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Abstract
Due to speech recognition errors, repetition can be a frequent
occurrence in voice-search applications. While a proper treat-
ment of this phenomenon requires the joint modeling of two
or more utterances simultaneously, currently deployed systems
typically treat the utterances independently. In this paper, we
analyze the structure of repetitions and find that in at leastone
commercial directory assistance application, repetitions follow
simple structural transformations more than70% of the time.
We present preliminary results that suggest that significant gains
are possible by explicitly modeling this structure in a joint de-
coding process.
Index Terms: speech recognition, minimum bayes risk, joint
decoding, repeated utterances

1. Introduction
Due to the imperfect nature of speech recognition technology,
repetition is an intrinsic part of many of today’s interactions
with automated systems. For example, an analysis of call logs
from a commercial directory assistance application indicates
that repetition occurs in about 49% of interactions - about half
the utterances are either the first or second turn in a repetition.
When repetition occurs, the same information is presented re-
dundantly, and one might intuitively expect that there is a way of
exploiting this redundancy to improve recognizer performance.
This is typically not done, however, with systems instead decod-
ing indendently and then post-facto suppressing n-best results
that were already explicitly disconfirmed in an earlier turn.

Recently, [1] has used joint acoustic modeling to improve
the performance of single-word recognition. In this approach,
multiple occurrences of an individual word are first aligned
amongst each other, and then the consensus alignment is aligned
to an HMM in a constrained Viterbi process. In this paper, we
study the related but significantly different problem of decod-
ing repetions thatmight not be identical, but whichderive from
reference to a finite set of entities, such as is found in direc-
tory assistance applications, or in voice-search more generally.
Consider for instance a yellow-pages directory assistanceappli-
cation. A user calling to find out the phone number for the cus-
tomer service line of General Motors might first say “General
Motors customer service”. If the recognition result for this first
utterance does not have a high confidence score, the application
will query the user again. The second time around, the user
might respond “I want the one-eight-hundred number for Gen-
eral Motors company”, or perhaps simply “General Motors”.
(Table 1 provides several other concrete examples from sucha
deployed application.) The repetition need not be exact, but the
two user utterances are tied by the same underlying entity - in
this case one of a large but enumerable set of businesses.

The idea of using information across multiple turns in the
conversation appears in earlier works, such as [2], which uses

a dynamic bayesian network to update belief states across mul-
tiple utterances over the course of a dialog in a command-and-
control application. Similarly, [3] presents a method for learn-
ing belief updating models that scale up in a more complex spo-
ken dialog system. In other related work, [4, 5] study repetition
from a descriptive point-of-view (duration, intensity, hyperar-
ticulation, etc.) but do not address automatic speech recogni-
tion, and [6] proposes the use of dialog state to improve ASR
performance, but does not address repetition. The work we dis-
cuss here is novel in that we investigate and leverage the partic-
ular structure of repeated utterances, and in that we focus on the
recognition process and introduce a joint decoding model.

2. Framework
If we denote the value of an underlying reference byl (for list-
ing) and denote word and acoustic sequences withw anda re-
spectively, then in the approach we adopt, we are interesed in
finding the likeliest sequences:
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Since the vast majority of repetitions in our corpus have
exactly two utterances, we focus on the two-turn case for the
remainder of the paper.
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In the first approximation, we have assumed that
P (a1|w1,w2, l) = P (a1|w1), and in the second ap-
proximation we assume further thatP (a2|w1,w2, a1, l) =
P (a2|w2). We note that this second approximation may be
inadequate - in the case of exact repetition, the first sample
of words and acoustics should significantly sharpen the
probability distribution over acoustics for the second utterance.
However, we leave it for later work to address appropriate
forms of acoustic adaptation. In contrast to [1], we focus onthe
language modeling aspects of repeated utterances.



The proposed model therefore consists of several compo-
nents:

1. The first component,P (l), captures the prior distribution
for the set of listings.

2. The second component,P (w1|l), can be thought of as
a translation model that maps from the written form of a
listing l to a corresponding spoken formw [7].

3. The third component,P (w2|w1, l), captures how users
repeat themselves, at the language level – this can be
thought of as a repetition language model.

4. Finally, the last two components in the proposed factor-
ization,P (a1|w1) andP (a2|w2) represent the acoustic
scores for the corresponding utterances.

A key characteristic of the proposed joint decoding model
is that the multiple utterances are “tied together” by the assump-
tion of a single underlying concept. In the directory assistance
application we study, the underlying set of concepts is a setof
approximately 149,000 names for businesses with toll free num-
bers. While this is too large a number to permit exhaustive cal-
culation of the sum over listings, we will later present a simple
process for efficiently approximating the sum.

The observant reader will notice that in the case of a voice-
search application with a finite set of listings, one could just as
easily express the problem as one of finding the likeliest listing
- one might not care about the words themselves. In this case,
the problem we are solving is:
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However, as we will see in Section 3, while our dataset has or-
tographic transcriptions, and is therefore quite precise about the
words that are present, we do not know the ground truth for the
listing desired by the user. Therefore, in this paper we focus
on the first version on the task - more accurately recovering the
spoken words themselves. We also deduce bothw1 andw2

rather thanw2 alone since in the application we study,w1 may
never be presented to the user for confirmation (when the sys-
tem has low confidence), and is therefore truly unknown. In
the case that one is interested inw2 only, our procedures may
still be used by summing rather than maximizing overw1. No-
tice that solving the problem at the lexical (rather than seman-
tic) level provides added benefits in an application that needs to
perform explicit or implicit confirmation actions.

3. Data
While the problem of dealing with repetitions is quite general,
this paper focuses on a specific instance of it which motivates
certain design and algorithmic decisions. The system we are
concerned with is a commercially deployed high volume toll-
free directory assistance application. Approximately43, 000
businesses are in this system, sometimes with multiple syn-
onyms for each business (e.g. “greater alarm” and “greater
alarm company”), leading to a total of approximately149, 000
names. We stress that while our experiments focus on a direc-
tory assistance application, the issues and theory are common
across other voice-search applications [9, 8, 10, 11, 12].

auto id=38392
lil tykes company
little tikes customer service
little tikes toys
the little tikes toys

auto id=39036
greater alarm company
greater alarm

auto id=7133
d p i and associates

Figure 1: Sample database listings.

The corpus used in the experiments described in this paper
consists of a set of150, 000 ortographically transcribed user
utterances from the above-mentioned directory assistancesys-
tem. Each session with the system has a unique identifier. This
allowed us to detect pairs of repeated utterances, consisting of
an initial request, followed by a repetition of that request. Such
paired utterances account for about half of the total utterances
received by the system. For development and testing purposes,
we separated (by random sampling of pairs) a development set
of 11, 838 utterances, and a test set of12, 650 utterances.

Due to third party licensing restrictions, the output of the
original recognizer was not available. To obtain decoding out-
put including n-best lists, we redecoded with a different com-
mercial recognizer. The 1-best accuracy of this recognizerwas
44.0%, but acoustic and language model scores were not avail-
able. We recreated the language model scores using the CMU
LM toolkit [13], and used the logarithm of an entry’s rank on the
n-best list as a surrogate for the acoustic score. This resulted in
a baseline of44.2%, slightly better than the original recognizer.

In the deployed system, repetition is prompted under one of
two circumstances: first, if the recognizer has low confidence,
the system will immediately request a clarifying statement. Sec-
ond, if the user explicitly disconfirms a hypothesis, a repetition
will result. In the case that an initial hypothesis is rejected, one
would of course want to assign it zero probability in any sums
in which it occurs. In contrast, in the case of low confidence,
nothing can be discarded. Since we redecoded the data, we are
left with a stylized data set in which we have two utterances
related by repetition, but no particular information aboutthe
circumstances of the repetition at runtime.

4. Models

4.1. Baseline

The baseline model computes the likeliest word sequences for
each utterance independently:

w1

∗ = argmax
w1

P (w1)P (a1|w1)

w2

∗ = argmax
w2

P (w2)P (a2|w2)

In this model,w1 andw2 are restricted to those appearing on
the n-best lists.



Type Frequency w1 w2

Exact Match 46.0% Starbucks Starbucks
Right Extension 6.6% Starbucks Starbucks Coffee
Right Truncation 13.7% Blockbuster Video Blockbuster
Left Extension 1.6% Roma’s Pizza Tony Roma’s Pizza
Left Truncation 2.8% The Red Lion Inn Red Lion Inn
Inclusion 1.2% The Social Security Administration Social Security
Cover 0.4% Kodak Eastman Kodak Corporation

Table 1: Frequencies and examples of structured repetition. “Type” shows how the second utterance is related to the first.

4.2. Pure Counting

Our counting model simply counts the number of times a word
sequence has been used to request a listing and uses relative
frequencies:

Pc(w1|l) =
#(w1, l)

#(l)

Due to data sparsity issues, we have found it beneficial to ap-
proximatePc(w2|w1, l) asPc(w2|l) alone, and to further tie
the statistics acrossw1 andw2. Thus for bothw1 andw2 we
have

Pc(w|l) =
#(w, l)

#(l)

Even so, a pure counting model is too sparse to be of use, and
must be further smoothed (see next subsection).

To estimate the counts model, we matched the reference
transcriptions against the set of existing listings (including the
available synonyms). An exact match (modulo acoustic non-
lexical events like /um/, /oh/) was found in 61% of the cases,
resulting in 92,000 transcription/listing pairs.

4.3. Interpolated Counting

To further smooth the counting models, we have found it ben-
eficial to interpolate the count-based estimate with a standard
language model estimate resulting in what will be referred to
this as our “unstructured” modelPus.

Pus(w|l) = αPc(w|l) + (1 − α)P (w)

P(w) is estimated with a standard n-gram language model. This
estimate is used for bothw1 andw2, with interpolation weights
set to 0.9 through optimization on the development set.

4.4. Structured Repetition Models

The most significant gains from the proposed approach have
come from explicitly modeling the structure that is presentin
repetitions, viaP (w2|w1, l). A corpus analysis has revealed
several types of simple transformations that together account for
a large proportion of the repeated utterances. Table 1 illustrates
these transformations, along with examples and frequencies. Is
is interesting to notice that these simple transformationsaccount
for approximately72% of the data. Since exact matches and
right-truncations cover approximately60% of all repetitions,
and the next most frequent phenomenon (right-extension) ac-
counts for only6.6% of the data, we have focused our models
and experiments on the two most common cases.

All our structured models are interpolated language models
drawing from a set of atomic models indexed byz. We have:

P (w2|w1, l) =
X

z

P (w2, z|w1, l)

=
X

z

P (z|w1, l)P (w2|w1, l, z)

A standard interpolated language model onw2 results from
the assumptionsP (z|w1, l) = P (z) and P (w2|w1, l, z) =
P (w2|z). To simplify notation in subsequent discussion, we
will usePz(·) to denoteP (·|z). Further, note that these models
apply to the second-turn utterance only;P (w1|l) is modeled
with the unstructured model,Pus.

4.4.1. Exact Repetition

To model exact repetitions, we create a modelPer to use in
conjunction with the unstructured modelPus. The model for
exact repetitions is given by:

Per(w2|w1, l) =



1 if w2 = w1

0 otherwise

This is then interpolated with either a plain n-gram lan-
guage model of the unstructured model to arrive at our struc-
tured models accommodating exact repetition:

Pxr(w2|w1, l) = P (er)Per(w2|w1, l)+ (1−P (er))P (w2)

Psr(w2|w1, l) = P (er)Per(w2|w1, l)+(1−P (er))Pus(w2|l)

In our experiments,P (er) was taken to be the probability
of an exact repeat, i.e. 0.46. We note that the resulting distri-
bution will tend to assign a higher probability to exact repeti-
tion than is found in the data. This is because the exact repeat
portion of the language model will by construction create the
expected number, and then the interpolated count model will
occasionally add more probability mass. If desired, the inter-
polated count model could be made sensitive to the value of
w1 (we are computingP (w2|w1, l)), prevented from generat-
ing it, and renormalized; however, this would make the search
process much slower and the resulting complexity was deemed
unnecessary.

4.4.2. Right Truncation

To model the phenomenon of right truncation, we must spec-
ify the frequency of truncation, and a distribution over trunca-
tion lengths. Note that this distribution must be sensitiveto the
length ofw1: there should be no probability assigned to trun-
cating more words than are actually present inw1. Now, z will
index not just the previous unstructured (us) and exact-repeat
(er) models, but a set of truncation modelsti wherei indicates
the number of words to truncate fromw1. Using⇒ i to denote
truncation byi words, we have:

Pti
(w2|w1, l) =



1 if w2 = (w1 ⇒ i)
0 otherwise



Our final structured model, incorporating both exact repetition
and truncation, is denotedPsrt and is given by

Psrt(w2|w1, l) = P (er)Per(w2|w1, l)

+
X

i

P (ti|length(w1))Pti
(w2|w1, l)

+

„

1 − P (er) −
X

i

P (ti|length(w1))

«

Pus(w2|l)

4.5. Search

Recall that our approach involves maximizing over pairs of pos-
sible word sequencesw1 andw2, and summing over listingsl.
In the experimental results reported below,w1 is restricted to
the word sequences on the n-best list for the first utterance,and
a similar constraint is used forw2. To avoid summing over all
149, 000 word sequencesl for eachw1,w2 pair, we restrict the
set of listings to those with at least one word in common with
eitherw1 or w2, and look these up with a hash table.

5. Experiments
The experimental results for the test set are summarized in Table
2. The results are measured in terms of sentence accuracy, and
shown both overall, and for the second-round utterances (the
repetitions) only.

The baseline is the one-best sentence accuracy of our com-
mercial decoder. The rescoring baseline is generated by select-
ing the one-best utterances for each turn independently, using
the surrogate acoustic scores combined with the language model
scores. The results for each model in turn are reported on the
subsequent lines. From the improvements obtained from the
unstructured modelPus, we see that even using a very simple
counting model to link the observed word sequences to the un-
derlying database entries leads to some improvements. Model-
ing both the exact repetition and truncation phenomena results
in larger improvements (2.1% absolute improvement on the re-
peated utterances), indicating that the structural relationships
between repetitions can be successfully exploited.

6. Conclusion and Future Work
This paper has shown that the joint analysis of repeated utter-
ances can be effectively used to increase performance on both
turns of the repetition. Our approach has tapped into two key
phenomena: first, that in voice-search applications, the turns
are likely to be tied together by a common concept, and the set
of possible concepts can be enumerated. Second, the turns are
likely to be related to each other through simple structuraltrans-
formations, and these can sharpen the distribution over expected
words on the second turn. Taken together in a generative model,
a language-model based exploitation of these phenomena leads
to about 4% relative improvement on both the first and second
turns. The oracle error rate of the n-best lists imposes an upper
bound on the possible gains, and we have achieved about 15 to
20% of them.

The factorization of the proposed joint decoding model
highlights a number of opportunities for future research. Some
of the areas that we believe might lead to further improvements
are:

1. Using a richer or more structured translation model
P (w|l), ([7])

2. Modeling acoustic adaptation inP (a2|w1,w2,a1, l)

Overall SACC 2nd Round SACC

Baseline 44.0% 46.0 %
Rescoring Baseline 44.2% 46.2 %
Pus 45.0 % 46.9 %
Pxr 45.3 % 47.0 %
Psr 45.6 % 47.6 %
Psrt 45.9 % 48.1 %
Oracle 55.3 % 56.7 %

Table 2: Sentence accuracy for various models.

3. Dynamically compiling grammars for the second turn to
reflect the expected word distribution givenw1

Furthermore, in this paper we have reported on a joint decoding
modelP (w1,w2|a1,a2). In addition, we are currently inves-
tigating a direct maximum entropy model that can leverage the
same type of information about the structure of the repeatedut-
terances to improve recognition performance.
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