sub-plan. Th&PR physical operator contains the rele-

umn R.a returning 25,000 tuples, (ii) there is no order requested,
(i) the columns that are required afe.c and R.z, and (iv) the
sub-plan would be executed once. SimilaA¥R; in group5 was
generated as part of the implementation rule that transgoins
with single-table right-hand-sides into index-loop joittspecifies
thatS.y is a sargable column which would be sought with 25,000
bindings. FinallyAPR andAPR; are generated as part of the rule
that implements physical scans over tables.

Group 5: (1.Fetch S ) (2 APRj (=S, 1), =0, A={Sit}, N=25K)>---

Group 4: 1. Join(2,3) ) (2 Hash Join(2.2,3.2)> (3 IdxLoop Join (2.2, 5_2) !

Group 2: (1. Select R_.,=5(1)> (2 APRz (8={Ra,25K}, 0={, A=Rx, Rc}, N:1)>

1
|
|
1
|
|
|
|
1
|

Group 3: Q Get S) @ APR; (s=8, 0=p, A={Sb, Sy}, N:1D !
H
|
|
|
|
1
|
|
|
|
H
|
|

Group 1: Q Get R) (2 APR; (=4, 0=§, A~Ra, R.c, R}, N:1)>

Figure 6: Partial MeMo for a simple input query.

Note that this mechanism results in the following two crlcia
properties. First, the leaf nodes in tiMo0 are alwaysAPRphysi-
cal operators. Second, there are no remaining rules in tivaiapr
that depend on the specific configuration, so the optiminabib
queries is truly configuration-independent. Also note thatstill
have not shown how to calculate the cost ofAdPRphysical oper-
ator. We next address this issue.

“We store additional details itPRnodes, but we omit such details to sim-
plify the presentation.



3.2 Relaxing the Search Space

The original Cascades formulation uses a variant of bramzh-
bound pruning to avoid exploring alternatives that are guiged to
be sub-optimal. Specifically, line 7 in Figure 4 completeilscdrds
a groupExpressior-without even optimizing all its children— if it
costs more than the upper boudid3. While this pruning makes
sense in a traditional optimizer, it would be wrong to applfor
C-PQOsince the ultimate cost of an expression in fact depends
on the actual configuration, and therefore making any agiyes
pruning would result in potential loss of optimal plans fane
valid configurations.

A simple solution for this problem would be to simply remove
the pruning altogether (i.e., remove line 7 from Figure 4. il¢/h
this approach is correct, it might result in much longer wjta-
tion calls. Instead, we next show how we can improve this Bmp
approach by eliminating all the candidates that cannot beqgfa
any solution under any configuration. At the same time, wesill
trate how to calculate the cost of &PRphysical operator.

Extending the Cost Model

One of the difficulties of handlind\PR physical operators is that
they are really a specification of the required properties #my
sub-execution plan must satisfy in order to be a valid adtéva.
Therefore, there is no precise notion of the cost oA&R since

it depends on the actual configuration. However, there areige
bounds on the cost of su&kPR On one hand, there exists a con-
figuration with the right indexes that makes a giveRR execute
as fast as possible. Conversely, the configuration thaggmnho
indexes is guaranteed to result in the worst possible impidaa
tion of any givenAPR Therefore, instead of having a single cost
for each physical operator in the tree, we propose to mairted
costs, denotetiestCos{which is the smallest possible cost of any
plan implementing the operator tree under any configurgtimd
worstCost(which is the largest smallest possible cost of any exe-
cution plan over all configurations, and effectively is tmeadlest
possible cost under the configuration that contains no ies)ex

Values ofbestCostandworstCostare calculated very easily for
non-leaf nodes in theeMo. In fact, thebestCosbf an operator is the
local cost of the operator plus the sum of the minimoestCosof
each child worstCostvalues are calculated analogously). We next
describe how to obtaibestCostand worstCostfor the leafAPR
physical operators.

Consider aldAPRnode with informationS,0,A,N)where each
element inS contains a column, the predicate type (i.e., equality
or inequality), and the cardinality of the predicate. Sarlif to the
work in [4], we obtain the index-based execution plan thatiteto
the most efficient implementation of the logical sub-tre@odews:

1. Obtain the best “seek-indeX:..r containing (i) all columns
in S with equality predicates, (ii) the remaining columns in
S in descending cardinality order, and (iii) the columns in
(OUA)--S.

. Obtain the best “sort-index’’s.+ with (i) all columns inS
with single equality predicates (they would not change the
overall sort order), (ii) the columns i@, and (iii) the re-
maining columns irS U A.

. bestCoqiAPR is defined as the minimum cost of the plan
that implementsAPR with either Is..;, or Is.,+ (See Sec-
tion 4.2 for a mechanism to calculate the cost of a plan that
uses a given index to implement ARPRoperator).

Obtaining the value ofvorstCostfor a given APR operator is
simpler. We need to evaluate the cost of implementingAR®

operator with just a heap (i.e., without any index). Thedwihg
lemma establishes the correctness of our approach

LEMMA 1. Leta be a physicalAPR operator. The procedure
above returns the minimum possible cost of any executionipia
plementingx under any valid configuration and the largest cost of
the optimal execution plan faer under any valid configuration.

As an example, consider a&PR operatora with information:
[S=(a(eq,300] bz, 200] s C[gt,100)), O=(d), A=(e), N=1]. Then, the
value ofbestCosis the minimum cost of the plan that uses either
Iseer = (a,c,b,d, e) or Isort=(a, d, b, c, ). Similarly, the value of
worstCosts the cost of the plan that uses a heap to implement

Pruning the Search Space

With the ability to calculatdestCostindworstCostvalues for ar-
bitrary physical operators in theMo structure, a relaxed pruning
rule can be implemented as follows:

Relaxed pruning rule: Every time that the partiddestCosbf a
groupExpressiong is larger than thevorstCostof a previous so-
lution for the group under the same optimization contexmielate
g from consideration (we evaluate the effectiveness of thisipg
step in the experimental evaluation).

LEMMA 2. The relaxed pruning rule does not eliminate any ex-
ecution plan that can be optimal for some valid configuration

3.3 Putting it all Together

We now show the modified version of tptimizeGrougproce-
dure of Figure 4 with all the changes required to sup@RQQ
Figure 7 shows a pseudocode of the new procedure, which e cal
OptimizeGroup.pqo. We next describe this new procedure and
contrast it with the original version.

The first difference inOptimizeGroup.pqo is the input/output
signature. The new version does not accept an upper bound
as input, since this is used in the original branch-and-dqumin-
ing strategy, which we do not rely on anymore. Also, the outpu
of the new procedure consists not of a singteupExpressiorut
of the full set ofgroupExpressionfor groupG and required prop-
erties RP. The second difference in the new version is that we
replace the originalvinnerCircle structure with the more general
alternativePoolassociative array, which returns the set of all valid
groupExpressionfor a given group and set of required properties.

For a given input grougs and required propertie P, algorithm
OptimizeGroup.pqo first checks thalternativePooldata structure
for a previous call compatible witRP. If it finds one, it returns the
set ofgroupExpressiongreviously found, effectively implement-
ing memoization. Otherwise, line 4 iterates over all enwatest
physicalgroupExpressiongn G (note that this line encapsulates
the changes to the rules that select access paths and now retu
APRoperators). For each such ragbupExpressiorandP, line
5 estimates the local values béstCostandworstCostfor cand P
(in case ofAPRoperators, we use the procedure of Section 3.2,
while in the remaining cases bobiestCostand worstCostvalues
are equal to the original local cost of the operator). Thamw 8
calculates the inpugroup and required properties for each input
of candP and line 9 recursively call®ptimizeGroup.pqo to op-
timize them. After each input is successfully optimizedeb 11
and 12 store the set of candidates for eacleawfdP’s children
in the arrayallChildren and update its partial values bestCost

S\We omit proofs due to space constraints, but note that thétsefepend on
current query processing models. New access methods oenmepitation
strategies would require extending the lemma.



OptimizeGroupc.pqo (Group G, Properties RP)
returns Set of groupEzpressions
01 allP = alternativePool [G, RP]
02 if (allP is not NULL) return allP
/I No precomputed solution, enumerate plans
03 candPool = ()
UB = >
04 for each enumerated physical groupEzpression candP

05 candP.bestCost = localCostForBest(candP)
candP.worstCost = localCostForW orst(candP)
06 for each input p; of candP
07 if (candP.bestCost > UB)
continue back to 3 //outof bounds
08 G; = group of p;
RP; = required properties for p;
09 allP; = OptimizeGroupc.pqo(Gi, RP;)
10 if (allP; = 0) break // no solution
11 candP.allChildren[i] = allP;
12 candP.bestCost += ming, cqup; ¢i-bestCost
candP.worstCost += miﬁciEallPi c;.worstCost
/I Have valid solution, update state
13 candPool = candPool U {candP}
14 if (candP.worstCost < UB)

UB = candP.worstCost
15 alternative Pool [G, RP] = candPool
16 return candPool

Figure 7: Modified OptimizeGroup task for C-PQO.

andworstCost Note that, if at any moment the currdygstCosbf
candP becomes larger than theorstCostof a previously calcu-
lated solution, the candidate is discarded and the nextnen-
sidered (line 7). Otherwise, afteandP is completely optimized,
line 13 adds it to the candidate pool for theand RP and line

14 updates the upper bound with therstCostvalue of candP

if applicable. After all candidates are explored, line 15lates
the alternativePoolarray and line 16 returns the set of candidate
groupExpressions

the highest-level choice). Figure 8 shows a sampte’or graph
induced by a partialemo structure (the notation.{1, 2, 3} in phys-
ical operators refers to the setgbupExpression$7.1, 7.2, 7.3},
and the best alternative for ar node is shown with a bold arrow).
In the rest of the paper, we us@Moc.pqo to denote thewnn/or
graph induced from the finakMo produced by &-PQQOoptimizer.

Group 3: 1.Join(2,7)> @ Hash Join(2.{2,3}, 7.{1 ,2,3)))

Group 2 (1.Selectﬂ.a=5(1)> (2 Filter(1.(2,3,4))>

Group 1: (1.GetR ) (2. APR4 3.APR; ) (4.Sort(1.{23}) ) ---

(b) AND/OR graph
Figure 8: anD/0r graph induced from a MEMO.

As we can see, even though several changes are required to en-

ableC-PQOin a Cascades-based query optimizer, the main struc-

ture of the optimization tasks remain similarly organized.

The Output of a c-PQo Optimization

After executingOptimizeGroup.rqo 0N the root node of the initial
MEMO with the global set of required properties, we need to peepar
the output of aC-PQO optimization. We do so by extracting an
AND/ar subgraph of physical operators from the fimaho®. Each
node in the output graph can be of one of two classes. On ontg han
AND nodes contain the actual physigabupExpressionalong with
their bestCostindlocalCostvalues (thdocalCostvalue is the one
defined in line 5 of Figure 7 and can be obtained back by subtrac
ing thebestCostvalues of the best children ofgroupExpression
from its ownbestCoswalue). Each outgoing edge of anp node
represents a child of the correspondigrgupExpressiorand goes
into anor node.oRr nodes, in turn, correspond to candidate choices,
represented by outgoing edges into otlwar nodes. Additionally,
eachor node distinguishes, among its choices, the one that rélsulte
in the minimumbestCoswalue (i.e., the child that contributed to
candP.bestCost in line 12 of Figure 7). Finally, we add @ot

Or node that has outgoing edges towards ewenynode that corre-
sponds to groupExpressioin the root node of the finaleMo sat-
isfying the original required properties (since there migh many
alternatives to implement the query, this raatnode represents

SWe use a normalization phase that relies on pointer unswigzd effi-
ciently produce a heavily compressed serialization ofiEdD that is then
exported to the client.

4. FAST RE-OPTIMIZATION IN C-PQO

TheMEMOc-pgo described in the previous section encapsulates all
the optimization state that is possible to obtain withoutwimg a
specific configuration instance. Additionally, it conta@rough in-
formation to derive configuration-specific execution sldmp. In
this section we describe how to obtain an execution plantzmds-
timated cost for a query given iEEM0c_pqo Under an arbitrary con-
figuration. In Section 4.1 we describe a one-time post-fmsiog
pass on theEMoc.pqo that simplifies subsequent re-optimizations.
In Section 4.2 we describe how we deal with |88Rnodes. Next,
in Section 4.3 we describe the re-optimization algorithrimaRy,
in Section 4.4 we discuss extensions to our basic approach.

4.1 Initialization

Before the first re-optimization, we perform a couple of guic
transformations in th®EMOc.pqo to reduce subsequent work. Since
APRnodes are produced by modified implementation rules, there
might be several instances of such rules that prodiieR nodes
that are indistinguishable. Since our techniques do sonmk feo
eachAPRin the MEMOc.pgo ON a re-optimization, we collapse all
identical APR nodes into a single representative. We do it effi-
ciently by using a hash table &fPRnodes. Since the final number
of distinct APRnodes is fairly small (see the experimental evalua-
tion), this step is very efficient. Additionally, we perforanquick
consolidation ofor nodes in thetEMoc pgo. Recall thator nodes
represent a subset of choices in a giggoup. We therefore ana-
lyze eachor node and collapse those that are defined on the same



group and agree on all the alternatives. Simgeupids are con-
secutive integers, we can do this step efficiently by usingan
ray indexed by th@r nodegroupid. Comparing whether twor
nodes are identical is also efficient, becauseMiyBc.pqo returns
groupExpressions theor node sorted bgroupExpressioid, and
therefore the set-comparison can be done in linear timealliginve
perform a bottom-up traversal of the resulting graph andiekte
all or nodes that have nap children (e.g., because there were no
successful implementations during optimization due tatreatic-
tory required properties), and alkip nodes for which there is at
least one child for which we eliminated the correspondingode.

4.2 Leaf Node Calculation

A crucial component in our technique is the ability to calcu-
late the cost of the best plan for a physi@dPR operator for a
given input configuration. Consider a physi@dPR operatora
=(5,0, A, N). Suppose that we want to calculate the cost of an
alternative sub-plan that uses an indesver columngci, ..., ¢n)
to implementa. In order to do so, we simulate the implementation
rules that produced in the first place, and approximate what the
optimizer would have obtained under the hypothetical coméig
tion that contains indexX. Let I, be the longest prefigcy, . . ., ck)
that appears irb with an equality predicate, optionally followed
by cx11 if ck+1 appears b with an inequality predicate. We can
then implementx by (i) seekingl with the predicates associated
with columns inl,, (i) filtering the remaining predicates ifi that
can be answered with all columns In (iii) looking up a primary
index to retrieve missing columns {1, ...,cn} - S -0 - A, (iv)
filtering the remaining predicates i, and (v) optionally sorting
the result ifO is not satisfied by the index strategy. Figure 9(a)
shows the generic pattern for single-index execution plaasim-
plements this logical tree.

As a simple example, consider a single-table logical operat
tree representing the quely, (oa1s=2nc=4(R)) and the associ-
atedAPRoperatora = (S={c}, O={d}, A={a, b, d}, N=1) (note
that there is a sort requirement of colunip Figure 9(b) shows
the resulting physical tree for an inddx=(c, a,b) (this execu-
tion plan seeks or; for tuples satisfying==4, filters tuples sat-
isfying a + b=2, fetches the remaining columns and performs a
final sort to satisfy the required order). Analogously, F&a(c)
shows the execution plan for the same logical operator mdéra
dexI>=(d, ¢, b, a) (this execution plan scans the covering index
and filters on the fly all the predicates, but does not explisiort
the output since it is already ordered in the right way).

Filter for
remaining
predicates

Fetch (d)

Fetch cols

in SUCUA
Filter for cols . _ Filter (c=4
leran= AND a+b=2)

Index Seek/Scan

(cols in p) Index Seek(c=4)

(a) Original Pattern ~ (bJ1(c, a, b)
Figure 9: Plan Pattern.

(c) I2(d, ¢, b,a)

Multiple Indexes

A configuration generally contains multiple indexes defiogdr
the table of a given request. In principle, we could use mioag t
one index to obtain a physical sub-plan that implements ae®q
(e.g., by using index intersections). We decided not to idens
these advanced index strategies since they would increas®in-
plexity with generally modest gains in quality. However, n@e
that this is just a matter of convenience, and exactly theeganin-
ciples can be used to incorporate these less common sesitéftfe
therefore calculate the best execution plan for a gikBRnode as
the minimum cost alternative for each of the indexes in thdige
uration defined over the same tablecas

4.3 Overall Cost Calculation

We now present the overall algorithm to re-optimize a query u
der an arbitrary configuration. For a given configurati@nand
MEMOc-pgo M, functionbestCostForC(root(M), C) returnsthe
cost of the best execution plan for the query represented hyn-
der configuratiorC as follows:

bestCostForC(Node m, Configuration () =
switch(n)
case AND(4PR;,{}):
return leafNodeCalculation(4PR;, C) (Section 4.2)
case AND(OIL {917927 s 79”}):
return localCosi(op) + >, bestCostForC(g;,C)
case 0R({917927 tet 79”}):
return min; bestCostForC(g;,C)

The function above operates depending on the type of inpde no
n. If nis aleaf node (i.e., aAPRnode), we estimate the cost of
the best configuration as explained in Section 4.2. Othervifist

is an internakyp node, we calculate the best cost by adding to the
localCostof the groupExpressiolin n the sum of the best costs of
each ofn’s children (calculated recursively). Finally,qifis anor
node, we return the minimum cost among the choices.

Additional Details

In addition to the straightforward implementation of thisétional
specification, we perform the following optimizations, waiwe
omitted above to simplify the presentation:

Memoization: Note that the same node can be a child of multiple
parents. To avoid unnecessary recomputation, we use mem-
oization and therefore cache intermediate results so that w
operate over each node at most once.

Branch-and-Bound pruning: bestCostForC induces a depth-first
search strategy. We then maintain the cost of the best solu-
tion found so far for each node in tleMoc.poo and discard
alternatives that are guaranteed to be sub-optimal.

Execution plans: In addition to calculating the best cost for each
node, we also return the operator tree that is associatéd wit
such a cost. Therefore, the same algorithm returns both the
best execution plan and its estimated cost.

Note that the first two optimizations above are analogoutded
in the Cascades Optimization Framework.

4.4 Extensions

We now discuss some extensions to the techniques descnibed i
the paper that take into account important factors such asyqu
updates and materialized views, but we omit a detailedrtreat
of these issues due to space constraints.



Update Queries

So far we implicitly discussedeLEcT-only workloads. In real-
ity, most workloads consist of a mixture of “select” and “apel’
queries, an€C-PQOmust take into consideration both classes to be
useful. The main impact of an update query is that some (pinall
dexes defined over the updated table must also be updateddas a s
effect. To address updates, we modify the configuratioredegnt
implementation rules that deal with updates, and replaa® thith
(non-leaf) UAPR nodes that encode the relevant update informa-
tion. At re-optimization time, we calculate the cost of upaa all
relevant indexes in the configuration for eadAPRnode.

Materialized Views

Although indexes are the most widely used redundant data-str
ture to speed-up query execution, materialized views zse al
valuable alternative. Similar to the access-path-seleciinple-
mentation rules described in 2.2.1, query optimizers ralyiew-
matching related rules that, once triggered within the exmnof

a groupExpressionreturn zero or more equivalent rewritings of
suchgroupExpressiorusing an available view in the system. To
incorporate materialized views intoG:PQO optimizer, we need
to instrument such rules in a similar manner to what we didhen t
case of indexes. Specifically, every time a view-matchirg isi
triggered, we analyze the expression and retustARRnode that
encodes the logical operator-subtree. Theéser APR are more
complex than regulafPRs, since we have to encode the view ex-
pression itself, which might contain joins, grouping clesiand
computed columns. However, the idea is still the same, atiteat
end of query optimization we returrMaMoc.-pqo that contains both
APRs andVAPRs. A subtle complication of dealing with materi-
alized views is that the optimizer might trigger index-tzhgaple-
mentation rules over the newly used materialized views. utths
situation,APRs are defined oveVAPRs rather than base tables, but
the underlying principles remain the same.

Physical Design Tuning Tool

®\
e

Figure 10: Integrating C-PQOQ into a physical tuning tool.

®
®

DBMS

5. C-PQO-BASED TUNING TOOLS

As explained before, current physical design tuning toms t
verse the search space by repeatedly optimizing queries aiifd
ferent candidate configurations. It turns out that intégge€-PQO
into existing physical design tools is straightforward.gutie 10
shows a generic architecture to achieve this goal. A GeRQO
component intercepts each optimization reqyéstQ) for query
@ and configuratiorC' issued by the tuning tool (step 1 in the fig-
ure). If Q has not been seen before, BePQOcomponent issues
a uniqueC-PQOcall to the DBMS (step 2 in the figure), obtain-
ing back aMEMOc-pqo (Step 3 in the figure). Then, it calculates the
execution plan and cost f@p using theMEMOc pqo as described in
Section 4 and returns the result to the caller (step 4).MEh@c-poo
is cached locally so that future calls with the same quengareed
without going back to the DBMS. In this way, the tuning tool is
not aware that the optimization calls are actually beingestiby

a C-PQOcomponent, and proceeds without changes regarding its
search strategy.

Deeper Integration with Tuning Tools

Although the architecture described above is enough to atiam
cally boost the execution times of tuning tools, there migghtad-
ditional opportunities to leveragé-PQOfor physical design tun-
ing. Consider for instance re-optimizing a multi-query oad.

If the workload queries share some structure, rather thextabing
over each individualtEMoc.pqo Structure for the workload queries,
we can create a combin@d@Moc_pqo based on the individual query
MEMOc-pqo Structures by simply adding a newb root node. Ad-
ditionally, we can collapse identical sub-graphs into alsirep-
resentative, obtaining a compressed representation thaldvioe
re-optimized much faster. Furthermore, suppose that wé tvae-
optimize a query under a configuratioi,.., that is slightly differ-

ent from a previously optimized configuratidrn, . We can reuse
theMEMOc-pgo computation folC,,;4 by (i) recalculating alAPRIeaf
nodes that can be influenced by the differences betwégnand
Crew (€.0.,APRs over tables that have the same indexes in both
Chew andCy4 do not need to be recalculated), and (ii) recalculat-
ing bottom-up the cost and plans based on the (small) nunfber o
changes in thé&PRleaf nodes.

More generallyC-PQOeliminates the overhead of optimization
calls in the tuning process (after the fiGtPQOcall). Therefore,
many architectural choices that were required in previesghs
should be revisited and perhaps modified. As a simple example
consider the relaxation-based approach in [3]. The idea Bd-
gressively “shrink” an initial optimal configuration usitigansfor-
mations that aim to diminish the space consumed withoutfsign
icantly hurting the expected performance. For that purpsseh
techniques estimate the expected increase in executienftima
large set of candidate transformations over the currenfiguma-
tion (e.g., the effect of replacing two indexes with a merged).
However, withC-PQOwe can obtain the precise increase in ex-
ecution time at the same overhead as the original approximat
in [3], and therefore avoid doing guess-work during the geavwe
believe thatC-PQOcan enable a new generation of optimization
strategies by exploiting directly the representatiomec.pqo, in-
stead of just usin@-PQOas a sophisticated caching mechanism.

6. EXPERIMENTAL EVALUATION

In this section we report an experimental evaluation of €uit
niques in the paper. We implemented our approach in Mictosof
SQL Server 2005 and usedTac-H database with the 22-query
workload generated by thgen utility” (we tried other databases
and workloads obtaining similar results). The four questithat
we address in the rest of this section are summarized below:

1. What is the overhead of the first (and only) optimizatioth ca
in C-PQO? (Section 6.1)

2. What is the speedup of subsequent optimization calls¢- (Se
tion 6.2)

3. What is the accuracy of subsequent optimization callse-(S
tion 6.3)

4. What is the effect of integrating-PQOin existing physical
design tools? (Section 6.4)

" Available athttp://www.tpc.org.
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Figure 11: Space overhead for the initialC-PQO optimization.

6.1 Initial Optimization Call: Overhead

To evaluate the overhead of the first optimization calCePQO
we optimized each of the 22 queries with and withGuPQOen-
abled in the DBMS. Figure 11 shows the fractiongrbupsand
groupExpressionin the C-PQOenabled DBMS compared to the
original DBMS. The figures distinguisB-PQOwith and without
the cost-based pruning of Section 3.2. We can see that withou
pruning, the number of groups generated by@BQOoptimizer
is between 1x and 1.8x that of the original optimizer and tinvean
ber of groupExpressionis between 1.1x and 5.5x that of the origi-
nal optimizer. When we use the relaxed pruning rule (i.@ rég-
ular C-PQOmode) the fraction of groups i6-PQOdrops to be-
tween 0.64x and 1.6x, and the fractiongsbupExpressionsrops
to between 0.75x and 2.7x. The reason for factors smaller tha
1x is thatAPRnodes effectively collapse potentially large execu-
tion sub-plans into a single node that contains the logiepte-
sentation of the operator tree. Figure 11 shows that theedla
pruning rule is effective in cutting down the number goups
andgroupExpressiongenerated by the optimizer, and also that the
space overhead y-PQOis between 1x and 3x of that of the orig-
inal optimizer.
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Figure 12: Time Overhead of tﬁueerier?itial C-PQO optimization.

Figure 12 shows the overheads@fPQOin terms of optimiza-
tion time. We can see that the first optimization call@PQO

is no more than 3 times that of a regular optimization calti(an
many cases around 1.5x). Assuming that subsequent optianiza
calls for the same query iB-PQOare cheap (see next section), the
figure shows that after just a couple of optimization callscma
completely amortize the additional overheadCsPQQ
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Figure 13: Speedup of subse%ﬂzsnt optimizations i-PQO.

6.2 Subsequent Optimization Calls: Speedup

We now measure the average time to produce an execution plan
and a cost for subsequent calls withPQQ For that purpose,
we compared the time to optimize each of the122-H queries
underC-PQOagainst the regular query optimizer. We used the 280
different configurations that were considered by an exgstiming
tool for the workload and averaged the results. Figure 1@ sltloat
the average speedup per query when usifigQOvaries from 34x
to 450x. To put these numbers in perspective, the table betows
the total number of optimizations witb-PQOthat are possible per
regular optimization for a sample of titec-H queries,including
the firstC-PQOcall.

Original | C-PQO(Q11) C-PQO(Q15) C-PQO(Q20)
1 0 0 0

2 29 169 0

3 64 625 1

4 99 1081 132

5 134 1537 263

Figure 14 shows the total number of distif®R physical op-
erators for each of the 2#c-H queries. Contrasting this figure
with Figure 11(b), we see that only a small fraction of theewih
the MEMOc pqo require a non-trivial amount of processing to obtain
execution plans and costs for varying workloads.
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Figure 14: Distinct APRs genLgrrgied during optimization.

6.3 Subsequent Optimization Calls: Accuracy

We now analyze the accuracy of subsequent optimizatios call
using C-PQQ We first optimized each of thepc-H queries un-
der the 280 different configurations as in the previous saaising
both the regular query optimizer ai@PQQ We then compare
the estimated execution cost of the plans found by the regpla
timizer and those found bg-PQQ Figure 15(a) shows the results



for the over 6,000 optimization calls, which are heavilystared
around the diagonal. Figure 15(b) shows a different viewhef t

tools stabilized and did not improve further the qualitylodit rec-
ommendations). We can see that for all settings, the pexgerdf

same data, in which we show the maximum relative and absolute improvemertt of the final configuration for the input workload is

errors in cost between the original optimizer &8P QOfor differ-

ent percentiles. We can see that for 80% of the cal{®,QOand

the original optimizer differ in less than 2.5%, and for 98%ile
calls, the error is below 10%. We analyzed the remaining 2% of
the cases and we found that the errors result from eithed gmal
accuracies in our cost model or certain optimizations thetuery
optimizer performs (e.g., using record-id intersecticars) we de-
cided, for simplicity, not to include in our prototype.
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Figure 15: Accuracy of C-PQO optimization calls.

6.4 Interaction with Tuning Tools

In this section we evaluate the benefits@PQO when inte-
grated into an index tuning tool as described in Section 5u¥¢éel
the 22 queryrpc-H workload with different storage and time con-
straints.
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Figure 16: Overall quality of a C-PQO-enabled tuning tool.

Figure 16 shows the quality of the final configurations prediic
by the tuning tool when using regular optimization calls ahsb
with C-PQQ We let the original tuning tool run for 30 minutes
and theC-PQG-enabled tool run for 1 minute (at these points, both

almost the same for both systems.
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Figure 17: Improvement of configuration quality over time.

1000

Having shown that the quality of recommendations does rfet su
fer by usingC-PQQ we now report the efficiency aspect of inte-
grating C-PQOwith tuning tools. For that purpose, we tuned the
workload with a storage constraint of 2GB, and measureduhé q
ity of the best configuration found by each system over timig- F
ure 17 shows the results for a tuning session of around 15tesnu
(note the logarithmic x-axes). We can see that although toogrs
result in the same quality of recommendations, GiPQOC-based
tuner arrives at such configuration in 22 seconds of tunirnglevit
takes over 210 seconds to the regular tuner to achieve a campa
ble result. This difference is further revealed in Figure @8ich
shows the number of optimizations per minute for each quettye
workload during a 15 minute tuning session. We can see that th
is over an order of magnitude improvement in throughput wien
ing aC-PQOenabled tuning tool.
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Figure 18: Optimization throughput inside the tuning tool.

Finally, Figure 19 shows a breakdown of the time used in a typ-
ical tuning session. For this purpose, we tuned the inpukivad
for 10 minutes and with a space constraint of 2GB. We can s th
as discussed in the introduction, the original tuning t@elsiaround
92% of the time waiting for results of optimization calls. rGe-
quently, less than 8% of the tuning time is actually spenthia t
proper search. In contrast, when using @& QGenabled tuner,
the situation is completely reversed. The tool uses less4P& of
the time doing the first optimization call for each query, amd
other 5% of the time doing all the subsequent calls, leavitp &f
the time for the search strategy proper. Note @d&QOanalyzed
almost 10,000 different configuration and performed ovef@Q
optimization calls in the 10 allowed minutes, while the ora
tuning tool managed to process just 355 configurations alavbe
1,700 optimization calls in the same amount of time.
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Figure 19: Execution time breakdown during a tuning session

7. RELATED WORK

8. CONCLUSION

In this work we address the current bottleneck of currentsphy
ical design tools: large amounts of time waiting for the wytier
to produce execution plans. Inspired by the ideas on paramet
query optimization, we designed an infrastructure thatipces,
with little overhead on top of a regular optimization calg@npact
representation of all execution plans that are possiblesdoying
input configurations. We are then able to instantiate tipsagen-
tation with respect to arbitrary configurations and sinmeithe op-
timization of queries orders of magnitude more efficientigrt tra-
ditional approaches at virtually no degradation in quafur tech-
niques are straightforward to incorporate into existinggital de-
sign tools, and our initial experiments show drastic impraents
in performance. Furthermore, we believe that an even moee-in
esting challenge lies ahead. With the main bottleneck ofeciir

tools gone, we might be able to focus on more complex optimiza

tion strategies by exploiting directly the representatdC-PQO

There has been considerable research on automating the physenabled tools, instead of usig:PQOas a sophisticated caching

ical design in DBMSs (e.g., [1, 6, 8, 15]). All this work rddie
on thewhat-if interface to evaluate candidate configurations, and

therefore could be enhanced by t8ePQOideas in this work to
boost their performance. References [3, 4] introduce, iligats/
different context, the underlying functionality that weeuis the

physicalAPRnodes in Section 3. In contrast to our work, refer-

ence [4] exploits such technology in the context of localroj#a-

tions, by transforming a final execution plan into anotheit trses
different physical structures. Instead, we are able to esidthe
full optimization problem by generating and exploitifEMOc-pgo

structures rather than just any final execution plan.

Parametric Query Optimization [11] (®#QO) studies mecha-

nisms to generate optimal execution plans for varying patars.

Traditionally, PQO considered parameters that are either system-

related (e.g., available memory) or query-related (egjecsivity

of parametric predicates). In this work, we address thelprob

of parametric query optimization when the parameter is ttea

physical configuration on top of which the query needs to ke op

mized.

Very recently, reference [12] introduces INUM, a technidjot
shares with ours the goal of reducing the bottleneck of dptition
calls inside physical design tools. The idea is to extenddbal-

transformation approach in [3, 4]. During a preprocessip,s

several optimization calls are issued for a given queryl timi re-
sulting plans are enough to infer optimal plans for arbjti@nfig-
urations. In contrast to our work, INUM is not fully integeat with
the query optimizer. For that reason, it is not clear how temect
the approach for more complex execution plans (such aslatade
sub-queries) or other physical access path structurek ésumate-
rialized views). Specifically, reference [12] reports aarage rela-

tive error of 7% forrpc-H query 15 with no estimation error above

10%. In contrast, our techniques result in a average relativor

of 1.04%, with no estimation error above 1.8% for the sameyque
INUM also requires hints and assumptions to reduce the nuofbe

regular optimization calls per query in the pre-computatiase

(which could be exponential in the number of tables in thestvor
case). As an example, fapc-H query 15, INUM requires 1,358

regular optimization calls before it can start optimizimpirary
configurations. OuiC-PQO optimizer required aingle C-PQO
execution call (worth 1.4 regular optimization calls) to\a at the
same state (a difference of roughly three orders of magejtuebr
that reason, an experimental evaluation of INUM [12] resit
1.3x to 4x improvement in the performance of tuning toolseveh

our techniques result in over an order of magnitude impr@m@m

over INUM.

mechanism.
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