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Abstract. We discuss how to perform symbolic execution of large pro-
grams in a manner that is both compositional (hence more scalable) and
demand-driven. Compositional symbolic execution means finding feasi-
ble interprocedural program paths by composing symbolic executions
of feasible intraprocedural paths. By demand-driven, we mean that as
few intraprocedural paths as possible are symbolically executed in order
to form an interprocedural path leading to a specific target branch or
statement of interest (like an assertion). A key originality of this work is
that our demand-driven compositional interprocedural symbolic execu-
tion is performed entirely using first-order logic formulas solved with an
off-the-shelf SMT (Satisfiability-Modulo-Theories) solver — no procedure
in-lining or custom algorithm is required for the interprocedural part.
This allows a uniform and elegant way of summarizing procedures at
various levels of detail and of composing those using logic formulas.

We have implemented a prototype of this novel symbolic execution
technique as an extension of Pex, a general automatic testing framework
for .NET applications. Preliminary experimental results are encouraging.
For instance, our prototype was able to generate tests triggering assertion
violations in programs with large numbers of program paths that were
beyond the scope of non-compositional test generation.

1 Introduction

Given a sequential program P with input parameters 7, the test generation
problem consists in generating automatically a set of input values to exercise as
many program statements as possible. There are essentially two approaches to
solve this problem. Static test generation [I5I22)/7] consists in analyzing the pro-
gram P statically, using symbolic execution techniques to attempt to compute
inputs to drive P along specific paths or branches, but without ever executing the
program. In contrast, dynamic test generation [I6ITTI5] consists in executing the
program, typically starting with some random inputs, while simultaneously per-
forming a symbolic execution to collect symbolic constraints on inputs obtained
from predicates in branch statements along the execution, and then using a con-
straint solver to infer variants of the previous inputs in order to steer program
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executions along alternative program paths. Since dynamic test generation ex-
tends static test generation with additional runtime information, it can be more
powerful [ITI0], and is therefore used as the basis of this work.

As recently pointed out [I0], automatic test generation (whether static or dy-
namic) does not scale to large programs with many feasible program paths, unless
test generation is performed compositionally. Inspired by interprocedural static
analysis, compositional test generation consists in encoding test results of lower-
level functions with test summaries, expressed using preconditions over function
inputs and postconditions over function outputs, and then re-using those sum-
maries when testing higher-level functions. In contrast with traditional interproce-
dural static analysis, the framework introduced in [10] involves detailed summaries
where function preconditions and postconditions are represented using logic for-
mulas, and the interprocedural analysis (test generation) is performed using an
automated theorem prover. A key component of this approach is thus composi-
tional symbolic execution: how to find feasible interprocedural program paths by
composing symbolic executions of feasible intraprocedural paths, represented as
logic “summaries”.

In this paper, we develop compositional symbolic execution further. We present
a detailed formalization of how to generate first-order logic formulas with uninter-
preted functions in order to represent function summaries and allow compositional
symbolic execution using a SMT (Satisfiability-Modulo-Theories) solver. Our for-
malization generalizes the one of [I0] as it allows incomplete summaries (which
correspond to only a subset of all paths of a function) to be expanded lazily on
a demand-driven basis, instead of being expanded in the fixed “innermost-first”
order described in [I0]. With demand-driven symbolic execution, as few intrapro-
cedural paths as possible are symbolically executed in order to form an interpro-
cedural path leading to a specific target branch or statement of interest (like an
assertion). This increased flexibility also allows test generation to adapt dynam-
ically, as more statements get covered, in order to focus on those program state-
ments that are still uncovered. In practice, real-life software applications are very
complex, and allowing the search to be demand-driven is often key to reach a spe-
cific target in a reasonable time. It is also useful for selective regression testing
aimed at generating tests targeted to cover new code embedded in old code.

We have implemented a prototype of demand-driven compositional symbolic
execution as an extension of Pex [20], a general automatic testing framework
for .NET applications. Preliminary experimental results are encouraging. For
instance, our prototype implementation was able to generate tests triggering
assertion violations in programs with large numbers of program paths that were
beyond the scope of non-compositional test generation.

2 Background

We assume we are given a sequential program P with input parameters T.
Symbolic execution of P means symbolically exploring the tree 7 defined by the
execution paths of the program when considering all possible value assignments
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to input parameters. For each execution path p, i.e., a sequence of statements
executed by the program, a path constraint ¢, is constructed that characterizes
the input assignments for which the program executes along p. Each variable
appearing in ¢, is thus a program input, while each constraint is expressed in
some theory T decided by a constraint solver (for instance, including linear arith-
metic, bit-vector operations, etc.). A constraint solver is an automated theorem
prover which also returns a satisfying assignment for all variables appearing in
formulas it can prove satisfiable. All program paths can be enumerated by a
search algorithm that explores all possible branches at conditional statements.
The paths p for which ¢, is satisfiable are feasible and are the only ones that
can be executed by the actual program. The solutions to ¢, exactly character-
ize the inputs that drive the program through p. Assuming that the constraint
solver used to check the satisfiability of all formulas ¢, is sound and complete,
this use of symbolic execution for programs with finitely many paths amounts
to program verification.

In practice, symbolic execution of large programs is bound to be imprecise
due to complex program statements (pointer manipulations, floating-point op-
erations, etc.) and calls to operating-system and library functions that are hard
or impossible to reason about symbolically with good enough precision at a
reasonable cost. Whenever precise symbolic execution is not possible during dy-
namic test generation, concrete values can be used to simplify constraints and
carry on with a simplified, partial symbolic execution [11].

Systematically executing symbolically all feasible program paths does not
scale to large programs. Indeed, the number of feasible paths can be exponential
in the program size, or even infinite in presence of loops with unbounded num-
ber of iterations. This path explosion can be alleviated by performing symbolic
execution compositionally [10].

Let us assume the program P consists of a set of functions. In what follows,
we use the generic term of function to denote any part of the program P whose
observed behaviors are summarized; obviously, any other kinds of program frag-
ments such as arbitrary program blocks or object methods can be treated as
“functions” as done in this paper. To simplify the presentation, we assume that
the functions in P do not perform recursive calls, and that all the executions
of P terminate. (These assumptions do not prevent P from possibly having in-
finitely many executions paths, as is the case if P contains a loop whose number
of iterations may depend on some unbounded input.)

In compositional symbolic execution [I0], a function summary ¢ for a func-
tion f is defined as a formula in propositional logic whose propositions are con-
straints expressed in some theory T'. ¢; can be derived by successive iterations
and defined as a disjunction of formulas ¢,, of the form ¢, = pre, A post,,
where pre,, is a conjunction of constraints on the inputs of f while post,, is a
conjunction of constraints on the outputs of f. ¢, can be computed from the
path constraint corresponding to the execution path w as described later. An
input to a function f is any value that can be read by f in some of its execu-
tions, while an output of f is any value written by f in some of its executions
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int abs(int x){ int testAbs(int p, int q){
if(x > 0) return x; int m = abs(p);
else if(x = 0) int n = abs(q);
return 100; if(m>n&& p > 0)
else return —x; assert false; //target
} }

Fig. 1. Example program

and later read by P after f returns. To simplify the presentation, we assume
in what follows that each function takes a fixed number of arguments as inputs
and returns a single value.

3 DMotivating Example and Overview

To illustrate the motivation for demand-driven compositional symbolic execution,
consider the simple program in Fig. 1, which consists of a top-level function testAbs
which calls another function abs. Intraprocedural execution trees for each function
are shown in Fig. 2. Each node in such trees represents the execution of a program
statement such that a path from the root of the tree to a leaf corresponds to an in-
traprocedural path. Each such path can be identified by its leaf node. Edges in exe-
cution trees are labeled with constraints expressed in terms of the function inputs.
The conjunction of constraints labeling the edges of a path represents its associ-
ated path constraint as defined earlier. For example, Fig. 2(a) shows the (partial)
execution tree of function abs, shown in Fig. 1, after the execution of abs with a
single input x=1. In what follows, we call anode dangling if it represents a path that
has not been exercised yet. For example, after executing the abs with input x=1,
any path on which the input is less than or equal to 0 is not exercised. In Fig. 2(a),
the sole dangling node is denoted by a circle.

The demand-driven compositional symbolic execution we develop in this work
has two key properties: given a specific target to cover, it tries to (1) explore as
few paths as possible (called lazy exploration) and to (2) avoid exploring paths
that can be guaranteed not to cover the target (called relevant exploration). We
now illustrate these two features.

Lazy Exploration. Assume that we first run the program of Fig. 1 by execut-
ing the function testAbs with p=1 and gq=1. This first execution will exercise
the then branch of the first conditional statement in abs (node 3), as well as the
else branch of the conditional statement in testAbs (node 10). The execution
trees of abs and testAbs resulting from this execution are shown in Fig. 2(a)
and (c), respectively. Suppose we want to generate a test input to cover node 11,
corresponding to the assertion in testAbs. The search ordering described in [10]
is not target-driven and would attempt to next exercise the unexplored paths in
the innermost, lower-level function abs. In contrast, the more flexible formaliza-
tion introduced in the next section allows us to check whether a combination of
currently-known fully-explored intraprocedural paths are sufficient to generate
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Fig. 2. Execution trees for the functions abs and testAbs from Fig. 1. Each execution
tree represents paths exercised by a set of test inputs shown as vectors inside the curly
braces.

a new test input covering the target node. In this example, this is the case as
the assertion can be reached in testAbs without exploring new paths in abs, for
instance with values p=2 and q=1.

Relevant Exploration. Now, assume we first execute the program with inputs
p=0 and gq=1. Suppose our target is again node 11 corresponding to the assert
statement. From the condition guarding the assert statement, observe that any
combination of input values for p and q where p has a non-positive value has
no chance to cover the target. As we will see, our proposed algorithm is able
to infer such information automatically from the previous execution with inputs
p=0 and q=1, and will thus prune automatically the entire sub-search tree where
p is not greater than 0.

4 Demand-Driven Compositional Symbolic Execution

4.1 Main Algorithm

Algorithm [ outlines our test-generation algorithm. Given a program P, Algo-
rithm [Miteratively computes a set of test inputs to cover all reachable statements
in P. The algorithm starts with an empty set of intraprocedural execution trees,
and a random program input. It performs two steps in sequence until all reach-
able nodes in the program have been explored. (1) Function Execute executes
the program with some test input, both normally and symbolically. During sym-
bolic execution of the specific path exercised by the test input, new nodes and
edges with constraint labels are added to the intraprocedural execution trees
of the individual program functions being executed, while dangling nodes, used
as place-holders along this specific path in previous executions, become regular
nodes. (2) ChooseDanglingNode chooses a dangling node as the next target to
be covered, using any heuristic (search strategy). If there is no dangling node
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input : Program P
output: A set of test inputs
exTrees < emptyExTree ;
input < RandomInput();
repeat
if input # emptyModel then
exTrees «— Execute (P, input, exTrees);
OutputTest (input);

else
RemoveDanglingNode (n);
end
n < ChooseDanglingNode (exTrees);
if n # nil then
input < FindTestInput (exTrees, n);
end
until n = nil ;
return;

Algorithm 1. Test-input generation algorithm

remaining, the algorithm terminates. Otherwise, FindTestInput computes a test
input to cover the target, as will be described next.

4.2 Compositional Symbolic Execution

In compositional symbolic execution, the condition under which a node in a
function can be reached from the program’s entry point is the conjunction of (1)
the condition under which the function’s entry node can be reached, referred to
as calling context; and (2) the condition under which the node can be reached
within its function, referred to as the local (intraprocedural) path constraint.

Local (Intraprocedural) Path Constraint. The local path constraint of
a node n in the intraprocedural execution tree 77 of function f is defined as
the path constraint of the path w from the entry node of f to the statement
represented by n. The local path constraint of node n, represented by localpe(n),

is expressed in terms of the input parameter symbols 77; of f and represents a
precondition pre(w) for execution of the path w [I0]. It is defined as follows.

localpe(n) := lpe, A /\ Dy(a)

for each g(@) appearing in Ipc,,

where Ipc,, is the conjunction of constraints appearing on the edges of the path
w from the root of 7; to n, and each definition predicate D,('@’) represents
the (possibly partial) summary currently available for function g, called from f
with @ as arguments, and mentioned in Ipc,. Definition predicates are formally
defined as follows.
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Definition predicate. When function f calls function g during symbolic execu-
tion, we treat the return value of the function call to g as a (fresh) symbolic input
to f. We represent the return value by the expression g(@’), where @ are the
arguments expressed in terms of 7?} If the return value is used in a conditional
statement of f, then g(@) appears in the path constraint. The function symbol
g will be treated as an uninterpreted function symbol by the constraint solver,
and we restrict possible interpretations by an axiom of the form Vz. g(x) = E[z],
where Fx] is an expression that may involve the bound variable x. As an ex-
ample, for the abs function in Fig. 1, abs can be defined as follows (where ITE
denotes the If-Then-Else construct):

V. abs(x) = ITE(x > 0,2, [TE(x = 0,100, —x))

However, return values on some paths of a function may be currently unknown
since paths are explored incrementally and on-demand. In those cases, we cannot
use the above encoding directly. We could use a special undefined value that
represents the result of an unexercised path, and lift all operations accordingly.
Instead, we use a definition-predicate D, for each function symbol that represents
the return value of a function call. We define this predicate with the axiom &,
as follows.

b6y 1= W?g}. Dg(_;) & \/ localpe(l) N ret(l)
leaf | in T

where
ag if [ is a dangling node

ret(l) := {9(77;) = Rety(1) otherwise

In the above definition, Rety(l) represents the return value of g, which is an

expression in terms of 77;, on the fully-explored intraprocedural path represented
by I. For each dangling node d, G4 represents an auxiliary boolean variable that
uniquely corresponds to d; we use these boolean variables in Sec. to control
the search by specifying whether the exploration of a new execution path through
a dangling node is permissible.

For the example shown in Fig. 1, suppose we execute testAbs with p = 1 and
q = 1. The execution trees for abs and testAbs obtained from this input are
shown in Fig. 2(a) and (c) respectively. Now, the local path constraint of the
node n, labeled 11 in the figure, will be as follows.

localpe(n) == abs(p) > abs(q) Ap > 0 A Daps(p) A Daps(q)

With the above input, since only the path where x > 0 has been explored in
abs, there is a dangling node d , labeled 2, which represents the (unexplored)
else branch of the conditional statement. The definition predicate Dgps is then
defined by the following axiom.

Oabs = Vx. Daps(z) < ITE(x > 0,abs(z) = x,Gq)
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If all the paths of abs had been explored (as shown in Fig. 2(b)), its definition-
predicate axiom would instead be as follows.

babs ‘= V. Daps(z) & (x <0OAx=0Aabs(x) =100)
V(z <0Az#0Aabs(z) = —x)
V(z > 0Aabs(z) =x)
=Vz. Dgps(z) & ITE(x <0, ITE(x = 0,abs(x) = 100, abs(z) = —x),
abs(z) = x)

Note that, with the specific innermost-first search order used in [I0] for incre-
mentally computing summaries, dangling and target nodes are always in the
current innermost function in the call stack and the above formalization of par-
tial summaries can then be simplified. In contrast, the formalization presented
here is more general as it allows dangling nodes and target nodes to be located
anywhere in the program.

Calling-context Predicate. The calling-context predicate associated with a
function f describes under which conditions, and with which arguments, f can be
reached. The calling-context predicate of function f, written as Cf (@), evaluates
to true iff on some program path f can be called with arguments @. Cy(@) is
defined by the calling-context axiom vy as follows.

Vad.Cp(ad)ed =1 if f is entry function of program P
vy =R Vad. Cp(a) & \/ Ci(a) otherwise
funcf?irosag(:kiln P
with
CY(@) = TPy. Cy(Py) A (knownC? knownC?
$(a) = 3Py. C4(Py) A (known (@) V unknownC?)
where
knowanZ(E)) = \/ @ = args(m) Alocalpe(m)
mé&callsites(Ty, f)
unknownC?9 = \/ localpe(d) A Gy

dangling node d in 7,

We distinguish two cases in ;. First, if f is the entry function of the program
P, then the arguments of f are the program inputs 7. Otherwise, C¢ (@) is true
iff f can be called from some function g with arguments @. C%(@’) represents
the condition under which g may call f with arguments @ . C?(E)) in turn

evaluates to true iff (1) g itself can be called with arguments 779); and either (2.a)
f can be called from g in a known call site denoted by m € callsites(7y, f) with

arguments @ = args(m), where args(m) denote the arguments (in terms of 77;)
passed to call at m; or (2.b) f might be called (with unknown arguments) on a
path in g, represented by a dangling node d, that has not been explored so far.
In either case, the local path constraint localpc(m) leading to the known call
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site m or localpc(d) leading to a possible call site d, respectively, is appended as
a condition necessary to reach the respective call site.

Consider again the program shown in Fig. 1 with testAbs as the top-level
entry function. The calling-context predicate for testAbs is then defined by the
following axiom.

— —
VtestAbs 1= VD, q. CtestAbs(pv Q) sp=1 (0) Ng= 1T (1)

For the function abs, the definition of the calling-context predicate is more com-
plicated because abs can be called twice in testAbs. Suppose the execution
trees of abs and testAbs are as shown in Fig. 2(b) and (c) respectively. For
both known call-sites of abs in testAbs, where p and ¢ are passed as arguments,
localpe evaluates to true. And, there is one unknown call-site, which is repre-
sented by the dangling node d (labeled 11). For d, we have localpc(d) := abs(p) >
abs(q) Ap > OA Daps(p) A Daps(q). Now, Cyps(a) is defined by the axiom 7,ps as
follows.

Yo = V. Cun(a) & G52 (a)
CZ%?AZ)S (a) = E'p7 q. CtestAbs (p’ q) A (a =p Va= q
V(abs(p) > abs(q) Ap > 0A Daps(p) A Daps(q) A Ga))

Note that an existential quantification is used in CY to limit the scope of pa-
rameter symbols P, to specific call-sites. However, this existential quantification
can be eliminated by skolemization since it always appears within the scope of
the universal quantifier in the definition of ;.

Also note that the formalization proposed in [I0] does not require calling-
context predicates because it only supports a fixed inner-most ordering in which
intraprocedural paths are explored. Since we relax here the restriction on the
exploration ordering so that paths can be explored in any order on-demand,
calling-context predicates become necessary.

Interprocedural path constraint. Given a node n in the intraprocedural ex-
ecution tree 77 of a function f, path constraints of interprocedural paths leading
to n are represented by ¥,,, which is defined recursively as follows:

U,, = localpe(n) A C’f(7?f)) A /\ Vg A /\ dg

Cy4(@) appears in ¥, g(@) appears in ¥,

¥, represents the disjunction of path constraints of all interprocedural paths to
target n that can be formed by joining intraprocedural paths, represented by
execution trees of different functions. (Disjunctions arise from the definitions of
vg and 8,4.) An intraprocedural path p in 7y can be joined with an intraprocedural
path ¢ in 7y, if either (1) p ends at a leaf node (possibly a dangling node) in 7,
and ¢ starts at a node in 7, corresponding to a call-site of f in g; or, (2) p ends
at a node representing a call-site of g in f and ¢ starts at the entry-node of 7;
or, (3) p ends at a dangling node, and ¢ starts from the entry-node of 7;, where
g is any arbitrary function.
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With compositional symbolic execution, the size of an interprocedural path
constraint is linear in the sum of the sizes of the execution trees 7; [10].

Examples. As our first example, suppose the execution trees for abs and
testAbs are as shown in Fig. 2(b) and (c), respectively. If the target is the
node labeled 11, then the interprocedural path constraint is as follows.

abs(p) > abs(q) Ap > 0 A Daps(p) A Daps(q) Ap > 0 A Crestavs(p, q)
AVz. Daps(z) < ITE(x < 0, ITE(x = 0, abs(x)= 100, abs(z) = —x), abs(z) = x)

AVD,q. Ciesians(p,q) < p= 7(0) ANqg= 7(1)

As another example, suppose the execution trees for abs and testAbs are again
as shown in Fig. 2(b) and (c), respectively. Now if the target is node labeled
2, the path constraint is as follows (where Gi; represents the unique boolean
variable corresponding to the dangling node labeled 11):

x < 0A Cups(2)
AVz. Daps(z) < ITE(x < 0, ITE(x = 0, abs(x)= 100, abs(z) = —x), abs(z) = x)
/\va- Oabs (a) g E|p7 q. CtestAbs (p’ Q) A (Cl =pVa=gq

V(abs(p) > abs(q) Ap > 0A Daps(p) A Daps(q) A G11))

— —
AVD,q. Crestans(p,q) < p=1(0)Ag= I(1)

4.3 Demand-Driven Symbolic Execution

In compositional symbolic execution, interprocedural paths are formed by com-
bining intraprocedural paths. To allow compositional symbolic execution to be
demand-driven, we allow in this work (unlike [I0]) interprocedural paths to be
formed by combining intraprocedural paths that end in dangling nodes. We call
an interprocedural path partially-explored iff it goes through one or more dan-
gling nodes; otherwise we call the path fully-explored. Note that a fully-explored
path may end at, but not go through, a dangling node.

Algorithm [ is used to find a feasible, interprocedural path from the entry
of the program to a target node using demand-driven compositional symbolic
execution. The algorithm corresponds to the subroutine FindTestInput in Al-
gorithm [Il It takes as input a set of intraprocedural execution trees exTrees,
and a dangling node n in one of these execution trees, which is the target to
cover. It returns either (1) a designated value emptyModel representing the fact
that the target node is unreachable, or (2) program inputs T that exercises a
path that may cover the target. The algorithm calls an SMT solver by invoking
the function FindModel(¥), which returns a model for the path constraint ¥
if it is satisfiable, or returns emptyModel otherwise. G(¥) represents the set of
all boolean flags that appear in the path constraint ¥, each of which uniquely
corresponds to a dangling node in exTrees. The algorithm first computes the
interprocedural path constraint for the target node n in exTrees as presented in
Sec. Then it performs two steps, referred to as lazy exploration and relevant
exploration in what follows.
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input : Set of execution trees exTrees, target node n to be covered
output: Program inputs that may cover n, or emptyModel if the target is
unreachable

¥,, «+— InterprocPC(n,exTrees);
input < FindModel (¥,, A /\ Ga = false);
Ga€G(Wp)Ad#n
if input = emptyModel then
input < FindModel (¥,,);
end
return input ;

Algorithm 2. Demand-driven, compositional FindTestInput algorithm

Lazy Exploration. In this step, the algorithm checks if it is possible to form
a feasible, fully-explored, interprocedural path to n by combining only (fully-
explored) intraprocedural paths in exTrees. To do so, it computes a constraint
that represents the disjunction of the path constraints of all such paths and
checks its satisfiability. The new constraint is formed by conjoining ¥, with
equations that set all variables but G,, in G(¥,,) to false so that all intrapro-
cedural paths that end at a dangling node other than n are made infeasible. If
the augmented constraint is satisfiable, FindModel returns a program test input
that is guaranteed to cover the target (provided symbolic execution has perfect
precision). Otherwise, we need to explore new partially-explored intraprocedural
paths, which is done in the next step.

Relevant Exploration. We say that a partially-explored, interprocedural path
is relevant if it ends at the target. In other words, such a path starts at the
program entry, goes through one or more dangling nodes, finally taking the
path from the root node of 7y to the target node n, where 7y represents the
execution tree of function f where n is located. In this second step, the algorithm
checks if a feasible relevant path can be formed by combining all (both fully-
explored and partially-explored) intraprocedural paths in exTrees. To do so, the
algorithm checks satisfiability of ¥,, with a second call to FindModel. If ¥, is
unsatisfiable, the algorithm returns emptyModel representing unreachability of
the target. Otherwise, it returns a program input that might exercise a path to
the target. This time, the boolean variables in G(¥,,) are not constrained to any
specific value as is done in the previous step. As a result, the constraint solver
assigns true to a boolean variable if the path to the corresponding dangling node
is used to form the interprocedural path to the target. Such a relevant path is
not guaranteed to reach the target, since the program’s behavior at dangling
nodes, which may appear on a relevant path, is currently unknown.

The following theorems characterize the correctness of the above algorithms.
These theorems hold assuming symbolic execution has perfect precision, i.e., that
constraint generation and solving is both sound and complete for all program
statements. (Proofs are omitted due to space limitations.)
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Theorem (Relative Completeness). If Algorithm [ returns emptyModel,
then the target n is unreachable.

Theorem (Progress). If Algorithm [ returns a program input T (different
—

from emptyModel), then the execution of the program with I exercises a new
intraprocedural path (i.e., at least one dangling node is removed from exTrees).

Theorem (Termination). If the program has a finite number of paths, Algo-
rithm [I] terminates.

5 Preliminary Experiments

We have implemented a prototype of demand-driven compositional symbolic ex-
ecution in Pex [20], a general automatic testing framework for NET programs.
Pex generates test inputs for parameterized unit tests [21I] by performing a varia-
tion of dynamic [IT] test generation using the SMT constraint solver Z3 [8]. Pex’
goal is to analyze as many feasible execution paths of a given .NET program
as possible in a given amount of time. During the search, Pex picks the next
target node using a scheduling algorithm that is fair between all dangling nodes.
Pex is a comprehensive testing tool and framework, which has been used within
Microsoft on several .NET applications and contributed to finding many bugs
(including several security-critical ones) in released software and software still
under development at Microsoft.

We present experiments with three programs written in C# using both non-
compositional and demand-driven compositional symbolic execution. These ex-
periments were conducted on a 3.4 GHz Pentium 4 with 2 GB memory.

HWM is program that takes a string as input, and an assertion fails if the input
string contains all of the four substrings: “Hello”, “world”, “at”, “Microsoft!”.
Although it is a simple program, it has hundreds of millions of feasible whole-
program paths. The program has a main method that calls contains(s,t)
four times in succession. contains(s,t) checks if string s contains substring t.
contains(s,t) calls containsAt(s,i,t) that checks if s contains t starting
from index i in s.

Parser is a parser for a subset of a Pascal-like language. The program takes
a string as input, and successfully parses it if it represents a syntactically valid
program in the language. An assertion is violated if parsing is successful. A valid
program starts with the keyword “program” followed by an arbitrary string
representing program name. Furthermore, the body of the program starts with
keyword “begin” and end with keyword “end”. And the body may optionally
include function definitions.

IncDec is a program that takes an integer as argument. It increments it several
times and then decrements until a certain condition specified as an assertion is
satisfied.

The table in Fig. Blpresents results of experiments. The three first columns rep-
resent the total number of executions, the total time taken over all executions,
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Benchmark No. of Executions Time in sec time per execution Exception found

new old new old new old new old
HWM 37 maxed 65 705 1.75 0.02 yes no
Parser 144 maxed 71 338 0.49 0.01 yes yes
IncDec 74 1207 14 43 0.18 0.03 yes yes

Fig. 3. Comparison between new (demand-driven, compositional) and old (non-
compositional) symbolic execution techniques

and the time taken per execution. (Execution time includes time taken by the con-
straint solver.) The last column shows whether the respective technique was able to
generate an input that violates the assertion contained in each program. In the col-
umn showing the number of executions, “maxed” denotes that non-compositional
symbolic execution hits an upper bound of 20,000 executions; in those cases, total
execution time represents the time taken to reach the upper bound.

We make the following observations from the table in Fig. Bl (1) The number
of executions required with demand-driven compositional symbolic execution is
often several orders of magnitude smaller compared to non-compositional sym-
bolic execution. (2) The improvement in total time cannot be measured as non-
compositional symbolic execution technique hits the upper bound on the number
of execution in two of the three cases. (3) The time taken for each execution in-
creases when the symbolic execution is demand-driven and compositional, as the
formulas generated are more complicated and the constraint solver needs more
time to solve those, although most can be solved in seconds. (4) In the case of
HWM, only the search with demand-driven compositional symbolic execution
is able to find the assertion violation, whereas the non-compositional search is
lost in search-space due to path explosion. The other two examples have fewer
execution paths, and the fair search heuristics implemented in Pex are able to
find the assertion violations, even with non-compositional searches.

6 Other Related Work

Interprocedural static analysis always involves some form of summarization [19)].
Summaries are usually defined either at some fixed-level of abstraction, e.g., for
points-to analysis [I7], or as abstractions of intraprocedural pre and postcondi-
tions, e.g., projections onto a set of predicates [323]. Even when a SAT solver is
used for a precise intraprocedural analysis [6123I2], the interprocedural part of
the analysis itself is carried out either using some custom fixpoint computation
algorithm [4I23] or by in-lining functions [6/2], the latter leading to combinatorial
explosion.

In contrast with prior work on interprocedural static analysis, we represent
function summaries as uninterpreted functions with arbitrary pre/postcondi-
tions represented as logic formulas, and we use an SMT solver to carry out the
interprocedural part of the analysis. Of course, the constraint solver may need
to in-line summaries during its search for a model satisfying a whole-program
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path constraint, but it will do so lazily, only if necessary, and while memoizing
new induced facts in order to avoid re-inferring those later, hence simulating the
effect of caching previously-considered calling contexts and new summaries in-
ferred by transitivity, as in compositional algorithms for hierarchical finite-state
machine verification [IJ.

How to perform abstract symbolic execution with simplified summary repre-
sentations [T4I2I12] in static program analysis is orthogonal to the demand-driven
and compositionality issues addressed in our paper.

The use of automatically-generated software stubs [IT] for abstracting (over-
approximating) lower-level functions during dynamic test generation [I8/9] is
also mostly orthogonal to our approach. However, the practicality of this idea
is questionable because anticipating side-effects of stubbed functions accurately
is problematic. In contrast, our approach is compositional while being grounded
in testing and concrete execution, thus without ever generating false alarms.

Demand-driven dynamic test generation for single procedures has previously
been discussed in [T6JT3]. This prior work is based on dataflow analysis, does not
use logic and automated theorem proving, and does not discuss interprocedural
analysis. As discussed earlier, our work extends the compositional test generation
framework introduced in [I0] by precisely formalizing how to implement it using
first-order logic formulas with uninterpreted functions and a SMT solver, and
by allowing it to be demand-driven.

7 Conclusion

This paper presents an automatic and efficient symbolic execution technique
for test-input generation, which is both demand-driven and compositional. By
demand-driven, we mean that, given a target to cover, the technique aims to
explore as few program paths as possible (called lazy exploration), and avoid
exploring paths that can be guaranteed not to cover the target (called relevant
exploration). By compositional, we mean that, instead of enumerating all inter-
procedural paths one-by-one, the technique finds feasible, interprocedural paths
by combining intraprocedural paths. Because the technique is demand-driven,
it can be very efficient when the goal is to cover a particular location in the
program (e.g., an assertion). And, due to its compositionality, it can alleviate
the path-explosion problem, which severely limits the scalability of automatic
test-input generation. We have implemented a prototype of the proposed tech-
nique on top of Microsoft’s Pex test-generation tool. Preliminary experimen-
tal results are promising. Currently, we are extending our prototype to handle
implementation issues such as summarizing side-effects through the heap. Fu-
ture work includes applying the technique to a larger set of programs to further
assess its effectiveness.
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