
Towards Declarative Queries
on Adaptive Data Structures

Nicolas Bruno1, Pablo Castro2

Microsoft, USA
1nicolasb@microsoft.com

2pablo.castro@microsoft.com

Abstract— In this work we look at combining emerging
technologies in programming languages with traditional query
processing techniques to provide support for efficient execution
of declarative queries over adaptive data structures. We first ex-
plore available technologies such as Language-IntegratedQuery,
or LINQ (which enables declarative queries in programming
languages) and the ADO.NET DataSet classes (which provide
various efficient alternatives to manipulate data in procedural
terms). Unfortunately, combining the good features in both
technologies is not straightforward, since LINQ over DataSets
results by default in execution plans that do not exploit the
specific characteristics of the data structures. To addressthis
limitation, we introduce a lightweight optimizer that dynamically
chooses appropriate execution strategies for declarativequeries
on DataSets based on their internal structure. To further en-
able declarative programming, we introduce a component that
dynamically reorganizes the internal representation of DataSets,
so that they automatically respond to workload changes. We
experimentally showcase the features of our approach.

I. I NTRODUCTION

There is an increasing number of applications that use
database systems (DBMS) as the ultimate persistent data store,
but however need to manage large amounts of data outside
of the DBMS. Stronger requirements for response time and
flexibility, combined with the broad availability of commodity
hardware with large main memory capacity, introduce new
challenges to the way applications search and manipulate data
in memory.

A sample typical scenario is analytical software for financial
institutions. A common requirement in these environments is
to obtain large amounts of data, typically through a com-
bination of database access and other sources such as web
services, and then allow a single user to explore various
“what-if” simulations. The expectation is that the system is
highly responsive to this user, even when patterns of use
or application parameters change. Another scenario that has
become increasingly common is the use of main-memory
informal caches for web or multi-tier applications. In thiscase
the middle-tier system loads some information from databases
or web services into main memory, and then multiple sessions
query the main-memory data instead of the database or web
service. While this does not represent a fully-featured caching
solution, it is a simple and effective strategy for cases where
the goal is to lower the pressure on the DBMS servers by
offloading some of the query executions over low-volatility
data to the middle-tier systems.

Traditionally, application developers implement complex
data structures and specialized logic to address the above
scenarios. However, handcrafted solutions usually resultin the
following drawbacks: (i) the use of a non-uniform structure
that makes it hard to support general query mechanisms, (ii)
the use of a non-uniform set of algorithms to manipulate the
data, and (iii) lack of opportunities for automatically adapting
the lower-level representation of the data to the workloadsand
environmental changes outside of the control of the system and
its administrators.

Recently, new technologies in the programming languages
space started to address some of the drawbacks described
above. For instance, standard rich data structures such as the
ADO.NET DataSet classes provide a unifying set of APIs
and a clear programming interface for adding and manipu-
lating data imperatively (see Section II-B for details). How-
ever, DataSets lack a richer declarative query mechanism.
Additionally, manually choosing the physical organization of
the data structure to meet varying requirements over time is
a difficult task that often cannot be done once and remain
effective long term.

Another new technology is Language-Integrated Query, or
LINQ for short (see Section II-A for details).LINQ enables
software developers to write queries in a declarative way
without imposing any specific execution strategy.LINQ also
exposes extensibility mechanisms that allow to customize the
way queries are executed against a particular data structure.
However, the default implementation ofLINQ operators is
simplistic, which is only appropriate for manipulating small
ad-hoc structures in memory. As the size of the in memory data
grows, these naı̈ve approaches to query processing become un-
acceptable from both flexibility and performance perspectives.

Our main observation is that the query formulation, op-
timization and execution techniques of traditional database
systems become an interesting alternative to execute queries
against native in-memory data structures. Specifically, these
techniques can be leveraged to help building data manipula-
tion infrastructures with effective declarative query processing
capabilities. An extreme point in this direction would be to
directly use a full-blown main-memory DBMS. However, this
approach (i) does not provide the tighter language and environ-
ment integration that is possible usingLINQ andDataSets,
(ii) can significantly increase the overall footprint of the
application, and (iii) introduces additional dependencies and

complexity around application development and deployment.
The rest of the paper is structured as follows. In Section II

we review bothLINQ and theDataSet classes in the .NET
framework. Then, in Section III we describe a lightweight
optimization framework that selects good implementations
for the declarative queries written inLINQ over DataSets.
Next, in Section IV we introduce a self-tuning component that
allows adaptation of the internal representation of aDataSet

for dynamically varying workloads. Finally, in Section V we
report an experimental evaluation of the techniques described
in the paper.

II. REVIEW OF EXISTING TECHNOLOGY

We next briefly describe recent technology that extends
programming languages with declarative query capabilities
(Section II-A) and rich data types that provide efficient im-
plementations for manipulating data (Section II-B).

A. Language-Integrated Query

Language-integrated query [1], [2], orLINQ for short, is a
recent innovation in the programming languages space that in-
troduces query-related constructs to mainstream programming
languages such as C# and Visual Basic.LINQ is designed to
work over any data source that supports a minimum “iterator-
like” contract1 (i.e., the classicalopen/getNext/closeinterface).
Unlike embedded-SQL, query constructs are not processed by
an external tool but instead are language first-class citizens.

As an example, the array data type exposes the iterator
interface and therefore can be used as aLINQ source. The
following C# code fragment initializes an arrayA and displays
the double of all elements smaller than five:

int[] A = {1, 2, 3, 10, 20, 30};
var q = from x in A

where x < 5
select 2*x;

foreach (int i in q)
Console.WriteLine(i);

In order to introduce query constructs into the programming
language,LINQ defines “standard query operators”, including
all of the standard relational operations (e.g., projections,
selections, joins), as extension methods to the iterator inter-
face. When a query is formulated, aLINQ-enabled compiler
mechanically translates the query operators into functioncalls
without further analysis. The query above thus becomes:

var q = A.Where(x=>x<5).Select(x=>2*x);

which uses lambda functions. This intermediate representation
is in turn translated into standard C# code as follows:

IEnumerable<int> q= Enumerable.Project(
Enumerable.Where(A, AF1),
AF2);

where IEnumerable is the base iterator interface,
Enumerable encapsulates all query operators over

1In the .NET framework, the iterator functionality is encapsulated in the
IEnumerator<T> interface.

IEnumerable classes, andAF1 and AF2 are anonymous
functions generated automatically as follows:

bool AF1 (int x) { return x<5; }
int AF2 (int x) { return 2*x; }

The default implementation of the operators uses fixed, gen-
eral purpose algorithms. For instance, the selection operator
(Where above) is implemented by performing a sequential
scan over the input and evaluating the selection predicate on
each tuple. In turn, theJoin operator uses a hash-based order-
preserving implementation.

By formulating queries inLINQ we raise the level of
abstraction on the query model with expressions composed
of standard primitive operators. An interesting aspect of using
LINQ is that the formulation of queries is now declarative.
This property provides new opportunities to further enhance
query performance by leveraging the independence between
the query formulation and the strategy used to execute it.

CustomizingLINQ’s Execution Model

A simple way to customize the execution ofLINQ queries
is by overloading the original implementations of the standard
operators. For instance, if we replace the arrayA in the
previous example with a structure that supports fast range
queries (e.g., a binary tree), we would like to avoid iterating
over all its elements and evaluating theWhere predicate. We
can achieve this goal by overloading the standard implementa-
tion of theWhere operator with a specialized alternative that
exploits the specific characteristics of the binary tree data type.
This is a powerful mechanism that can considerably speed
up query expressions. At the same time, however, it only
allows peephole-optimizationsthat cannot take into account
the global structure of the query. Depending on the specific
data characteristics, we might want to sometimes do a global
analysis before committing to some execution alternative.
Unfortunately, for that purpose we need a global view of the
query that is not available with the per-operator-overloading
mechanism described so far.

To address this limitation,LINQ supports the concept of
expression trees, which are in-memory data representations of
query expressions that make the structure of the expression
transparent and explicit. Rather than translating aLINQ query
into function calls to the standard operators, we can alter-
natively instruct the compiler to transform the query into a
abstract syntax tree that we can programmaticallymanipulate
and optimizebefore executing. A crucial advantage of using
expression trees inLINQ is that the query description and
the specific implementation are not tied together. In this way,
we can change how the query is internally executed without
modifying how the query is expressed. We can even have
alternative implementations of a given query and dynamically
choose the most appropriate version depending on the context.
This is a very powerful mechanism that we will exploit in the
next section.

B. Rich Data Structures

The Microsoft .NET Framework includes a large set of
generic data structures such as dynamic arrays, hash tables
and dictionaries. Conceptually, the ideas in the paper can
be applied to all these data structures, but we focus on on
a specific data structure, theDataSet, which is included
in the ADO.NET library [3] and can be used to represent
tables and relationships in memory2. Among the reasons for
our choice, we note thatDataSets natively support indexing
capabilities, are conceptually more closely related to relational
database concepts, and have been increasingly used in data-
centric main-memory applications.

A DataSet is a container for DataTable and
DataRelation objects. Each DataTable represents a
table in the traditional sense, having columns with a name
and a data type, and rows representing the actual data.
DataRelation objects represent primary- to foreign-key
relationships between tables, similar to the corresponding
constraint mechanism in relational database systems. In
addition to these basic elements,DataSet supports the
definition of indexes on top of tables (calledDataViews
in ADO.NET terminology). ADataView is a filtered-index
backed by a variation of red-black trees to provide efficient
lookups and updates. Interactions betweenDataSets and
external data sources (e.g., DBMSs) are enabled by special
purposeDataAdapters, which handle data exchange based
on specifications given by application developers.

Once data is loaded into aDataSet, all subsequent data
manipulation occurs entirely in memory.DataSets expose
various capabilities to find and manipulate data. For example,
we can access individual rows of aDataTable based on
their positions using array-like notation. Alternatively, we can
createDataViews and use them to perform fast lookups. The
code fragment below shows a possible implementation of the
relational queryΠa,b(R ⊲⊳x=y S) for DataTables R and
S, which iterates over all rows inR and for each row finds
matches inS. If S does not contains an index on columny, it
will be created automatically and used to find the relevant
matches. This index is then kept as long as there are not
updates toS.

foreach(DataRow rR in R.Rows) {
DataRow[] rsS = S.Select(" x = " + rR["y"]);
foreach(DataRow rS in rsS)

Console.WriteLine(rR["a"], rS["b"]);
}

While the programming interface of theDataSet is fairly
powerful and provides many options for searching and manip-
ulating data, the overall interaction with data still happens in
procedural terms. There is no way of declaratively describing
what data is needed at a certain point in a program. Further-
more, since the basic operations supported by theDataSet

and related classes are only primitive actions, most programs

2DataSets do not provide a specific mechanism for handling instances
that do not fit in main memory and rely on the underlying operating system’s
paging capabilities for that purpose.

will have to choose and manually implement (usually re-
inventing) the algorithms for each supported scenario. For
example, we could have used a hash-join alternative to im-
plement the code fragment above by creating a hash table on
R and probe elements fromS.

In the next section, we show how we can combine the
declarative nature ofLINQ queries with the available opti-
mized implementations ofDataSet, resulting in a higher level
of abstraction without sacrificing efficiency.

III. LINQ ON RICH DATA STRUCTURES

EnablingLINQ to work overDataSets is straightforward.
We only need to extend the specification ofDataTables so
that it support the iterator interface, which is very simple3.
Then, we can write the join query above as follows:

from r in R.AsEnumerable()
join s in S.AsEnumerable()

on r.Field<int>("x") equals
s.Field<int>("y")

select new { a = r.Field<int>("a"),
b = s.Field<int>("b") };

While this code fragment is much easier to write and un-
derstand, the default implementation does not take advantage
of the specific characteristics ofDataSets. Specifically, we
are bound to a default join implementation even if existing
indexes (DataViews) could enable more efficient alternatives.
By usingLINQ we gain a declarative framework for specifying
queries overDataSet, as long as we are willing to pay the
price in efficiency. Fortunately,LINQ expression trees provide
the mechanism to take the best of both worlds.

To that end, we propose a run-time optimization phase to
dynamically choose an execution strategy for queries executed
againstDataTables. Figure 1 shows the different phases
involved in executing declarative queries onDataSets (con-
tainers in bold represent our proposed additions). Initially,
the variousLINQ expressions that make up the query are
translated into standard C# code (see the introduction for
an example), which is in turn compiled into intermediate
language. At run time, this resulting code produces an ex-
pression tree that is then optimized. The optimization strategy
is sensitive to the fact that data is in memory and thus the
optimization phase can easily be a significant part of the
overall execution time (to mitigate this problem, we keep the
optimizer as lightweight as possible). Finally, the optimized
expression tree is dynamically compiled into intermediatelan-
guage which processes the main-memoryDataSets. We also
maintain runtime state to monitor and dynamically restructure
the implementation ofDataSets based on access patterns
(see Section IV for details). We next describe the optimizer
in terms of its search space, cost model and enumeration
algorithm [5]. We note that the main contribution of this paper
is not on new query processing techniques, but instead on a
careful engineering of traditional database concepts in this new
context.

3In fact, this kind of support forLINQ over DataSets is expected to
ship in the next release of Microsoft Visual Studio [4].

Linq on
Dataset

Standard
C# code

Interm.
Language

Expression
Tree

Optimized
Expression

Tree

DataSetSelf-tuning
State

Compile Time Run Time

Interm.
Language

Fig. 1. Compile- and run-time phases on an implementation ofour prototype.

A. Search Space

In addition to the default implementation of each operator
provided byLINQ, we added new execution alternatives that
typically rely on specific materialized indexes. For single-table
selections scans, we added the possibility of using index-based
execution strategies that speed up such process. Specifically,
we identify the available indexes on sarg-able columns and
consider an index-based execution plan that exploits available
indexes. Consider, for example, a predicateσa=10∧b+c<20. If
a DataView on columna is available, we generate a plan
that fetches all tuples in the index that satisfya = 10 and
then filters on the fly this intermediate result usingb+c < 20.
Clearly, if only a handful of tuples satisfya = 10, this strategy
is much more efficient than the full filter over the underlying
table. For the case of equi-join predicates, we addedmerge
joinsandindex joinsto the default hash join alternative. Merge
joins assume that both inputs are sorted by the join columns
and is very efficient. Index joins scan the outer expression and
use an index on the inner table to locate matches.

In general, there are several alternatives to implement each
operator. Section III-B describes a simple cost model that
allows us to pick the alternative with the least expected cost.
Section III-C explains how we traverse the search space to
obtain an execution plan.

B. Cost Model

Our cost model follows the traditional approach found in
relational databases and is a function from plans (or sub-plans)
into expected execution time. It relies on (i) a set of statistics
maintained inDataTables for some of its columns, (ii)
formulas to estimate selectivity of predicates and cardinality
of sub-plans, and (iii) formulas to estimate the expected
costs of query execution for every operator. These formulas
exploit statistical properties of the input tables, knowledge
about the specific algorithms implemented for each physical
operator, and relative costs between the different primitive
operations that are executed during query execution (e.g.,
memory accesses, or CPU instructions). We next describe
these components in some detail.

Cardinality Estimation

Cardinality estimation returns an approximate number of
rows that each operator in a query plan would output. We use

standard techniques for this step that exploit statistics on the
relevant table columns. To reduce the overhead, the statistical
estimators that we rely on are very simple. Specifically, we use
(if available) the maximum (maxVal), minimum (minVal), and
number of distinct values (dVal) of each column. If statistics
are unavailable, we rely onmagic numbersuntil statistics are
automatically created (see Sections III-B and IV-D).

We illustrate the cardinality estimation formulas using ex-
amples. The cardinality of base tables is obtained from the
table metadata and it is exact. Consider a selection predicate
σp(T), whereT is an arbitrary expression. The cardinality of
the expression is in this case defined asCard(σp(T)) =sel(p)·
Card(T), wheresel(p) is the selectivity of predicatep. The
selectivity of a predicate depends on its structure, as illustrated
below (wherep, p1 andp2 denote predicates,c is a column,
andc0 andc1 constants):

Predicate Selectivity Estimation
sel(p1 ∧ p2) sel(p1)· sel(p2)
sel(p1 ∨ p2) sel(p1) + sel(p2)−sel(p1 ∧ p2)
sel(c = c0) (dVal(c))−1

sel(c0≤ c≤ c1)
min(maxV al(c),c1)−max(minV al(c),c0)

maxV al(c)−minV al(c)

Consider now a join predicateT1 ⊲⊳c1=c2
T2. The cardinal-

ity of the join expression is defined as:

min(dV al(c1), dV al(c2)) ·
Card(T1)

dV al(c1)
·
Card(T2)

dV al(c2)

Cardinality estimation formulas for other operators are
defined analogously.

Cost Estimation

We estimate the cost of an execution plan as the sum of
the costs of each operator in the plan. These cost formulas
are operator-specific and exploit cardinality estimates and
knowledge about the internal algorithms. Additionally, we
abstract the cost formulas in terms of certain cost parameters,
such as the number of memory accesses, or the number of CPU
operations. As a simple example, consider a scan operator over
tableT . We approximate the cost of such operator as:

Card(T) · MEM ACCESS COST

whereMEM ACCESS COST is the average cost of a memory
access. As a more complex example, consider an index join

R ⊲⊳x=y T , whereR is an arbitrary sub-plan andT is the table
with an index. Recall that the index join algorithm proceedsas
follows. For each tuple read from the left sub-plan, it performs
a lookup in the right-side index and finds the first matching
tuple. Then, it starts traversing such index in order until the
current tuple in the index does not match any longer. We model
this procedure by the formula:

Card(R) ·
(

log(Card(T)) · MEM ACCESS COST+
dVal(T)) · MEM ACCESS COST+
k · dVal(T) · CPU COST

)

In other words, we sumCard(R) times the cost of an index
lookup plus the index traversal. The index lookup uses a
logarithmic number of memory accesses to reach the leaf node
in the index. It then traverses the index starting from the first
match (an expecteddVal(T) number of times), and each time
it performs a memory access and some CPU computation to
determine whether we keep obtaining matches. The remaining
operators are similarly calculated.

In a one-time calibration phase, we carefully measured
the actual execution times of the cost parameters (such as
MEM ACCESS COST andCPU COST) in a model machine to
balance their relative weights in the cost functions.

Creating Statistics

As explained earlier, we need to provide estimates on the
number of distinct values in a column, as well as the minimum
and maximum values. If an index is available, we obtain
these values exactly from the index metadata. Otherwise,
the adaptive techniques of Section IV-D would automatically
sample the appropriateDataTables to approximate these
values balancing accuracy and efficiency.

Consider a table withN rows. To estimate the number of
distinct values in a column we proceed as follows (see [6] for
more details). First, we take a uniform sample of sizen and
defineFi as the number of elements in the sample that are
repeatedi times (1 ≤ i ≤ n). The estimation of the number of
distinct values is then

√

N/n ·F1 +
∑

i≥2
Fi. The remaining

unknown is the sample sizen. We tried several alternatives
and decided to use the valuen = 10 · N0.55, which gives
good results for the data sizes that we expect to encounter in
practice.

C. Enumeration Architecture

The tight latency requirements in our main-memory sce-
nario prevent us from using a sophisticated query enumeration
architecture [7], [8]. In fact, it is not possible to spend a
significant fraction of time optimizing queries because we risk
compromising the overall query execution cost. Instead, we
apply some initial heuristics to choose a good starting point,
and then apply local, cost-based transformation rules to search
for alternatives.

Our enumeration strategy consists of two passes. First,
we perform a heuristic join reordering based on estimated
cardinalities. Then, we perform a bottom-up traversal of the
resulting logical tree, and use a local search at each operator.

In other words, in the second pass we choose the best physical
implementation for each operator, taking into account boththe
properties of the inputs and the availability of indexes. Inthis
way, physical operator selection happens locally and does not
consider changes across multiple nodes in the logical tree to
obtain better physical plans.

As an example, suppose that the current node is a join
operator. In this case, we consider 6 possible implementations:
a hash join, a merge join, an index join, and the corresponding
alternatives when swapping the inner and outer join inputs.
While hash joins can always be applied, both merge joins and
index joins require certain properties to be satisfied (i.e., the
inputs of a merge join must be sorted in the join columns
order, and index joins depend on the availability of an index
in the inner-table join columns). We then use our model of
Section III-B to approximate the cost of each alternative, and
pick the one with the smallest cost.

IV. SELF-TUNING ORGANIZATION

The optimization framework described in the previous sec-
tion certainly improves the overall performance of queriesby
dynamically choosing among a set of alternatives. However,
as explained above, certain execution plans depend on specific
DataViews (or indexes) being materialized. While this is not
a problem if the application developer is certain about data
and workload characteristics, it might become problematic
to forecast in advance what indexes to build for optimum
performance. Changes in the workload or data distributions
only exacerbate this problem. In this section we describe a
continuous monitoring/tuning component that addresses the
challenge of choosing and building adequate indexes and
statistics automatically, providing yet another abstraction to
the application developer.

We automatically tune the set of indexes on the tables
by adapting the techniques described in [9] to our main-
memory scenario. A high-level description of our technique
for automatically tuning indexes is as follows. As queries
are optimized, we identify a good set ofcandidate indexes
that would improve performance if they were available. Later,
when the optimized queries are evaluated, we aggregate the
relative benefits of both candidate and existing indexes. Based
on this information, we periodically trigger index creations
or deletions, taking into account storage constraints, overall
utility of the resulting indexes, and the cost to creating and
maintaining them. The key observation is that, by carefully
deciding when to create and drop indexes, we can ensure that
we do not suffer from late or wrong decisions and bound the
error compared to a strategy that knows the future distributions
of queries (see [9] for a formal analysis). In the rest of this
section, we explain our approach in more detail.

A. Index Analysis

The query optimization procedure discussed in Section III
searches a subset of the valid execution plans and returns
the one with the minimum expected cost. At this point, we

traverse the resulting execution plan and identify local sub-
plans that could be improved if new indexes were materialized.
Consider, as an example, the execution plan in Figure 2. The
three sub-plans enclosed in dotted lines might be improved
if suitable indexes were present. For instance, the selection
predicatename=“Pam” over DataTable Customerscan be
improved if an index onCustomers(name)is built (index I1

in the figure). Analogously, both hash joinsmightbe improved
if indexesI2 andI3 are available, since we can transform the
hash joins into index joins (note that index joins are not always
more efficient than the corresponding hash joins).

Products

Customers

HashJoin

Filter
Name = “Pam”

ca_id = id

HashJoin
cu_id = id

Carts

I1 = Customers(name)

I2 = Carts(cu_id)

I3 = Products(c_id)

Fig. 2. Identifying sub-plans and candidate indexes.

For each sub-plan and candidate index that we identify
in this way, we calculate the cost of thebest sub-plan that
exploits the index (for this purpose we reuse the cardinality
values calculated during optimization and the cost model
formulas). Additionally, for each sub-plan that already uses
an indexIused, we calculate the cost of thealternativesub-
plan that uses any existing index exceptIused (i.e., we model
what would happen if we dropped indexIused). For instance,
consider indexI1 in Figure 2. In this case, we would calculate
the cost of thebestsub-plan that seeks indexI1 for all tuples
that satisfy predicatename=“Pam”. Since the sub-plan does
not use any existing index, we do not calculate the cost of an
alternativesub-plan.

After optimizing a new queryq we generate atask-setfor
q, which is a set of pairs{(I, δI)}, where eachI is either
a candidate or an existing index, andδI is the amount that
I would speed up queryq (if I is a candidate index), or the
amount thatI ’s absence would slow downq (if I is an existing
and used index). Since during optimization we know the cost
cp of each original sub-planp, we can easily calculateδI

for both a candidate indexI (by subtracting the cost of the
best plan that usesI from cp), and an existing indexIused

(by subtracting the cost of thealternativeplan that does not
usesIused from cp). We store thetask-setof q along with
the compiled execution plan for future reference. For update
queries, we additionally store the expected number of updated
rows and the columns that are updated.

B. Cost/Benefit Adjustments

When queries are executed, we leverage the preprocessing
done during optimization and efficiently aggregate the poten-
tial benefits that we lose by not having the candidate indexes
materialized, and the aggregated utility of existing indexes.
Specifically, we maintain a value∆I associated with each
indexI4. When a queryq is about to be executed, we retrieve
q’s task-set{(I, δI)}. We then update∆I with ∆I + δI for
each indexI in the task-setof q. Additionally, if q is an update
query, we subtract, from the∆ value of each index that should
be updated due toq, the cost it would take to perform the
index update. If we proceed in this way for each executed
query, we can conceptually plot over time the value of∆ for
any given –existing or candidate– index. We would then obtain
a time series that grows if the index is useful (or would be if
materialized), and gets smaller as the penalty of updating the
index outweighs its benefits for query processing.

Figure 3 shows an example of a plot of∆ values over
time for a given index. Intuitively, if the potential aggregated
benefit of materializing a candidate index exceeds its creation
cost, we should trigger a creation of such index, since we
gathered enough evidence that the index is useful. In contrast,
if the aggregated benefit of having an index oscillates but
never increases beyond its creation cost, we can confidently
avoid creating it, as the impact of such an index was not
important enough. Analogously, if the aggregated benefit of
an existing index decreases beyond the index creation cost,
we should drop the index, because maintaining it has become
too expensive. In [9] we show that this strategy results in a
3-competitive algorithm (i.e., it is no worse than 3 times the
optimal algorithm that knows the future query distribution) for
a restricted class of scenarios.

Build

t

∆min

t0

∆min+B

Fig. 3. Benefit of materializing a candidate index.

To determine whether a large enough increment or decre-
ment beyond the index creation cost has taken place we
can maintain the history of∆ values associated to each
index. However, this option is too expensive (both in the
space required to store∆ values and in the time it takes to
process such time series). Instead, we effectively determine
such conditions by maintaining the minimum and maximum

4Note that we maintain the metadata of candidate, non-materialized indexes
in a global data structure. These candidate indexes do not help query
processing but can eventually be created.

values of ∆ (denoted∆min and ∆max, respectively), and
resetting the three counters to zero when an index is either
created or dropped. In this way, we should create a candidate
index I simply if (∆ − ∆min) is greater than the cost to
create it. Similarly, we should drop an existing indexI if
(∆max − ∆) is greater than its creation cost. In general, if
we useBI to denote the cost to create indexI, we define the
residual costof an existing indexI as BI−(∆max−∆). If
residual(I) ≤ 0, I should be dropped. Otherwise,residual
values indicate how much slack an index has before being
deemed “droppable”5. Also, we define thenet-benefitfor a
candidate index as(∆−∆min)−BI . If net-benefit(I) ≥ 0,
index I should be added. Also, positivenet-benefitvalues
indicate the excess in confidence for creating indexI.

The procedure described above assumes that we can always
create a new index. In practice, this assumption does not hold
because there is a bound on the memory we can allocate
for redundant data structures. In these situations, we need
to (i) decide which indexes to create in case of competing
alternatives, (ii) decide whether to drop a somewhat useful
index to make space for better alternatives. In the following
section we introduce the full tuning algorithm and address
these challenges.

C. Index Reorganization

Figure 4 shows a pseudo-code of our algorithm for au-
tomatic index tuning. Each time a query is optimized, we
generate itstask-setT as explained in Section IV-A. When
a query is executed, we retrieve itstask-setT (line 1) and
update∆ values for the indexes inT (lines 2-7). (We globally
maintain inH the set of candidate indexes in the workload.)
Note that lines 1-7 are very efficient because they only
manipulate scalars.

Lines 8-14 analyze∆ values and optionally implement
changes in the set of indexes that are materialized. First, in line
8 we drop all existing indexesI for which residual(I) ≤ 0.
In lines 9-14 we analyze the current candidate indexes and
determine if we can create candidate indexes (and optionally
drop existing indexes). For that purpose, we initializeITM
with all the candidate indexesI for which netBenefit(I) ≥ 0,
and process each index inITM sequentially (we arbitrarily
decide the order of elements inITM to process, but several
heuristics can be applied). When processingIM ∈ ITM , we
first obtain a subset of existing indexesITD such that (i)IM

is still attractive if we subtract from itsnetBenefitthe sum
of residuals inITD, and (ii) the space after removingITD
is enough to materializeIM (note thatITD might be empty
if we can createIM without removing any existing index). In
general, solving this sub-problem is computationally hard, and
we approximate it by adapting the solution to the fractional
knapsack problem. Specifically, we sort all existing indexes
in residual(I ′)/size(I ′) order, and progressively growITD
until we obtain a solution or fail (this greedy approach is very

5Note that the criterium for dropping indexes is based on a tradeoff between
benefits and penalties rather than on when the index was originally created.

efficient but, in some rare situations, can miss some solutions
resulting in fewer alternatives to tune indexes). If line 11
returns a solution inITD, we implement it in lines 12-14
by dropping all indexes inITD (if any) and creatingIM .

Addressing the Oscillation Problem

Although the algorithm described in the previous section is
correct, it can lead to oscillations in some situations (i.e., cases
on which multiple indexes are useful but there is space for
only some of them). To understand this, suppose that we have
a working set of useful indexes but do not fit in the available
space. We know that, by definition,residual(I) is bounded
by BI for existing indexes. At the same time,net-benefit(I)
keeps growing for candidate indexesI as new queries arrive.
Thus, eventually candidate indexes would replace existing
indexes. But now, the indexes that we just dropped would
start increasing theirnet-benefitvalues while the ones we just
created would have a boundedresidual value. We are caught
in an endless oscillation although the relative benefit of all
indexes is similar.

To address this oscillation problem, we proceed as follows.
Suppose that we are updating the∆I value of some existing
index I in line 5 with an additionalδI , but residual(I) is
already BI (i.e., the maximum value). After updating∆I

to ∆I+δI , ∆max would also be updated appropriately and
residual(I) stays unchanged atBI . To make this benefit ex-
plicit, in these situations we proportionally decrease∆ values
of all the candidate indexesI ′ so that their newnet-benefit
value ismax(0,net-benefit(I ′)−δ). In other words, as existing
indexes are helpful, we reduce the excess in confidence of
the remaining candidate indexes by adjusting down theirnet-
benefitvalues (but we never decreasenet-benefitbelow zero
in these situations).

D. Statistics Management

The cost model used to both choose execution plans during
optimization and to obtainδ values for candidate indexes
might benefit from the presence of statistics. However, we
cannot greedily trigger statistics computation due to the addi-
tional overhead that this would impose. As a middle ground,
we trigger statistics creation tasks on an index key column
whenever∆−∆min is larger than a fraction (in our case, 0.5)
of the index creation cost. In other words, after we gather
some evidence about the usefulness of a given index, we create
supporting statistics to have more accurate information inthe
near future.

V. EXPERIMENTAL EVALUATION

We now present an experimental evaluation of the tech-
nology described in this work. For that purpose, we used a
hypothetical online-store application with a product catalog
organized by category, which allows users to browse the
product catalog and to create one or more shopping carts where
they can track the items they are interested in buying. Figure 5
shows the relevant portion of the database schema that includes
the functionality described above.

IndexReorganization (qi:query)
// Initially, global H=∅ (no candidate indexes to materialize)
01 T = get task-set for qi

// Update∆ values
02 for each (I, δI) in T
03 if (I is not materialized)
04 H=H ∪ {I};
05 ∆I = ∆I + δI // Section IV-B
06 if qi is update on table T and columns C
07 ∆I′=∆I′ - "update cost" for I ′ on T and C

// Remove bad indexes
08 drop existing I if residual(I) ≤ 0

// Analyze candidate indexes to materialize
// Approximate adapting fractional knapsack solution
09 ITM = {I ∈ H : netBenefit(I) ≥ 0}
10 for each index IM in ITM
11 ITD= subset of existing indexes such that:

(i)
∑

I′∈ITD
size(I ′) fits in memory

(ii)
∑

I′∈ITD
residual(I ′)+netBenefit(IM) ≥ 0

12 if (ITD is feasible solution)
13 drop I ′ ∈ ITD; create IM;
14 H= H − {IM}; ∆IM

= 0

Fig. 4. Online physical tuning algorithm.

Our application has three main workload types that appear
simultaneously or independently at different times, in a way
that is not controllable or predictable by the application or
the administrators of the system. Specifically, the variance in
workload characteristics mostly depends on the customer base
and other external factors. The workloads are characterized as
follows:

- checkCarts($1) =
from p in Products.AsEnumerable()
join cart in Carts.AsEnumerable()

on p.Field<int>("id") equals
cart.Field<int>("p id")

join c in Customers.AsEnumerable()
on cart.Field<int>("cu id") equals

c.Field<int>("id")
where c.name = $1
select new { cart, p }

Products
id
c_id (category)
name
...

Categories
id
name
...

Customers
id
name
...

Carts
id
p_id
cu_id
quantity
...

Fig. 5. Database schema for the experimental evaluation.

- browseProducts($1) =
from p in Products.AsEnumerable()
join c in Categories.AsEnumerable()
on p.Field<int>("ca id") equals

c.Field<int>("id")
where c.par id = $1
select p

- updateProducts, which consists of a large number of
updates to adjust product information (e.g., seasonal price
discounts).

An interesting aspect of this application scenario is that a
large portion of the data (the whole product catalog) has very
low volatility, making it a good candidate for caching. We
usedDataSets as middle-tier caches designed to offload work
from the DBMSs. We generated 200,000 products, 50,000
customers, 1,000 categories, and 5,000 items in the shopping
carts. To evaluate our techniques and highlight its features,
we used a small workloadW consisting of 20 instances of
query browseProducts, followed by 20 instances of query
checkCarts, followed by 10 instances of queryupdateProducts.
To make the example interesting, we give enough memory to
create only one index over the largeProductstable, and some
on the remaining tables.

I1 Categories(par id)
I2 Products(c id)
I3 Carts(cu id)
I4 Products(ca id)
I5 Customers(name)

Fig. 6. Indexes considered during the experiments.

Figure 8 shows a trace of the execution of workloadW in
our system. To keep Figure 8 concise, we refer by name to the
indexes of Figure 6 and to the execution plans of Figure 7.

Initially, there are no indexes materialized. Consequently,
the initial two executions ofbrowseProductsuse a hash join
betweenProductsand Categories, and a plain filter to select
the desired categories (see planP 1

1 in Figure 7). At this point,
we gather statistics to obtain better cardinality estimations
of both the filter and the join predicates. After another two
instances ofbrowseProducts, we create indexI1 onCategories
and use it to seek the relevant category tuples (see planP 2

1).
After another execution ofbrowseProducts, we create indexI2

on Products, which allows an index join alternative (planP 3
1).

The remaining 15 executions ofbrowseProductsare evaluated
in around 0.04 seconds, or around 22 times faster than the
original plan. Next, we start evaluatingcheckCartsusing the
naı̈ve planP 1

2 that uses two hash joins. After 2 executions, we
gather statistics and create indexI3 on Carts, which allows an
index join betweenCustomersandCarts. After four additional
executions ofcheckCarts, we gather enough evidence on the
benefit of indexI4 on product, and we choose to dropI1 to
make space (since the net benefit ofI4 exceeds the residual
benefit of I1). The remaining 12 executions ofcheckCarts
use planP 3

2 , with two index joins and taking only 0.03
seconds. Finally, the updates toProductsbegin executing and
the benefit of indexI4 gradually diminishes. After 3 executions
of updateProductswe dropI1, and the remaining 7 updates
execute in a fraction of the original cost. We note that when
we dropI4, there is enough space to create indexI5, whose
net benefit was positive but not big enough whenI4 was
present. The total time, including index and statistics creation
of the workload is 27.8 seconds. Figure 9 shows a trace
of the execution of the same workload when the automatic
index creation is turned off. We can see that the self-tuning
alternative takes only67% of the time.

Discussion

The experimental setting described above was designed
to highlight the main self-tuning features of our techniques,
but was rather simplistic in nature. In an actual deployment,
workloads would typically be much larger and varied. We
believe, however, that the experimental evaluation makes it
possible to understand how those scenarios would be handled
using our techniques.

For instance, suppose that we duplicate each of thebrowse-
Productsand checkCartsquery instances 100 times. In this
case, our techniques would process most of the queries very
efficiently. Specifically, for this expanded workload, we would
expect the naı̈ve execution to last about 3,565 seconds (or
around one hour) while the self-tuning evaluation would last
for only around 34 seconds.

Of course, applications typically exhibit workloads with a
mixture of queries at all times. Suppose that at any given time
we have a stream of bothbrowseProductsand checkCarts
queries. If the allowed space is enough to accommodate all
indexes, after a short period of time we would be able to

evaluate all queries efficiently. In contrast, if we only have
space for a single index on tableProducts, as in the evaluation
above, we would create only one of the two indexes, which
corresponds to the query that would make the larger difference
in performance. If the relative frequency of queries varies
over time, we would obtain something similar to the case of
Figure 8, where we drop an index to accommodate a better
one.

VI. CONCLUSIONS

We started this work with the goal of combining new tech-
nologies in programming languages and relational database
systems to enable declarative query processing over adaptive
data structures in the .NET framework. We first introduced var-
ious elements that we characterized as interesting for building
data-centric applications. The choice ofDataSet over ad-hoc
data structures provided a uniform way of representing in-
memory data and facilitated the use of generic algorithms for
data manipulation. We then addedLINQ to have access to a
mechanism to declarative query formulation and also to unify
the algorithms used to perform queries. With both uniformly-
represented data and algorithms, we introduced a lightweight
optimizer that adjusts the execution strategies using a simple
cost-model for assessing query plans and sub-plans. Finally,
we extended the query optimizer/execution engine with a
continuous monitoring infrastructure that allowed the system
to self-tune as workloads change.

We believe that adaptive data structures that can be accessed
declaratively and also can adapt themselves to the workload
coming from the environment without developer intervention
will have an increasingly high applicability in current data-
centric applications.

REFERENCES

[1] “The LINQ project.” accessible at http://-
msdn.microsoft.com/data/ref/linq.

[2] E. Meijer, B. Beckman, and G. Bierman, “LINQ: Reconciling objects,
relations and XML in the .NET framework,” inProceedings of the ACM
International Conference on Management of Data (SIGMOD), 2006.

[3] “ADO.NET,” accessible at http://-
msdn2.microsoft.com/en-us/data/-
aa937699.aspx.

[4] “LINQ over DataSet,” accessible at http://-
msdn.microsoft.com/data/ref/linq.

[5] S. Chaudhuri, “An overview of query optimization in relational systems,”
in Proceedings of the Symposium on Principles of Database Systems,
1998.

[6] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya, “Towards
estimation error guarantees for distinct values,” inProceedings of the
Symposium on Principles of Database Systems (PODS), 2000.

[7] G. Graefe, “The Cascades framework for query optimization,” Data
Engineering Bulletin, vol. 18, no. 3, 1995.

[8] P. G. Selingeret al., “Access path selection in a relational database man-
agement system,” inProceedings of the ACM International Conference
on Management of Data, 1979.

[9] N. Bruno and S. Chaudhuri, “An online approach to physical design tun-
ing,” in Proceedings of the International Conference on Data Engineering
(ICDE), 2007.

Products

Categories

HashJoin

Filterpar_id=$1

c_id = id

Products

Categories.I1

HashJoin

IndexFilterpar_id=$1

c_id = id

Products.I2

IndexJoin
id = c_id

Categories.I1

IndexFilterpar_id=$1

PlanP 1
1 . PlanP 2

1 . PlanP 3
1 .

Products

Customers

HashJoin

Filtername=$1

id = p_id

HashJoin
cu_id = id

Carts

Products

Customers

HashJoin

Filtername=$1

id = p_id

IndexJoin
Id = cu_id

Carts Filter

Products

Customers

IndexJoin

name=$1

p_id = id

IndexJoin
id = cu_id

Carts

PlanP 1
2 . PlanP 2

2 . PlanP 3
2 .

Fig. 7. Execution plans for the evaluation queries.

Query[Plan] Background Action Time per query (secs)

2× browseProducts [P 1
1] 0.9

Create Stats(Categories.parid) 0.01
Create Stats(Products.cid) 0.12

2× browseProducts [P 1
1] 0.9

Create Index(I1) 0.03
1× browseProducts [P 2

1] 0.89
Create Index(I2) 1.05

15× browseProducts [P 3
1] 0.04

2× checkCarts [P 1
2] 0.7

Create Stats(Carts.cuid) 0.01
Create Stats(Products.cid) 0.01
Create Index(I3) 0.13

6× checkCarts [P 2
2] 0.67

Drop Index(I1) 0
Create Index(I4) 0.64

12× checkCarts [P 3
2] 0.03

3× updateProducts 2.6
Drop Index(I4) 0
Create Index(I5) 0.16

7× updateProducts 0.56
Total 27.8

Fig. 8. Generated schedule when tuning was enabled.

Query[Plan] Time per query (secs)

20× browseProducts [P 1
1] 0.9

20× checkCarts [P 1
2] 0.7

10× updateProducts 0.56
Total 41.2

Fig. 9. Generated schedule when tuning was disabled.

