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ABSTRACT
Automated physical design tuning for database systems has re-
cently become an active area of research and development. Existing
tuning tools explore the space of feasible solutions by repeatedly
optimizing queries in the input workload for several candidate con-
figurations. This general approach, while scalable, often results in
tuning sessions waiting for results from the query optimizer over
90% of the time. In this paper we introduce a novel approach,
called Configuration-Parametric Query Optimization, that drasti-
cally improves the performance of current tuning tools. By issuing
asingle optimization callper query, we are able to generate a com-
pact representation of the optimization space that can thenproduce
very efficiently execution plans for the input query under arbitrary
configurations. Our experiments show that our technique speeds-
up query optimization by 30x to over 450x with virtually no loss
in quality, and effectively eliminates the optimization bottleneck in
existing tuning tools. Our techniques open the door for new,more
sophisticated optimization strategies by eliminating themain bot-
tleneck of current tuning tools.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access Methods; H.2.4 [Systems]: Query
Processing

General Terms
Algorithms, Performance

Keywords
Parametric Optimization, Physical Design Tuning

1. INTRODUCTION
Database management systems (DBMSs) increasingly support

varied and complex applications. As a consequence of this trend,
there has been considerable research on reducing the total cost of
ownership of database installations. In particular, physical design
tuning has recently become relevant, and most vendors nowadays
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offer automated tools to tune the DBMS physical design as part of
their products (e.g., [1, 8, 15]). Although each solution provides
specific features and options, all the tools address a commonprob-
lem (see Figure 1): given a query workloadW and a storage budget
B, the task is to find the set of physical structures, or configuration,
that fits inB and results in the lowest execution cost forW .���������	��
� �
���
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Figure 1: Architecture of existing physical design tools.

The physical design problem as stated above can then be trans-
lated into a complex search over a potentially very large space of
feasible configurations. Although there are different approaches to
conduct this search (e.g., see [3, 6, 14]), a common requirement in
all existing solutions is the ability to evaluate the expected cost of
a query under a given candidate configuration in the search space.
Of course, it has been long established that materializing each can-
didate configuration in the DBMS and executing queries to obtain
their costs is unfeasible in practice. Therefore, existingsolutions
rely on (i) awhat-ifoptimization component [7] that is able tosim-
ulate a hypothetical configurationC in the DBMS and optimize
queries as ifC were actually materialized, and (ii) the assumption
that the optimizer’s estimated cost of a query is a good indicator to
the actual execution cost.

Having awhat-if abstraction enabled the research community to
focus on complex search algorithms that relied on this fast-mode of
evaluating candidate configurations for the input workload. How-
ever, the overhead of awhat-if optimization call is essentially that
of a regular optimization call, which for relatively complex queries
can be important. In fact, there is anecdotal evidence that in some
cases, over 90% of the tuning time is spent issuingwhat-if opti-
mization calls and waiting for results. Clearly, optimizercalls are a
bottleneck in current physical design tools.

A closer inspection of the optimization calls issued by tuning
tools reveals that each query in the workload is optimized multiple
times for different candidate configurations. Moreover, often these
configurations are not so different across each other (e.g.,two con-
figurations might share all but a couple of indexes). Intuitively, it
would seem that the optimization of a queryq under two similar
configurationsC1 andC2 would result in substantial duplication of
work (such as query parsing and validation, join reordering, and in
general any index-independent process inside the optimizer) and,
relatively, just a little amount of configuration-specific work.



This situation bears some resemblance to the classical parametric
query optimization problem, or PQO [11]. In such context, queries
might have unbound parameters at compilation time1. Optimizing
a parametric query each time it is executed with different parameter
values is very expensive. On the other hand, optimizing the query
once and reusing the execution plan can be suboptimal if the param-
eter values are different from those assumed at optimization time.
To overcome this problem, PQO optimizes a query once (possibly
at a higher overhead than that of a regular optimization call) and ob-
tains back, not a single execution plan, but a structure thatencodes
a set of candidates that are optimal in some region of the parameter
space. Later, when the query is executed with specific parameter
values, an appropriate plan is extracted from this structure, which
is much faster than re-optimizing the query from scratch.

In this work, we propose a technique inspired by PQO, which
we call Configuration-PQO, or C-PQO for short. The idea is to
issue a single optimization call per query (possibly with a larger
overhead than that of a regular optimization call), and obtain back a
compact representation of the optimization search space that allows
us to very efficiently generate execution plans for arbitrary config-
urations. Then, the modest overhead during the first (and only)
optimization call is more than amortized when the same queryis
re-optimized for different configurations. Our experimental evalu-
ation shows that this approach speeds-up query optimization by 30x
to over 450x with virtually no loss in accuracy. We then show that
incorporatingC-PQOinto existing physical design tools is straight-
forward and effectively shifts the overhead away from optimiza-
tion calls, opening the door for new and more sophisticated search
strategies at no perceived additional cost.

We make two assumptions in the rest of this paper. First, we
assume that we operate over a top-down, transformational query
optimizer (our techniques are in principle applicable to other opti-
mization architectures, but we exploit certain features available in
top-down optimizers in our algorithms). Second, we restrict the
physical structures in candidate configurations to primaryand sec-
ondary indexes (but see Section 4.4 for extensions to other struc-
tures).

The rest of the paper is structured as follows. Section 2 re-
views theCascades Optimization Framework, which is the most
well-know example of a top-down transformational optimizer. Sec-
tion 3 discusses how to extend a Cascades-based optimizer toen-
ableC-PQO. Section 4 explains how to infer execution plans and
estimated costs for varying configurations in aC-PQOenabled op-
timizer. Section 5 details how to incorporateC-PQO into current
physical design tools. Section 6 reports an experimental evaluation
of our techniques. Finally, Section 7 reviews related work.

2. THE CASCADES FRAMEWORK
In this section we describe the main features of the CascadesOp-

timization Framework, developed in the mid-nineties and used as
the foundation for both industrial (e.g., Tandem’s NonStopSQL [5]
and Microsoft SQL Server [10]) and academic (e.g., Columbia[2])
query optimizers. Rather than providing a detailed description of
all the features in Cascades, we will give a high level overview of
the framework followed by a focused description of the compo-
nents that are relevant to this work (see [9, 13] for more details).

The Cascades Optimization framework results in top-down trans-
formational optimizers that produce efficient execution plans for
input declarative queries. These optimizers work by manipulating
operators, which are the building blocks ofoperator treesand are

1Traditionally, parameters can be either system parameters, such as avail-
able memory, or query-dependent parameters, such predicate selectivity.

used to describe both the input declarative queries and the output
execution plans. Consider the simpleSQL query:

SELECT * FROM R,S,T
WHERE R.x=S.x AND S.y=T.y

Figure 2(a) shows a tree of logical operators that specify, in an al-
most one-to-one correspondence, the relational algebra representa-
tion of the query above. In turn, Figure 2(c) shows a tree of physi-
cal operators that corresponds to an efficient execution plan for the
above query. In fact, the goal of a query optimizer is to transform
the original logical operator tree into an efficient physical operator
tree. For that purpose, Cascades-based optimizers rely on two com-
ponents: theMEMO data structure (which keeps track of the explored
search space) andoptimization tasks, which guide the search strat-
egy. The following sections discuss these notions in more detail.

2.1 The Memo Data Structure
The MEMO data structure in Cascades provides a compact rep-

resentation of the search space of plans. In addition to enabling
memoization (a variant of dynamic programming), aMEMO provides
duplicate detection of operator trees, cost management, and other
supporting infrastructure needed during query optimization.

A MEMO consists of two mutually recursive data structures, which
we callgroupsandgroupExpressions. A grouprepresents all equiv-
alent operator trees producing the same output. To reduce memory
requirements, agroupdoes not explicitly enumerate all its operator
trees. Instead, it implicitly represents all the operator trees by using
groupExpressions. A groupExpressionis an operator having other
groups(rather than other operators) as children. As an example,
consider Figure 2(b), which shows aMEMO for the simple query in
the previous section (logical operators are shaded and physical op-
erators have white background). In the figure,group 1 represents
all equivalent expressions that return the contents of tableR. Some
operators ingroup1 are logical (e.g.,Get R), and some are physical
(e.g.,Table Scan, which reads the contents ofR from the primary
index or heap, andSorted Index Scan, which does it from an exist-
ing secondary index). In turn,group 3 contains all the equivalent
expressions forR ./ S. Note thatgroupExpression3.1,Join(1,2),
represents all operator trees whose root isJoin, first child belongs to
group1, and second child belongs togroup2. In this way, aMEMO
compactly represents a potentially very large number of operator
trees. Also note that the children of physicalgroupExpressionsalso
point to the most efficientgroupExpressionin the corresponding
groups. For instance,groupExpression3.8 represents a hash join
operator whose left-hand-child is the secondgroupExpressionin
group1 and whose right-hand-child is the secondgroupExpression
in group2.

In addition to representing operator trees, theMEMO provides ba-
sic infrastructure for management ofgroupExpressionproperties.
There are two kinds of properties. On one hand,logical properties
are shared by allgroupExpressionsin agroupand are therefore as-
sociated with thegroup itself. Examples of logical properties are
the cardinality of agroup, the tables over which thegroupoperates,
and the columns that are output by thegroup. On the other hand,
physicalproperties are specific to physicalgroupExpressionsand
typically vary within agroup. Examples of physical properties are
the order of tuples in the result of a physicalgroupExpressionand
the cost of the best execution plan rooted at agroupExpression.

We introduce additional functionalities of theMEMO data structure
as needed in the rest of the paper.

2.2 Optimization Tasks
The optimization algorithm in Cascades is broken into several

tasks, which mutually depend on each other. Intuitively, the opti-
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Figure 2: The MEMO data structure in a Cascades-based optimizer.

mization of a query proceeds as follows. Initially, the logical op-
erator tree describing the input query iscopied intothe initial MEMO
(see Figure 2(b)) for an example. Then, the optimizer schedules
the optimization of thegroupcorresponding to the root of the orig-
inal query tree (group5 in the figure). This task in turn triggers the
optimization of smaller and smaller operator sub-trees andeventu-
ally returns the most efficient execution plan for the input query.
This execution plan iscopied outfrom the finalMEMO and passed to
the execution engine. Figure 3 shows the five classes of tasksin a
Cascades-based optimizer, and the dependencies among them. We
next describe each of these tasks in some detail.������������� ����������������������������� ����������������� ������
Figure 3: Optimization tasks in a Cascades-based optimizer.

OptimizeGroup: This task takes as inputs agroupG, a cost bound
UB, and a set ofrequired physical propertiesRP . It re-
turns the most efficient execution plan (if exists) that imple-
mentsgroupG, costs no more thanUB and satisfies the re-
quired propertiesRP . This task implements memoization
by caching the best execution plan for a given set of required
properties in thewinner circleof thegroup. Subsequent calls
to OptimizeGroupwith the same required physical properties
would return immediately with the best plan or a failure (de-
pending on the value ofUB). Operationally, optimizing a
group entails exploring thegroup (seeExploreGrouptask),
and then applying all implementation rules (seeApplyRule
task) to produce all the candidate physical operators that im-
plement the logical counterparts in thegroup.

ExploreGroup: A group is explored by iteratively exploring each
logicalgroupExpressionin thegroup(seeExploreExprtask).

ExploreExpr: Exploring a logicalgroupExpressiongenerates all
logically equivalent alternatives of the inputgroupExpression
by applying exploration rules (seeApplyRuletask). This task

also uses memoization to avoid repeated work. Consider a
“join-commutativity” rule that transformsgroupExpression
G1 into G2. When eventually exploringG2, it would not
make sense to apply “join-commutativity” again, since we
would obtainG1 back. ExploreExpruses a bitmap, called
pattern memory, that keeps track of which transformation
rules are valid and which ones should not be applied.

ApplyRule: In general, each rule is a pair of an antecedent (to
match in theMEMO) and a consequent (to generate and intro-
duce back in theMEMO). An example is thejoin-associativity
rule“JOIN(g1, JOIN(g2, g3)) → JOIN(JOIN(g1, g2), g3)”2.
The ApplyRuletask can be broken down into four compo-
nents. First, all the bindings for the rule’s antecedent are
identified and iterated over one by one (for complex rules,
there can be different ways of matching the antecedent of
the rule with operator trees in the currentgroup). Second,
the rule is applied to each binding generating one or more
new expressions (for the rule above, there is a single sub-
stitute per rule application, but in general there might be
more than one). Third, the resulting expressions are inte-
grated back into theMEMO, possibly creating new, unexplored
groups(as an example, applying the join associativity rule to
expression 5.1 in Figure 2(b) results ingroupExpression5.2,
which points to a newly createdgroup7). Finally, each new
groupExpressiontriggers follow-up tasks, which depend on
its type. If it is a logical operator, the optimizer was explor-
ing thegroupand thus anExploreExprtask is scheduled for
the newgroupExpression. Otherwise, the expression inputs
are optimized and the cost of the physical plan is calculated
(seeOptInputstask).

OptInputs: This task optimizes the inputs of a given physical op-
eratorp and computes the best execution plan rooted atp.
For each inputpi, it first calculates the required properties
of pi with respect top and then schedules anOptimizeGroup
task for thegroup of pi. As an example, suppose that the
root of the tree is aMergeJoin operator. SinceMergeJoin
expects the inputs in a specific order, the current task gener-
ates a required sort property for each of the inputs and opti-
mizes the correspondinggroupsunder this new optimization
context. TheOptInputstask also implements a cost-based

2This is a very simple exploration rule. More complex rules, especially im-
plementation rules, have right sides that cannot be expressed as succinctly.



OptimizeGroup (group G, properties RP, double UB)
returns groupExpression

01 p = winnerCircle[G,RP]
02 if ( p is not NULL )

if (p.cost < UB) return p
else return NULL

03 bestP = NULL // No precomputed solution, enumerate plans
04 for each enumerated physical groupExpression candP
05 candP.cost = localCost(candP )
06 for each input pi of candP
07 if (candP.cost≥UB) go back to 4 // out of bound
08 Gi = group of pi

RPi = required properties for pi

09 bestPi= OptimizeGroup(Gi , RPi, UB − candP.cost)
10 if (bestPi = NULL) break // no solution
11 candP.bestChild[i] = bestPi

12 candP.cost += bestPi.cost
// Have valid solution, update state

13 if (candP.cost < UB and candP satisfies RP)
bestP = candP
UB = candP.cost

14 winnerCircle[G,RP] = bestP
15 return bestP

Figure 4: Simplified pseudocode for theOptimizeGroup task.

pruning strategy. Whenever it detects that the lower bound
of the expression that is being optimized is larger than the
cost of an existing solution, it fails and returns no plan for
that optimization goal.

As we can see, the five optimization tasks are non-trivial and
depend on each other. For clarity purposes, we now present a con-
ceptually simplified version of theOptimizeGrouptask that incor-
porates the portions of the remaining tasks that are relevant for this
work. Figure 4 shows a pseudocode forOptimizeGroup, which
takes as inputs agroup G, required propertiesRP , and a cost
upper-boundUB. OptimizeGroup(G, RP, UB) returns the most
efficient physicalgroupExpressionthat satisfiesRP and is under
UB in cost (otherwise, it returnsNULL). Initially, line 1 checks the
winner circle (implemented as an associative array) for a previous
call compatible withRP . If it finds one, it returns either the best
plan found earlier (if its cost is belowUB) or NULL otherwise. If
no previous task is reusable, line 4 iterates over all enumerated
physicalgroupExpressionsin G (note that, strictly speaking, line
4 encapsulatesExploreGroup, ExploreExpr, andApplyRule). For
each such rootgroupExpressionp, line 5 estimates the local cost of
candP (i.e., without counting its inputs’ costs). Then, line 8 calcu-
lates the inputgroup and required properties for each ofcandP ’s
inputs and line 9 recursively callsOptimizeGroupto optimize them
(note that the upper bound in the recursive call is decreasedto UB-
candP.cost). After each input is successfully optimized, lines 11
and 12 store the best implementation for each ofcandP ’s children
and update its partial cost. Note that, if at any moment the current
cost ofcandP becomes larger thanUB, the candidate is discarded
and the next one is considered (line 7). Otherwise, aftercandP is
completely optimized, line 13 checks whethercandP is the best
plan found so far. Finally, after all candidates are processed, line
14 adds the best plan to the winner circle forG andRP , and line
15 returns such plan.

2.2.1 The Rule Set
One of the crucial components in a Cascades-based optimizeris

the rule set. In fact, the set of rules that are available to the opti-
mizer is one of the determining factors in the quality of the result-
ing plans. On one side,explorationrules transform logical operator
trees into equivalent logical operator trees, and can rangefrom sim-

ple rules like join commutativity to more complex ones like push-
ing aggregates below joins. On the other side,implementationrules
transform logical operator trees into hybrid logical/physical trees
by introducing physical operators into theMEMO. Again, implemen-
tation rules can range from simple ones like transforming a logical
join into a physical hash join, to much more complex ones. In the
remainder of this section we provide additional details on asmall
subset of implementation rules that produce access path alterna-
tives, since these are relevant to our work.

One of such rules transforms a logical expression consisting of
a selection over a single table3 into a physical plan that exploits
the available indexes (candidate plans include index scans, rid in-
tersections and lookups among others). After binding the logical
operator tree, this rule identifies the columns that occur insargable
predicates, the columns that are part of a required sort property, and
the columns that are additionally referenced in non-sargable predi-
cates or upwards in the query tree. Then, it analyzes the available
indexes and returns one or more candidate physical plans forthe
input sub-query.

Consider the application of such a rule for agroupExpression
that representsΠc(σa=10(R)), and further suppose that columnb

is a required sort order. In this case, the rule identifies columna in a
sargable predicate, columnb as a required order, and columnc as an
additional column that is either output or referenced upwards in the
tree. This information allows the optimizer to identify theavailable
indexes that might be helpful to implement an efficient sub-plan for
the sub-query. Suppose that an index on columna is available. The
optimizer can then generate a physical operator tree that uses the
index to retrieve all tuples satisfyinga=10, fetches the remaining
columns from a primary index, and finally sorts the resultingtuples
in b order. If an index on columns(b, a, c) is also available, the
optimizer might additionally generate an operator tree that scans
the index inb order and filters on the fly the tuples that satisfy
a=10. Depending on the selectivity ofa=10, one alternative would
be more efficient than the other, and eventually the optimizer would
pick the one that results in the smallest execution cost.

Note that the same mechanism is used in another equally impor-
tant rule that transforms logical joins with single-table right-hand-
sides into index-nested-loops execution plans (which repeatedly ac-
cess an index on the right-hand-side’s table for each tuple produced
by the left-hand-side input). In this case, the same procedure is con-
ducted with respect to the inner table only, and the joined column
in the table is considered as part of a sargable (equality) predicate.
For instance, suppose that the logical sub-plan is(Q ./Q.x=T.y T ),
whereQ represents an arbitrary complex expression. Conceptually,
the rule produces an index-nested-loop plan and considers the right-
hand-side as a single-table-selectionσT.y=?(T ) as before (where
T.y is a column in a sargable predicate with an unspecified con-
stant value).

3. C-PARAMETRIC OPTIMIZATION
As explained in the previous section, among the large set of rules

in a Cascades-based optimizer there is a small subset that deals with
access path selection. Intuitively, these are the only rules that might
make a difference when optimizing the same query under different
configurations. Figure 5 shows a high level, conceptual illustra-
tion of our approach forC-PQO. Consider the finalMEMO structure
after optimizing an input queryq. If we only consider physical
groupExpressions, this finalMEMO is simply a directed acyclic graph,
where each node is agroupExpressionand edges going out of a

3The antecedentgroupExpressionis typically obtained after applying ear-
lier rules, such as pushing selections under joins.
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(a) FinalMEMO. (b) TransformedMEMO with APRs. (c) Inferring execution plans.

Figure 5: Conceptual description ofC-PQO.

nodeG connectG with its best childrengroupExpressions. Now
suppose that we identify the nodes in theMEMO that were a result of
applying some rule that deals with access path selection (these sub-
graphs are marked asP1, . . . , P4 in Figure 5(a)). Then, everything
that is above thePi sub-graphs is independent of the configuration.
We can then modify the finalMEMO structure by replacing eachPi

with a concise description of the logical operator tree thatproduced
such physical execution plan (we denote such descriptions asAPRi

in Figure 5(b) and formally define them in Section 3.1). Whenever
we want to re-optimize the query under a different configuration we
can just focus on theAPRi descriptions and infer small execution
plans that satisfy their requirements under the new configuration
(denotedEPi in Figure 5(c)). We can then extract the best execu-
tion plan from the resultingMEMO (whose bulk was pre-computed)
in a much more efficient manner.

Although the conceptual idea behindC-PQOis simple, there are,
however, significant challenges to address. First, we need asimple
and accurate description of the properties of each physicaloperator
treePi that is efficient to generate (see Section 3.1). Second, the
final MEMO should consider execution plans that can be generated
by arbitrary configurations (also see Section 3.1). To better un-
derstand this point, consider the rule that implements index-nested-
loop joins for logical joins with single-table right hand sides, which
we described in Section 2.2.1. If at optimization time thereis no in-
dex on the right-hand-side table, the optimizer would not even gen-
erate an execution planPi and we would miss this alternative when
later optimizing under a configuration that contains such index.
Third, as described in Figure 4, optimizers implement branch-and-
bound techniques to prune the search space. In our situation, how-
ever, we should not eliminate alternatives from consideration unless
we can guarantee that no possible configuration might resultin the
alternative being useful (see Section 3.2). Finally, current optimiz-
ers only keep the most efficientgroupExpressionfor every child
group of a givengroupExpression. In the context ofC-PQO, there
is no single “most efficient”groupExpression, since this would de-
pend on the underlying configuration. Thus, we should be ableto
track all possible alternatives that might become part of the final
execution plan (see Section 3.3). In the remainder of this section,
we explore each of these challenges.

3.1 Intercepting Access-Path Selection Rules
To isolate the variable portion of the optimization processwith

respect to varying configurations, we instrument the optimizer as
follows, extending the techniques in [3, 4]. We create a new phys-
ical operator, which we callAPR(for access path request). Then,
we modify the generation of substitutes for all the rules that are
related to access path selection (see Section 2.2.1) so thattheyal-
waysreturn anAPRsingleton operator tree rather than an actual
physical execution tree. In this way, we make access-path-selection
rules configuration-independent, and we do not miss any potential
execution sub-plan. TheAPRphysical operator contains the rele-

vant information about the logical operator tree that triggered the
implementation rule. Specifically, we store in theAPRnode the
tuple(S, O, A,N), whereS is the set of columns in sargable pred-
icates and the predicate cardinalities,O is the sequence of columns
for which an order has been requested,A is the set of additional
columns used upwards in the execution plan, andN is the number
of times the sub-plan would be executed4. Note that (i)S, O, and
A may intersect, and (ii)N is greater than one only if the sub-plan
is the right-hand-side of an index-nested-loop join. Intuitively, the
information inAPRnodes encodes the properties that any physical
execution sub-plan must satisfy in order to implement the logical
operator tree that triggered the corresponding implementation rule.

Consider as an example the following query:

ΠR.c,S.b

(

σR.a=5(R) ./R.x=S.y S
)

Figure 6 shows a partialMEMO when optimizing the above query.
There are fourAPRnodes resulting from different implementation
rules. As an example,APR2 was generated by the rule that imple-
ments index strategies for single-table selections. The information
contained in this operator specifies that (i) there is one sargable col-
umnR.a returning 25,000 tuples, (ii) there is no order requested,
(iii) the columns that are required areR.c andR.x, and (iv) the
sub-plan would be executed once. Similarly,APR4 in group5 was
generated as part of the implementation rule that transforms joins
with single-table right-hand-sides into index-loop joins. It specifies
thatS.y is a sargable column which would be sought with 25,000
bindings. Finally,APR1 andAPR3 are generated as part of the rule
that implements physical scans over tables.
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Figure 6: Partial MEMO for a simple input query.

Note that this mechanism results in the following two crucial
properties. First, the leaf nodes in theMEMO are alwaysAPRphysi-
cal operators. Second, there are no remaining rules in the optimizer
that depend on the specific configuration, so the optimization of
queries is truly configuration-independent. Also note thatwe still
have not shown how to calculate the cost of anAPRphysical oper-
ator. We next address this issue.

4We store additional details inAPRnodes, but we omit such details to sim-
plify the presentation.



3.2 Relaxing the Search Space
The original Cascades formulation uses a variant of branch-and-

bound pruning to avoid exploring alternatives that are guaranteed to
be sub-optimal. Specifically, line 7 in Figure 4 completely discards
a groupExpression–without even optimizing all its children– if it
costs more than the upper boundUB. While this pruning makes
sense in a traditional optimizer, it would be wrong to apply it for
C-PQO since the ultimate cost of an expression in fact depends
on the actual configuration, and therefore making any aggressive
pruning would result in potential loss of optimal plans for some
valid configurations.

A simple solution for this problem would be to simply remove
the pruning altogether (i.e., remove line 7 from Figure 4. While
this approach is correct, it might result in much longer optimiza-
tion calls. Instead, we next show how we can improve this simple
approach by eliminating all the candidates that cannot be part of
any solution under any configuration. At the same time, we illus-
trate how to calculate the cost of anAPRphysical operator.

Extending the Cost Model
One of the difficulties of handlingAPRphysical operators is that
they are really a specification of the required properties that any
sub-execution plan must satisfy in order to be a valid alternative.
Therefore, there is no precise notion of the cost of anAPR, since
it depends on the actual configuration. However, there are precise
bounds on the cost of suchAPR. On one hand, there exists a con-
figuration with the right indexes that makes a givenAPRexecute
as fast as possible. Conversely, the configuration that contains no
indexes is guaranteed to result in the worst possible implementa-
tion of any givenAPR. Therefore, instead of having a single cost
for each physical operator in the tree, we propose to maintain two
costs, denotedbestCost(which is the smallest possible cost of any
plan implementing the operator tree under any configuration), and
worstCost(which is the largest smallest possible cost of any exe-
cution plan over all configurations, and effectively is the smallest
possible cost under the configuration that contains no indexes).

Values ofbestCostandworstCostare calculated very easily for
non-leaf nodes in theMEMO. In fact, thebestCostof an operator is the
local cost of the operator plus the sum of the minimumbestCostof
each child (worstCostvalues are calculated analogously). We next
describe how to obtainbestCostand worstCostfor the leafAPR
physical operators.

Consider anAPRnode with information(S,O,A,N)where each
element inS contains a column, the predicate type (i.e., equality
or inequality), and the cardinality of the predicate. Similarly to the
work in [4], we obtain the index-based execution plan that leads to
the most efficient implementation of the logical sub-tree asfollows:

1. Obtain the best “seek-index”Iseek containing (i) all columns
in S with equality predicates, (ii) the remaining columns in
S in descending cardinality order, and (iii) the columns in
(O ∪ A) − S.

2. Obtain the best “sort-index”Isort with (i) all columns inS

with single equality predicates (they would not change the
overall sort order), (ii) the columns inO, and (iii) the re-
maining columns inS ∪ A.

3. bestCost(APR) is defined as the minimum cost of the plan
that implementsAPR with either Iseek or Isort (see Sec-
tion 4.2 for a mechanism to calculate the cost of a plan that
uses a given index to implement anAPRoperator).

Obtaining the value ofworstCostfor a givenAPR operator is
simpler. We need to evaluate the cost of implementing theAPR

operator with just a heap (i.e., without any index). The following
lemma establishes the correctness of our approach5:

LEMMA 1. Let α be a physicalAPR operator. The procedure
above returns the minimum possible cost of any execution plan im-
plementingα under any valid configuration and the largest cost of
the optimal execution plan forα under any valid configuration.

As an example, consider anAPRoperatorα with information:
[S=(a[eq,300], b[lt,200], c[gt,100]), O=(d), A=(e), N=1]. Then, the
value ofbestCostis the minimum cost of the plan that uses either
Iseek = (a, c, b, d, e) or Isort=(a, d, b, c, e). Similarly, the value of
worstCostis the cost of the plan that uses a heap to implementα.

Pruning the Search Space
With the ability to calculatebestCostandworstCostvalues for ar-
bitrary physical operators in theMEMO structure, a relaxed pruning
rule can be implemented as follows:

Relaxed pruning rule: Every time that the partialbestCostof a
groupExpressionsg is larger than theworstCostof a previous so-
lution for the group under the same optimization context, eliminate
g from consideration (we evaluate the effectiveness of this pruning
step in the experimental evaluation).

LEMMA 2. The relaxed pruning rule does not eliminate any ex-
ecution plan that can be optimal for some valid configuration.

3.3 Putting it all Together
We now show the modified version of theOptimizeGroupproce-

dure of Figure 4 with all the changes required to supportC-PQO.
Figure 7 shows a pseudocode of the new procedure, which we call
OptimizeGroupC-PQO. We next describe this new procedure and
contrast it with the original version.

The first difference inOptimizeGroupC-PQO is the input/output
signature. The new version does not accept an upper boundUB

as input, since this is used in the original branch-and-bound prun-
ing strategy, which we do not rely on anymore. Also, the output
of the new procedure consists not of a singlegroupExpressionbut
of the full set ofgroupExpressionsfor groupG and required prop-
ertiesRP . The second difference in the new version is that we
replace the originalwinnerCirclestructure with the more general
alternativePoolassociative array, which returns the set of all valid
groupExpressionsfor a given group and set of required properties.

For a given input groupG and required propertiesRP , algorithm
OptimizeGroupC-PQO first checks thealternativePooldata structure
for a previous call compatible withRP . If it finds one, it returns the
set ofgroupExpressionspreviously found, effectively implement-
ing memoization. Otherwise, line 4 iterates over all enumerated
physicalgroupExpressionsin G (note that this line encapsulates
the changes to the rules that select access paths and now return
APRoperators). For each such rootgroupExpressioncandP , line
5 estimates the local values ofbestCostandworstCostfor candP

(in case ofAPR operators, we use the procedure of Section 3.2,
while in the remaining cases bothbestCostandworstCostvalues
are equal to the original local cost of the operator). Then, line 8
calculates the inputgroup and required properties for each input
of candP and line 9 recursively callsOptimizeGroupC-PQO to op-
timize them. After each input is successfully optimized, lines 11
and 12 store the set of candidates for each ofcandP ’s children
in the arrayallChildren and update its partial values ofbestCost

5We omit proofs due to space constraints, but note that the results depend on
current query processing models. New access methods or implementation
strategies would require extending the lemma.



OptimizeGroupC-PQO (Group G, Properties RP)
returns Set of groupExpressions

01 allP = alternativePool[G, RP]
02 if (allP is not NULL) return allP
// No precomputed solution, enumerate plans
03 candPool = ∅

UB = ∞
04 for each enumerated physical groupExpression candP
05 candP.bestCost = localCostForBest(candP )

candP.worstCost = localCostForWorst(candP )
06 for each input pi of candP
07 if (candP.bestCost ≥ UB)

continue back to 3 // out of bounds
08 Gi = group of pi

RPi = required properties for pi

09 allPi = OptimizeGroupC-PQO(Gi, RPi)
10 if (allPi = ∅) break // no solution
11 candP.allChildren[i] = allPi

12 candP.bestCost += minci∈allPi
ci.bestCost

candP.worstCost += minci∈allPi
ci.worstCost

// Have valid solution, update state
13 candPool = candPool ∪ {candP}
14 if (candP.worstCost < UB)

UB = candP.worstCost
15 alternativePool[G, RP] = candPool
16 return candPool

Figure 7: Modified OptimizeGroup task for C-PQO.

andworstCost. Note that, if at any moment the currentbestCostof
candP becomes larger than theworstCostof a previously calcu-
lated solution, the candidate is discarded and the next one is con-
sidered (line 7). Otherwise, aftercandP is completely optimized,
line 13 adds it to the candidate pool for theG andRP and line
14 updates the upper bound with theworstCostvalue of candP

if applicable. After all candidates are explored, line 15 updates
the alternativePoolarray and line 16 returns the set of candidate
groupExpressions.

As we can see, even though several changes are required to en-
ableC-PQOin a Cascades-based query optimizer, the main struc-
ture of the optimization tasks remain similarly organized.

The Output of a C-PQOOptimization
After executingOptimizeGroupC-PQO on the root node of the initial
MEMO with the global set of required properties, we need to prepare
the output of aC-PQOoptimization. We do so by extracting an
AND/OR subgraph of physical operators from the finalMEMO

6. Each
node in the output graph can be of one of two classes. On one hand,
AND nodes contain the actual physicalgroupExpressionsalong with
their bestCostandlocalCostvalues (thelocalCostvalue is the one
defined in line 5 of Figure 7 and can be obtained back by subtract-
ing thebestCostvalues of the best children of agroupExpression
from its ownbestCostvalue). Each outgoing edge of anAND node
represents a child of the correspondinggroupExpressionand goes
into anOR node.OR nodes, in turn, correspond to candidate choices,
represented by outgoing edges into otherAND nodes. Additionally,
eachOR node distinguishes, among its choices, the one that resulted
in the minimumbestCostvalue (i.e., the child that contributed to
candP.bestCost in line 12 of Figure 7). Finally, we add aroot
OR node that has outgoing edges towards everyAND node that corre-
sponds to agroupExpressionin the root node of the finalMEMO sat-
isfying the original required properties (since there might be many
alternatives to implement the query, this rootOR node represents

6We use a normalization phase that relies on pointer unswizzling to effi-
ciently produce a heavily compressed serialization of theMEMO that is then
exported to the client.

the highest-level choice). Figure 8 shows a sampleAND/OR graph
induced by a partialMEMO structure (the notation7.{1, 2, 3} in phys-
ical operators refers to the set ofgroupExpressions{7.1, 7.2, 7.3},
and the best alternative for anOR node is shown with a bold arrow).
In the rest of the paper, we useMEMOC-PQO to denote theAND/OR
graph induced from the finalMEMO produced by aC-PQOoptimizer.
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Figure 8: AND/OR graph induced from a MEMO.

4. FAST RE-OPTIMIZATION IN C-PQO
TheMEMOC-PQO described in the previous section encapsulates all

the optimization state that is possible to obtain without knowing a
specific configuration instance. Additionally, it containsenough in-
formation to derive configuration-specific execution sub-plans. In
this section we describe how to obtain an execution plan and the es-
timated cost for a query given itsMEMOC-PQO under an arbitrary con-
figuration. In Section 4.1 we describe a one-time post-processing
pass on theMEMOC-PQO that simplifies subsequent re-optimizations.
In Section 4.2 we describe how we deal with leafAPRnodes. Next,
in Section 4.3 we describe the re-optimization algorithm. Finally,
in Section 4.4 we discuss extensions to our basic approach.

4.1 Initialization
Before the first re-optimization, we perform a couple of quick

transformations in theMEMOC-PQO to reduce subsequent work. Since
APRnodes are produced by modified implementation rules, there
might be several instances of such rules that produceAPRnodes
that are indistinguishable. Since our techniques do some work for
eachAPR in the MEMOC-PQO on a re-optimization, we collapse all
identical APR nodes into a single representative. We do it effi-
ciently by using a hash table ofAPRnodes. Since the final number
of distinctAPRnodes is fairly small (see the experimental evalua-
tion), this step is very efficient. Additionally, we performa quick
consolidation ofOR nodes in theMEMOC-PQO. Recall thatOR nodes
represent a subset of choices in a givengroup. We therefore ana-
lyze eachOR node and collapse those that are defined on the same



group and agree on all the alternatives. Sincegroup ids are con-
secutive integers, we can do this step efficiently by using anar-
ray indexed by theOR nodegroup id. Comparing whether twoOR
nodes are identical is also efficient, because theMEMOC-PQO returns
groupExpressionsin theOR node sorted bygroupExpressionid, and
therefore the set-comparison can be done in linear time. Finally, we
perform a bottom-up traversal of the resulting graph and eliminate
all OR nodes that have noAND children (e.g., because there were no
successful implementations during optimization due to contradic-
tory required properties), and allAND nodes for which there is at
least one child for which we eliminated the correspondingOR node.

4.2 Leaf Node Calculation
A crucial component in our technique is the ability to calcu-

late the cost of the best plan for a physicalAPR operator for a
given input configuration. Consider a physicalAPR operatorα
=(S, O, A, N). Suppose that we want to calculate the cost of an
alternative sub-plan that uses an indexI over columns(c1, . . . , cn)
to implementα. In order to do so, we simulate the implementation
rules that producedα in the first place, and approximate what the
optimizer would have obtained under the hypothetical configura-
tion that contains indexI . LetIα be the longest prefix(c1, . . . , ck)
that appears inS with an equality predicate, optionally followed
by ck+1 if ck+1 appears inS with an inequality predicate. We can
then implementα by (i) seekingI with the predicates associated
with columns inIα, (ii) filtering the remaining predicates inS that
can be answered with all columns inI , (iii) looking up a primary
index to retrieve missing columns in{c1, . . . , cn} - S - O - A, (iv)
filtering the remaining predicates inS, and (v) optionally sorting
the result ifO is not satisfied by the index strategy. Figure 9(a)
shows the generic pattern for single-index execution plansthat im-
plements this logical tree.

As a simple example, consider a single-table logical operator
tree representing the queryΠd

(

σa+b=2∧c=4(R)
)

and the associ-
atedAPRoperatorα = (S={c}, O={d}, A={a, b, d}, N=1) (note
that there is a sort requirement of columnd). Figure 9(b) shows
the resulting physical tree for an indexI1=(c, a, b) (this execu-
tion plan seeks onI1 for tuples satisfyingc=4, filters tuples sat-
isfying a + b=2, fetches the remaining columns and performs a
final sort to satisfy the required order). Analogously, Figure 9(c)
shows the execution plan for the same logical operator tree and in-
dexI2=(d, c, b, a) (this execution plan scans the covering indexI2

and filters on the fly all the predicates, but does not explicitly sort
the output since it is already ordered in the right way).

YZ[\] \^_`ab cdedfYa_[Zg h^g \^_`ab c i jkljbmZn cZZopc\qbr\^_` ab jkls
Ya_[Zg h^ggZtqababuvgZma\q[Z`c^g[

YZ[\] rmsYa_[Zg rqwxyzsjbmZn cZZor\y{s
c^g[ rms

Ya_[Zg r\y{f|} qwxyzsjbmZn c\qb
(a) Original Pattern (b)I1(c, a, b) (c) I2(d, c, b, a)

Figure 9: Plan Pattern.

Multiple Indexes
A configuration generally contains multiple indexes definedover
the table of a given request. In principle, we could use more than
one index to obtain a physical sub-plan that implements a request
(e.g., by using index intersections). We decided not to consider
these advanced index strategies since they would increase the com-
plexity with generally modest gains in quality. However, wenote
that this is just a matter of convenience, and exactly the same prin-
ciples can be used to incorporate these less common strategies. We
therefore calculate the best execution plan for a givenAPRnode as
the minimum cost alternative for each of the indexes in the config-
uration defined over the same table asα.

4.3 Overall Cost Calculation
We now present the overall algorithm to re-optimize a query un-

der an arbitrary configuration. For a given configurationC and
MEMOC-PQOM , functionbestCostForC(root(M), C) returns the
cost of the best execution plan for the query represented byM un-
der configurationC as follows:

bestCostForC(Node n, Configuration C) =
switch(n)
case AND(APRi, {}):

return leafNodeCalculation(APRi, C) (Section 4.2)
case AND(op, {g1, g2, . . . , gn}):

return localCost(op) +
∑

i bestCostForC(gi,C)
case OR({g1, g2, . . . , gn}):

return mini bestCostForC(gi,C)

The function above operates depending on the type of input node
n. If n is a leaf node (i.e., anAPRnode), we estimate the cost of
the best configuration as explained in Section 4.2. Otherwise, if it
is an internalAND node, we calculate the best cost by adding to the
localCostof thegroupExpressionin n the sum of the best costs of
each ofn’s children (calculated recursively). Finally, ifn is anOR
node, we return the minimum cost among the choices.

Additional Details
In addition to the straightforward implementation of this functional
specification, we perform the following optimizations, which we
omitted above to simplify the presentation:

Memoization: Note that the same node can be a child of multiple
parents. To avoid unnecessary recomputation, we use mem-
oization and therefore cache intermediate results so that we
operate over each node at most once.

Branch-and-Bound pruning: bestCostForC induces a depth-first
search strategy. We then maintain the cost of the best solu-
tion found so far for each node in theMEMOC-PQO and discard
alternatives that are guaranteed to be sub-optimal.

Execution plans: In addition to calculating the best cost for each
node, we also return the operator tree that is associated with
such a cost. Therefore, the same algorithm returns both the
best execution plan and its estimated cost.

Note that the first two optimizations above are analogous to those
in the Cascades Optimization Framework.

4.4 Extensions
We now discuss some extensions to the techniques described in

the paper that take into account important factors such as query
updates and materialized views, but we omit a detailed treatment
of these issues due to space constraints.



Update Queries
So far we implicitly discussedSELECT-only workloads. In real-
ity, most workloads consist of a mixture of “select” and “update”
queries, andC-PQOmust take into consideration both classes to be
useful. The main impact of an update query is that some (or all) in-
dexes defined over the updated table must also be updated as a side
effect. To address updates, we modify the configuration-dependent
implementation rules that deal with updates, and replace them with
(non-leaf)UAPR nodes that encode the relevant update informa-
tion. At re-optimization time, we calculate the cost of updating all
relevant indexes in the configuration for eachUAPRnode.

Materialized Views
Although indexes are the most widely used redundant data struc-
ture to speed-up query execution, materialized views are also a
valuable alternative. Similar to the access-path-selection imple-
mentation rules described in 2.2.1, query optimizers rely on view-
matching related rules that, once triggered within the context of
a groupExpression, return zero or more equivalent rewritings of
suchgroupExpressionusing an available view in the system. To
incorporate materialized views into aC-PQOoptimizer, we need
to instrument such rules in a similar manner to what we did in the
case of indexes. Specifically, every time a view-matching rule is
triggered, we analyze the expression and return aVAPRnode that
encodes the logical operator-subtree. Theseview APRs are more
complex than regularAPRs, since we have to encode the view ex-
pression itself, which might contain joins, grouping clauses and
computed columns. However, the idea is still the same, and atthe
end of query optimization we return aMEMOC-PQO that contains both
APRs andVAPRs. A subtle complication of dealing with materi-
alized views is that the optimizer might trigger index-based imple-
mentation rules over the newly used materialized views. In such
situation,APRs are defined overVAPRs rather than base tables, but
the underlying principles remain the same.~������� ������ ������ ����� ��� ��������� ����

Figure 10: Integrating C-PQO into a physical tuning tool.

5. C-PQO-BASED TUNING TOOLS
As explained before, current physical design tuning tools tra-

verse the search space by repeatedly optimizing queries under dif-
ferent candidate configurations. It turns out that integrating C-PQO
into existing physical design tools is straightforward. Figure 10
shows a generic architecture to achieve this goal. A newC-PQO
component intercepts each optimization request(C, Q) for query
Q and configurationC issued by the tuning tool (step 1 in the fig-
ure). If Q has not been seen before, theC-PQOcomponent issues
a uniqueC-PQOcall to the DBMS (step 2 in the figure), obtain-
ing back aMEMOC-PQO (step 3 in the figure). Then, it calculates the
execution plan and cost forQ using theMEMOC-PQO as described in
Section 4 and returns the result to the caller (step 4). TheMEMOC-PQO

is cached locally so that future calls with the same query areserved
without going back to the DBMS. In this way, the tuning tool is
not aware that the optimization calls are actually being served by

a C-PQOcomponent, and proceeds without changes regarding its
search strategy.

Deeper Integration with Tuning Tools
Although the architecture described above is enough to dramati-
cally boost the execution times of tuning tools, there mightbe ad-
ditional opportunities to leverageC-PQOfor physical design tun-
ing. Consider for instance re-optimizing a multi-query workload.
If the workload queries share some structure, rather that operating
over each individualMEMOC-PQO structure for the workload queries,
we can create a combinedMEMOC-PQO based on the individual query
MEMOC-PQO structures by simply adding a newAND root node. Ad-
ditionally, we can collapse identical sub-graphs into a single rep-
resentative, obtaining a compressed representation that would be
re-optimized much faster. Furthermore, suppose that we want to re-
optimize a query under a configurationCnew that is slightly differ-
ent from a previously optimized configurationCold. We can reuse
theMEMOC-PQOcomputation forCold by (i) recalculating allAPRleaf
nodes that can be influenced by the differences betweenCold and
Cnew (e.g.,APRs over tables that have the same indexes in both
Cnew andCold do not need to be recalculated), and (ii) recalculat-
ing bottom-up the cost and plans based on the (small) number of
changes in theAPRleaf nodes.

More generally,C-PQOeliminates the overhead of optimization
calls in the tuning process (after the firstC-PQOcall). Therefore,
many architectural choices that were required in previous designs
should be revisited and perhaps modified. As a simple example,
consider the relaxation-based approach in [3]. The idea is to pro-
gressively “shrink” an initial optimal configuration usingtransfor-
mations that aim to diminish the space consumed without signif-
icantly hurting the expected performance. For that purpose, such
techniques estimate the expected increase in execution time for a
large set of candidate transformations over the current configura-
tion (e.g., the effect of replacing two indexes with a mergedone).
However, withC-PQOwe can obtain the precise increase in ex-
ecution time at the same overhead as the original approximation
in [3], and therefore avoid doing guess-work during the search. We
believe thatC-PQOcan enable a new generation of optimization
strategies by exploiting directly the representation ofMEMOC-PQO, in-
stead of just usingC-PQOas a sophisticated caching mechanism.

6. EXPERIMENTAL EVALUATION
In this section we report an experimental evaluation of the tech-

niques in the paper. We implemented our approach in Microsoft
SQL Server 2005 and used aTPC-H database with the 22-query
workload generated by theqgen utility7 (we tried other databases
and workloads obtaining similar results). The four questions that
we address in the rest of this section are summarized below:

1. What is the overhead of the first (and only) optimization call
in C-PQO? (Section 6.1)

2. What is the speedup of subsequent optimization calls? (Sec-
tion 6.2)

3. What is the accuracy of subsequent optimization calls? (Sec-
tion 6.3)

4. What is the effect of integratingC-PQOin existing physical
design tools? (Section 6.4)

7Available athttp://www.tpc.org.
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Figure 11: Space overhead for the initialC-PQO optimization.

6.1 Initial Optimization Call: Overhead
To evaluate the overhead of the first optimization call ofC-PQO

we optimized each of the 22 queries with and withoutC-PQOen-
abled in the DBMS. Figure 11 shows the fraction ofgroupsand
groupExpressionsin the C-PQOenabled DBMS compared to the
original DBMS. The figures distinguishC-PQOwith and without
the cost-based pruning of Section 3.2. We can see that without
pruning, the number of groups generated by theC-PQOoptimizer
is between 1x and 1.8x that of the original optimizer and the num-
ber ofgroupExpressionsis between 1.1x and 5.5x that of the origi-
nal optimizer. When we use the relaxed pruning rule (i.e., the reg-
ular C-PQOmode) the fraction of groups inC-PQOdrops to be-
tween 0.64x and 1.6x, and the fraction ofgroupExpressionsdrops
to between 0.75x and 2.7x. The reason for factors smaller than
1x is thatAPRnodes effectively collapse potentially large execu-
tion sub-plans into a single node that contains the logical repre-
sentation of the operator tree. Figure 11 shows that the relaxed
pruning rule is effective in cutting down the number ofgroups
andgroupExpressionsgenerated by the optimizer, and also that the
space overhead byC-PQOis between 1x and 3x of that of the orig-
inal optimizer.
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Figure 12: Time Overhead of the initial C-PQO optimization.

Figure 12 shows the overheads ofC-PQOin terms of optimiza-
tion time. We can see that the first optimization call ofC-PQO

is no more than 3 times that of a regular optimization call (and in
many cases around 1.5x). Assuming that subsequent optimization
calls for the same query inC-PQOare cheap (see next section), the
figure shows that after just a couple of optimization calls wecan
completely amortize the additional overhead ofC-PQO.
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Figure 13: Speedup of subsequent optimizations inC-PQO.

6.2 Subsequent Optimization Calls: Speedup
We now measure the average time to produce an execution plan

and a cost for subsequent calls withC-PQO. For that purpose,
we compared the time to optimize each of the 22TPC-H queries
underC-PQOagainst the regular query optimizer. We used the 280
different configurations that were considered by an existing tuning
tool for the workload and averaged the results. Figure 13 shows that
the average speedup per query when usingC-PQOvaries from 34x
to 450x. To put these numbers in perspective, the table belowshows
the total number of optimizations withC-PQOthat are possible per
regular optimization for a sample of theTPC-H queries,including
the firstC-PQOcall.

Original C-PQO(Q11) C-PQO(Q18) C-PQO(Q20)
1 0 0 0
2 29 169 0
3 64 625 1
4 99 1081 132
5 134 1537 263

Figure 14 shows the total number of distinctAPRphysical op-
erators for each of the 22TPC-H queries. Contrasting this figure
with Figure 11(b), we see that only a small fraction of the nodes in
theMEMOC-PQO require a non-trivial amount of processing to obtain
execution plans and costs for varying workloads.
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Figure 14: Distinct APRs generated during optimization.

6.3 Subsequent Optimization Calls: Accuracy
We now analyze the accuracy of subsequent optimization calls

using C-PQO. We first optimized each of theTPC-H queries un-
der the 280 different configurations as in the previous section using
both the regular query optimizer andC-PQO. We then compare
the estimated execution cost of the plans found by the regular op-
timizer and those found byC-PQO. Figure 15(a) shows the results



for the over 6,000 optimization calls, which are heavily clustered
around the diagonal. Figure 15(b) shows a different view of the
same data, in which we show the maximum relative and absolute
errors in cost between the original optimizer andC-PQOfor differ-
ent percentiles. We can see that for 80% of the calls,C-PQOand
the original optimizer differ in less than 2.5%, and for 98% of the
calls, the error is below 10%. We analyzed the remaining 2% of
the cases and we found that the errors result from either small in-
accuracies in our cost model or certain optimizations that the query
optimizer performs (e.g., using record-id intersections)and we de-
cided, for simplicity, not to include in our prototype.
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Figure 15: Accuracy of C-PQO optimization calls.

6.4 Interaction with Tuning Tools
In this section we evaluate the benefits ofC-PQO when inte-

grated into an index tuning tool as described in Section 5. Weused
the 22 queryTPC-H workload with different storage and time con-
straints.
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Figure 16: Overall quality of a C-PQO-enabled tuning tool.

Figure 16 shows the quality of the final configurations produced
by the tuning tool when using regular optimization calls andalso
with C-PQO. We let the original tuning tool run for 30 minutes
and theC-PQO-enabled tool run for 1 minute (at these points, both

tools stabilized and did not improve further the quality of their rec-
ommendations). We can see that for all settings, the percentage of
improvement8 of the final configuration for the input workload is
almost the same for both systems.
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Having shown that the quality of recommendations does not suf-
fer by usingC-PQO, we now report the efficiency aspect of inte-
gratingC-PQOwith tuning tools. For that purpose, we tuned the
workload with a storage constraint of 2GB, and measured the qual-
ity of the best configuration found by each system over time. Fig-
ure 17 shows the results for a tuning session of around 15 minutes
(note the logarithmic x-axes). We can see that although bothtuners
result in the same quality of recommendations, theC-PQO-based
tuner arrives at such configuration in 22 seconds of tuning, while it
takes over 210 seconds to the regular tuner to achieve a compara-
ble result. This difference is further revealed in Figure 18, which
shows the number of optimizations per minute for each query in the
workload during a 15 minute tuning session. We can see that there
is over an order of magnitude improvement in throughput whenus-
ing aC-PQO-enabled tuning tool.
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Figure 18: Optimization throughput inside the tuning tool.

Finally, Figure 19 shows a breakdown of the time used in a typ-
ical tuning session. For this purpose, we tuned the input workload
for 10 minutes and with a space constraint of 2GB. We can see that,
as discussed in the introduction, the original tuning tool uses around
92% of the time waiting for results of optimization calls. Conse-
quently, less than 8% of the tuning time is actually spent in the
proper search. In contrast, when using theC-PQO-enabled tuner,
the situation is completely reversed. The tool uses less than 4% of
the time doing the first optimization call for each query, andan-
other 5% of the time doing all the subsequent calls, leaving 90% of
the time for the search strategy proper. Note thatC-PQOanalyzed
almost 10,000 different configuration and performed over 31,000
optimization calls in the 10 allowed minutes, while the original
tuning tool managed to process just 355 configurations and below
1,700 optimization calls in the same amount of time.
8Percentage of improvement is traditionally defined as1− cost_recommended

cost_original .
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7. RELATED WORK
There has been considerable research on automating the phys-

ical design in DBMSs (e.g., [1, 6, 8, 15]). All this work relies
on thewhat-if interface to evaluate candidate configurations, and
therefore could be enhanced by theC-PQO ideas in this work to
boost their performance. References [3, 4] introduce, in a slightly
different context, the underlying functionality that we use in the
physicalAPRnodes in Section 3. In contrast to our work, refer-
ence [4] exploits such technology in the context of local optimiza-
tions, by transforming a final execution plan into another that uses
different physical structures. Instead, we are able to address the
full optimization problem by generating and exploitingMEMOC-PQO

structures rather than just any final execution plan.
Parametric Query Optimization [11] (orPQO) studies mecha-

nisms to generate optimal execution plans for varying parameters.
Traditionally, PQO considered parameters that are either system-
related (e.g., available memory) or query-related (e.g., selectivity
of parametric predicates). In this work, we address the problem
of parametric query optimization when the parameter is the actual
physical configuration on top of which the query needs to be opti-
mized.

Very recently, reference [12] introduces INUM, a techniquethat
shares with ours the goal of reducing the bottleneck of optimization
calls inside physical design tools. The idea is to extend thelocal-
transformation approach in [3, 4]. During a preprocessing step,
several optimization calls are issued for a given query until the re-
sulting plans are enough to infer optimal plans for arbitrary config-
urations. In contrast to our work, INUM is not fully integrated with
the query optimizer. For that reason, it is not clear how to extend
the approach for more complex execution plans (such as correlated
sub-queries) or other physical access path structures (such as mate-
rialized views). Specifically, reference [12] reports an average rela-
tive error of 7% forTPC-H query 15 with no estimation error above
10%. In contrast, our techniques result in a average relative error
of 1.04%, with no estimation error above 1.8% for the same query.
INUM also requires hints and assumptions to reduce the number of
regular optimization calls per query in the pre-computation phase
(which could be exponential in the number of tables in the worst
case). As an example, forTPC-H query 15, INUM requires 1,358
regular optimization calls before it can start optimizing arbitrary
configurations. OurC-PQO optimizer required asingle C-PQO
execution call (worth 1.4 regular optimization calls) to arrive at the
same state (a difference of roughly three orders of magnitude). For
that reason, an experimental evaluation of INUM [12] results in
1.3x to 4x improvement in the performance of tuning tools, where
our techniques result in over an order of magnitude improvement
over INUM.

8. CONCLUSION
In this work we address the current bottleneck of current phys-

ical design tools: large amounts of time waiting for the optimizer
to produce execution plans. Inspired by the ideas on parametric
query optimization, we designed an infrastructure that produces,
with little overhead on top of a regular optimization call, acompact
representation of all execution plans that are possible forvarying
input configurations. We are then able to instantiate this represen-
tation with respect to arbitrary configurations and simulate the op-
timization of queries orders of magnitude more efficiently than tra-
ditional approaches at virtually no degradation in quality. Our tech-
niques are straightforward to incorporate into existing physical de-
sign tools, and our initial experiments show drastic improvements
in performance. Furthermore, we believe that an even more inter-
esting challenge lies ahead. With the main bottleneck of current
tools gone, we might be able to focus on more complex optimiza-
tion strategies by exploiting directly the representationof C-PQO-
enabled tools, instead of usingC-PQOas a sophisticated caching
mechanism.
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