Towards Declarative Queries
on Adaptive Data Structures

Nicolas Bruno!, Pablo Castrd

Microsoft, USA
'ni col asb@ri crosoft. com
2pabl 0.castro@r crosoft.com

Abstract—In this work we look at combining emerging Traditionally, application developers implement complex
technologies in programming languages with traditional qery data structures and specialized logic to address the above
processing techniques to provide support for efficient exedion scenarios. However, handcrafted solutions usually réstite

of declarative queries over adaptive data structures. We fist ex- followina d backs: () th f if truct
plore available technologies such as Language-IntegrateQuery, ollowing drawbacks: (i) the use of a non-uniform structure

or LINQ (which enables declarative queries in programming that makes it hard to support general query mechanisms, (i)
languages) and the ADO.NET DataSet classes (which provide the use of a non-uniform set of algorithms to manipulate the

various efficient alternatives to manipulate data in procedral data, and (jii) lack of opportunities for automatically atiag
terms). Unfortunately, combining the good features in both ha |ger-level representation of the data to the worklcees

technologies is not straightforward, since LINQ over Data®ts . .
results by default in execution plans that do not exploit the environmental changes outside of the control of the systain a

specific characteristics of the data structures. To addresshis itS administrators.
limitation, we introduce a lightweight optimizer that dynamically Recently, new technologies in the programming languages

chooses appropriate execution strategies for declarativqueries space started to address some of the drawbacks described
on DataSets based on their internal structure. To further en above. For instance, standard rich data structures sudheas t

able declarative programming, we introduce a component tha . N
dynamically reorganizes the internal representation of D#&aSets, ADO.NET Dat aSet classes provide a unifying set of APIs

so that they automatically respond to workload changes. We and a clear programming interface for adding and manipu-
experimentally showcase the features of our approach. lating data imperatively (see Section 1I-B for details).wio

ever, Dat aSet s lack a richer declarative query mechanism.
Additionally, manually choosing the physical organizatiof
There is an increasing number of applications that usiee data structure to meet varying requirements over time is
database systems (DBMS) as the ultimate persistent datg sta difficult task that often cannot be done once and remain
but however need to manage large amounts of data outsaffective long term.
of the DBMS. Stronger requirements for response time andAnother new technology is Language-Integrated Query, or
flexibility, combined with the broad availability of commibgl LI NQ for short (see Section II-A for details).| NQ enables
hardware with large main memory capacity, introduce nesoftware developers to write queries in a declarative way
challenges to the way applications search and manipul&e daithout imposing any specific execution stratefy.NQ also
in memory. exposes extensibility mechanisms that allow to custontize t
A sample typical scenario is analytical software for finahciway queries are executed against a particular data steuctur
institutions. A common requirement in these environmesits However, the default implementation &fi NQ operators is
to obtain large amounts of data, typically through a consimplistic, which is only appropriate for manipulating dma
bination of database access and other sources such as aaihoc structures in memory. As the size of the in memory data
services, and then allow a single user to explore variogsows, these naive approaches to query processing beaome u
“what-if” simulations. The expectation is that the systesn iacceptable from both flexibility and performance perspesti
highly responsive to this user, even when patterns of useOur main observation is that the query formulation, op-
or application parameters change. Another scenario that lianization and execution techniques of traditional dasaba
become increasingly common is the use of main-memaosystems become an interesting alternative to executeespueri
informal caches for web or multi-tier applications. In thse against native in-memory data structures. Specificallgsé¢h
the middle-tier system loads some information from databagechniques can be leveraged to help building data manipula-
or web services into main memory, and then multiple sessiotisn infrastructures with effective declarative query ggesing
guery the main-memory data instead of the database or wetpabilities. An extreme point in this direction would be to
service. While this does not represent a fully-featuredhicar directly use a full-blown main-memory DBMS. However, this
solution, it is a simple and effective strategy for casesr@heapproach (i) does not provide the tighter language and @mvir
the goal is to lower the pressure on the DBMS servers loyent integration that is possible usihg NQ and Dat aSet s,
offloading some of the query executions over low-volatilityii) can significantly increase the overall footprint of the
data to the middle-tier systems. application, and (iii) introduces additional dependescad

|I. INTRODUCTION

complexity around application development and deploymenEnumerable classes, andFl and AF2 are anonymous

The rest of the paper is structured as follows. In Sectionfinctions generated automatically as follows:
we review bothLl NQ and theDat aSet classes in the .NET
framework. Then, in Section Il we describe a lightweight
optimization framework that selects good implementations
for the declarative queries written inl NQ over Dat aSet s. The default implementation of the operators uses fixed, gen-
Next, in Section IV we introduce a self-tuning component th&ral purpose algorithms. For instance, the selection ¢pera
allows adaptation of the internal representation @haaSet (Were above) is implemented by performing a sequential
for dynamically varying workloads. Finally, in Section V wescan over the input and evaluating the selection predicate o
report an experimental evaluation of the techniques desdri each tuple. In turn, theoi n operator uses a hash-based order-
in the paper. preserving implementation.

By formulating queries inLlI NQ we raise the level of
abstraction on the query model with expressions composed

We next briefly describe recent technology that extends standard primitive operators. An interesting aspectsifig
programming languages with declarative query capalslitie| NQ is that the formulation of queries is now declarative.
(Section II-A) and rich data types that provide efficient imThis property provides new opportunities to further entanc
plementations for manipulating data (Section 1I-B). query performance by leveraging the independence between
the query formulation and the strategy used to execute it.

bool AF1 (int x) { return x<5; }
int AF2 (int x) { return 2*xx; }

Il. REVIEW OF EXISTING TECHNOLOGY

A. Language-Integrated Query

Language-integrated query [1], [2], &t NQ for short, is a
recent innovation in the programming languages spacenthat Customizing.| NQs Execution Model
troduces query-related constructs to mainstream progiagim
languages such as C# and Visual BakicNQ is designed to A simple way to customize the execution lof NQ queries
work over any data source that supports a minimum “iteratas- by overloading the original implementations of the stad
like” contract (i.e., the classicabpen/getNext/closaeterface). operators. For instance, if we replace the arryn the
Unlike embedded-SQL, query constructs are not processedgdrgvious example with a structure that supports fast range
an external tool but instead are language first-class ogize queries (e.g., a binary tree), we would like to avoid iterati

As an example, the array data type exposes the iteratmer all its elements and evaluating tileer e predicate. We
interface and therefore can be used akl&Q source. The can achieve this goal by overloading the standard implearent
following C# code fragment initializes an arrdyand displays tion of the Wher e operator with a specialized alternative that

the double of all elements smaller than five: exploits the specific characteristics of the binary trea tgte.
int[] A= {1, 2, 3, 10, 20, 30}; This is a powerful mechanism that can considerably speed
var g = fromx in A up query expressions. At the same time, however, it only
where x < o allows peephole-optimizationthat cannot take into account
f or each ?ielnfcit iZ:‘x,q) the global stru.ctl_Jre of the. query. Depending on the specific
Consol e. Wi teLine(i): data characteristics, we might want to sometimes do a global

analysis before committing to some execution alternative.
r].glnfortunately, for that purpose we need a global view of the
%uery that is not available with the per-operator-overiogd
mechanism described so far.

To address this limitationl.1 NQ supports the concept of
expression treeshich are in-memory data representations of
qguery expressions that make the structure of the expression
transparent and explicit. Rather than translating &lQ query
var q = A Where(x=>x<5). Select(Xx=>2xx); into function calls to the standard operators, we can alter-
natively instruct the compiler to transform the query into a
abstract syntax tree that we can programmaticainipulate
and optimizebefore executing. A crucial advantage of using
| Enurrer abl e<i nt> g= Enumer abl e. Pr o ect (expressic_)_n t_rees it NQ_is that the query description_ and

Enumer abl e Wher e(A AF1), the specific implementation are _no_t tied together. In th|g_,wa
AF2) ; we can change how the query is internally executed without
. . . modifying how the query is expressed. We can even have
where | Enunerable is the base iterator Interf""Ce’alternative implementations of a given query and dynarical
Enuner abl e encapsulates all query operators over . ' .
choose the most appropriate version depending on the dontex
lin the .NET framework, the iterator functionality is encalsged in the This is a _Very powerful mechanism that we will exploit in the
| Enuner at or <T> interface. next section.

In order to introduce query constructs into the programmi
languagel.l NQ defines “standard query operators”, includin
all of the standard relational operations (e.g., proj&sio
selections, joins), as extension methods to the iterat®r-in
face. When a query is formulated,Ld NQ-enabled compiler
mechanically translates the query operators into funatails
without further analysis. The query above thus becomes:

which uses lambda functions. This intermediate repretienta
is in turn translated into standard C# code as follows:

B. Rich Data Structures will have to choose and manually implement (usually re-

The Microsoft .NET Framework includes a large set dfventing) the algorithms for each supported scenario. For
generic data structures such as dynamic arrays, hash taS§#&mple, we could have used a hash-join alternative to im-
and dictionaries. Conceptually, the ideas in the paper cBlg¢ment the code fragment above by creating a hash table on
be applied to all these data structures, but we focus on Br2nd probe elements from
a specific data structure, theat aSet, which is included In the next section, we show how we can combine the
in the ADO.NET library [3] and can be used to represerﬂedafaﬂVe nature ofl NQ queries with the available opti-
tables and relationships in mema&nAmong the reasons for Mized implementations dfat aSet , resulting in a higher level
our choice, we note thatat aSet s natively support indexing ©f abstraction without sacrificing efficiency.
capabilities, are conceptually more closely related tati@hal

X . ; I11. LI NQON RICH DATA STRUCTURES
database concepts, and have been increasingly used in data- . ,)
centric main-memory applications. EnablingL| NQto work overDat aSet s is straightforward.

A DataSet is a container for DataTable and VYVe only need to extend the specificationft aTabl es so
Dat aRel ation objects. EachDataTable represents a that it support the iterator interface, which is very siniple
table in the traditional sense, having columns with a nanld'€", We can write the join query above as follows:

and a data type, and rows representing the actual data. fromr in R AsEnumerable()

Dat aRel ati on objects represent primary- to foreign-key join s in S. AsEnunerabl e()
relationships between tables, similar to the correspandin on ; E: g: g:: 2: ig Xg equal s
con_sFraint mechanism _ in relational database systems. In <4 act new {a=r.Fi gl d<int>("a"),
addition to these basic elementBat aSet supports the b = s.Field<int>("b") };

definition of indexes on top of tables (calldht avi ews While this code fragment is much easier to write and un-

in ADO.NET termlqology). ADatavi ew is a flltergd '”d‘?’? derstand, the default implementation does not take adganta
backed by a variation of red-black trees to provide efficien o L e
: of the specific characteristics @t aSet s. Specifically, we
lookups and updates. Interactions betwedsat aSet s and o . ; -
are bound to a default join implementation even if existing
external data sources (e.g., DBMSs) are enabled by speci - .
; indexes Dat aVi ews) could enable more efficient alternatives.
purposeDat aAdapt er s, which handle data exchange base . . ; p
y usingLl NQwe gain a declarative framework for specifying
gueries ovemDat aSet , as long as we are willing to pay the

on specifications given by application developers.
Once data is loaded into Bat aSet, all subsequent data price in efficiency. Fortunately,| NQ expression trees provide
}he mechanism to take the best of both worlds.

manipulation occurs entirely in memorgat aSet s expose
To that end, we propose a run-time optimization phase to

various capabilities to find and manipulate data. For examp
we can access individual rows of @at aTabl e based on . . .
dynamically choose an execution strategy for queries drecu

their positions using array-like notation. Alternativelye can againstDat aTabl es. Figure 1 shows the different phases
createDat aVi ews and use them to perform fast lookups. The) . .)
volved in executing declarative queries bat aSet s (con-

L . n
code fragment below shows a possible implementation of tbe : I .
relational queryIl, »(R t,_, S) for DataTabl es R and ainers in bold represent our proposed additions). Ihjtial

L /) the variousLI NQ expressions that make up the query are
S, which iterates over all rows iR and for each row finds . b b query
. : : . translated into standard C# code (see the introduction for
matches irS. If S does not contains an index on columnit S
) . . an example), which is in turn compiled into intermediate
will be created automatically and used to find the releval : . .
N . anguage. At run time, this resulting code produces an ex-
matches. This index is then kept as long as there are not” . : S o
undates s pression tree that is then optimized. The optimizationetya
P ' is sensitive to the fact that data is in memory and thus the
optimization phase can easily be a significant part of the

foreach(DataRow rR in R Rows) overall execution time (to mitigate this problem, we keeg th

Dat aRo rsS =S . Select(" x =" +rR"y"]);
foreacm]Dat aRow rS in rs(S) Ry optimizer as lightweight as possible). Finally, the optied
Consol e. WiteLine(rR["a"], rS["b"]); expression tree is dynamically compiled into intermediate
} guage which processes the main-memoayaSet s. We also

While the programming interface of thmat aSet is fairly maintain runtime state to monitor and dynamically resticest
powerful and provides many options for searching and manie implementation oDat aSets based on access patterns
ulating data, the overall interaction with data still happén (see Section IV for details). We next describe the optimizer
procedural terms. There is no way of declaratively desegbiin terms of its search space, cost model and enumeration
what data is needed at a certain point in a program. Furthalgorithm [5]. We note that the main contribution of this pap
more, since the basic operations supported byDdteaSet IS not on new query processing techniques, but instead on a

and related classes are only primitive actions, most progracareful engineering of traditional database conceptsigmtéw
context.
2Dat aSet s do not provide a specific mechanism for handling instances
that do not fit in main memory and rely on the underlying opegasystem’s 3In fact, this kind of support fot.I NQ over Dat aSet s is expected to
paging capabilities for that purpose. ship in the next release of Microsoft Visual Studio [4].

Compile Time Run Time

/—/R

Ling on . | Standard o | Interm. - | Expression | | g(pt:gzi,dn o | Interm.
Dataset " | C#code "| Language | Tree o Ql'ree | Language

A

DataSet

Self-tuning
State

Fig. 1. Compile- and run-time phases on an implementatioauofprototype.

A. Search Space standard techniques for this step that exploit statistitshe

In addition to the default implementation of each operatéglevant table columns. To reduce the overhead, the statist
provided byLl NQ we added new execution alternatives th&tstimators that we rely on are very simple. Specifically, ae u
typically rely on specific materialized indexes. For sintgble (if available) the maximumngaxVa), minimum (inval), and
selections scans, we added the possibility of using indeset number of distinct valuesd{/al) of each column. If statistics
execution strategies that speed up such process. Spdgificale unavailable, we rely omagic numbersintil statistics are
we identify the available indexes on sarg-able columns afgtomatically created (see Sections III-B and IV-D).

consider an index-based execution plan that exploitsalail Ve illustrate the cardinality estimation formulas using ex
indexes. Consider, for example, a predicate 1oxp1c<20. If @MPples. The cardinality of base tables is obtained from the

a Dat aVi ew on columna is available, we generate a plarfable metadata and it is exact. Consider a selection priedica

that fetches all tuples in the index that satisfy= 10 and ©»(T), whereT' is an arbitrary expression. The cardinality of
then filters on the fly this intermediate result usingc < 20. the expression is in this case definedesd(o;,(T')) =selp)-
Clearly, if only a handful of tuples satisfy = 10, this strategy Card(T’), whereselp) is the selectivity of predicatp. The

is much more efficient than the full filter over the under|yin%electwlty of a predicate depends on its structure, astitaed
table. For the case of equi-join predicates, we adohedge elow (wherep, p; andp, denote predicates, is a column,
joins andindex joinsto the default hash join alternative. MergedNdco ande; constants):

joins assume that both inputs are sorted by the join columns Predicate | Selectivity Estimation

and is very efficient. Index joins scan the outer expressiah a selp1 A p2) sel(p1)- sel(pz)

use an index on the inner table to locate matches. sel(p1 V p2) sel(p1) +751er2)_5er1 A p2)
selc = co) (dval(c))

In general, there are several alternatives to implemerit eac
operator. Section IlI-B describes a simple cost model that
allows us to pick the alternative with the least expected.cos Consider now a join predicatg <, —., T5. The cardinal-
Section 11I-C explains how we traverse the search space ity of the join expression is defined as:
obtain an execution plan. min(dVal(es), dVal(ca)) - Card(Ty) Card(T)

B. Cost Model dVal(cr) dVal(ca)

Our cost model follows the traditional approach found in
relational databases and is a function from plans (or sahg)! :
into expected execution time. It relies on (i) a set of stags defined analogously.
maintained inDat aTabl es for some of its columns, (i) cost Estimation

formulas to estimate selectivity of predicates and catijna We estimate the cost of an execution plan as the sum of

of sub-plans, and (iii) formulas to estimate the expect%i .
K e costs of each operator in the plan. These cost formulas
costs of query execution for every operator. These formulas

. L . ; are operator-specific and exploit cardinality estimated an
exploit statistical properties of the input tables, knaige P P b y .

about the specific algorithms implemented for each physickriowIedge about the internal algorithms. Additionally, we

.) VYSIGH stract the cost formulas in terms of certain cost arasete
operator, and relative costs between the different prmiti P
) .) such as the number of memory accesses, or the number of CPU
operations that are executed during query execution (e

. - '%’)’erations. As a simple example, consider a scan operator ov
memory accesses, or CPU instructions). We next descr&a%leT We approximate the cost of such operator as:
these components in some detail. ' ’

Cardinality Estimation Card(T') - MEM_ACCESS_COST

min(maxzVal(c),cl)—max(minVal(c),c0)
mazxVal(c)—minVal(c)

selco<c<er)

Cardinality estimation formulas for other operators are

Cardinality estimation returns an approximate number afhere MEMACCESS_COST is the average cost of a memory
rows that each operator in a query plan would output. We uaecess. As a more complex example, consider an index join

R >,—, T, whereR is an arbitrary sub-plan aril is the table In other words, in the second pass we choose the best physical
with an index. Recall that the index join algorithm proceads implementation for each operator, taking into account bio¢h
follows. For each tuple read from the left sub-plan, it parfe properties of the inputs and the availability of indexestHis

a lookup in the right-side index and finds the first matchingiay, physical operator selection happens locally and doés n
tuple. Then, it starts traversing such index in order umi# t consider changes across multiple nodes in the logical tree t
current tuple in the index does not match any longer. We modsitain better physical plans.

this procedure by the formula: As an example, suppose that the current node is a join
Card(R) - (log(Card(T)) - MEM_ACCESS_COST+ operator. .In this case, we considerﬁ possible implememistti .
dVal(T))) - MEM_ACCESS_COST+ a hash join, a merge join, an |nde>§JO|n, and the cor_rgsp_cgwdln
k- dval(T) -CPU_COST) alternatives when swapping the inner and outer join inputs.

While hash joins can always be applied, both merge joins and
In other words, we sunCard(R) times the cost of an index index joins require certain properties to be satisfied, (the
lookup plus the index traversal. The index lookup usesigputs of a merge join must be sorted in the join columns
logarithmic number of memory accesses to reach the leaf nasigler, and index joins depend on the availability of an index
in the index. It then traverses the index starting from th&t firin the inner-table join columns). We then use our model of

match (an expectedVal(T) number of times), and each timesection 111-B to approximate the cost of each alternative a
it performs a memory access and some CPU computationgigk the one with the smallest cost.

determine whether we keep obtaining matches. The remaining
operators are similarly calculated. IV. SELF-TUNING ORGANIZATION

In a one-time calibration phase, we carefully measured o))]
the actual execution times of the cost parameters (such ad N€ Optimization framework described in the previous sec-

MEMACCESS_ COST and CPU.CGST) in a model machine to tion certainly improves the overall performance of quebgs

balance their relative weights in the cost functions. dynamically choosing among a set of alternatives. However,
as explained above, certain execution plans depend orfispeci
Creating Statistics Dat aVi ews (or indexes) being materialized. While this is not

As explained earlier, we need to provide estimates on tﬁeproblem if the application developer is certain about data

number of distinct values in a column, as well as the minimuff'd Workload characteristics, it might become problematic
and maximum values. If an index is available, we obtafy forecast in advance what indexes to build for optimum
these values exactly from the index metadata Otherwid¢rformance. Changes in the workload or data distributions

the adaptive techniques of Section IV-D would automau-cmprily.exacerbate.thi.s prob!em. In this section we describe a
sample the appropriateat aTabl es to approximate these continuous monitoring/tuning component that addresses th
values balancing accuracy and efficiency challenge of choosing and building adequate indexes and

Consider a table withV rows. To estimate the number ofStatiStiCS_ au_tomatically, providing yet another abstoacto
distinct values in a column we proceed as follows (see [6] f(tJrPe apphcatlon.developer. .
more details). First, we take a uniform sample of sizand We automatically tune the set of indexes on the tables
define F; as the number of elements in the sample that aP¥ adapting the techniques described in [9] to our main-
repeated times (I < i < n). The estimation of the number of MeMory scenario. A high-level description of our technique

distinct values is thea/N—/n-Fl +,., F;. The remaining for autc.)m.atically tqning. indexes is as fO||0YVS. A; queries
unknown is the sample size. We tried several alternatives@r® OPtimized, we identify a good set oéndidate indexes
and decided to use the value = 10 - N5, which gives that would improve performance if they were available. Late

good results for the data sizes that we expect to encountel’fjen the optimized queries are evaluated, we aggregate the

practice. relative benefits of both candidate and existing indexeseBa
on this information, we periodically trigger index creats
C. Enumeration Architecture or deletions, taking into account storage constraintsraive

The tight latency requirements in our main-memory Scéj_nll_ty o_f _the resulting indexes, and t_he qost to creatingl an
aintaining them. The key observation is that, by carefully

nario prevent us from using a sophisticated query enunoerat{l&!Nk :
architecture [7], [8]. In fact, it is not possible to spend gemdmg when to create and drop indexes, we can ensure that

significant fraction of time optimizing queries because ig r W& do not suffer from late or wrong decisions and bound the
compromising the overall query execution cost. Instead, Vg‘%ror compared to a strategy that knows the future distobst
apply some initial heuristics to choose a good starting Ipoil‘? queres (see [9_] for a formal ar_1aIyS|s). In th_e rest of this
and then apply local, cost-based transformation rulesdaoche section, we explain our approach in more detail.

for alternatives.

Our enumeration strategy consists of two passes. Fi
we perform a heuristic join reordering based on estimatedThe query optimization procedure discussed in Section Ill
cardinalities. Then, we perform a bottom-up traversal & ttsearches a subset of the valid execution plans and returns
resulting logical tree, and use a local search at each aperathe one with the minimum expected cost. At this point, we

r’g‘t Index Analysis

traverse the resulting execution plan and identify locdl-suB. Cost/Benefit Adjustments
plans that could be improved if new indexes were materidlize \vhen queries are executed, we leverage the preprocessing
Consider, as an example, the execution plan in Figure 2. Thgne during optimization and efficiently aggregate the pote
three sub-plans enclosed in dotted lines might be improvgg| penefits that we lose by not having the candidate indexes
if suitable indexes were present. For instance, the setectinaterialized, and the aggregated utility of existing ireex
predicatename="Pam” over Dat aTabl e Customerscan be gpecifically, we maintain a valué\; associated with each
improved if an index orCustomers(names built (index /i jndex 74. When a query; is about to be executed, we retrieve
in the figure). Analogously, both hash joimgghtbe improved s task-set{(7,5;)}. We then update\; with A; + §; for
if indexes/; and/; are available, since we can transform th@ach index in thetask-seof . Additionally, if ¢ is an update
hash joins into index joins (note that index joins are NoBaisV query, we subtract, from tha value of each index that should
more efficient than the corresponding hash joins). be updated due tq, the cost it would take to perform the
index update. If we proceed in this way for each executed
query, we can conceptually plot over time the valueofor
7 HashJoin } any given —existing or candidate— index. We would then obtai
caid = id 7 a time series that grows if the index is useful (or would be if
/ materialized), and gets smaller as the penalty of updaliag t

Products HashJoin index outweighs its benefits for query processing.

e cuid = id T Figure 3 shows an example of a plot & values over
13 = Products(cu_.i.c'i')w / time for a given index. Intuitively, if the potential aggagd

:,.-" Carts Filter - benefit of materializing a candidate index exceeds its ineat

A7 Name = \\pam«f""v.,‘ cost, we should trigger a creation of such index, since we
S ‘ gathered enough evidence that the index is useful. In cstntra
12 = Carts(cu_id) Y customers if the aggregated benefit of having an index oscillates but

never increases beyond its creation cost, we can confidently

T avoid creating it, as the impact of such an index was not
11 = Customers(name) important enough. Analogously, if the aggregated benefit of
an existing index decreases beyond the index creation cost,
we should drop the index, because maintaining it has become
i .) too expensive. In [9] we show that this strategy results in a
For each sub-plan and candidate index that we identifycompetitive algorithm (i.e., it is no worse than 3 times th

in this way, we calculate the cost of tEstsub-plan that qntima algorithm that knows the future query distribujior
exploits the index (for this purpose we reuse the cardnalif rastricted class of scenarios.

values calculated during optimization and the cost model
formulas). Additionally, for each sub-plan that alreadyesis A
an indexI,s.q, We calculate the cost of thaternative sub- AnintB
plan that uses any existing index excépt., (i.e., we model
what would happen if we dropped indé¥..;). For instance,
consider indexX; in Figure 2. In this case, we would calculate
the cost of thebestsub-plan that seeks inddx for all tuples
that satisfy predicateame="Pam”. Since the sub-plan does
not use any existing index, we do not calculate the cost of an
alternativesub-plan.

After optimizing a new query; we generate sask-setfor
g, which is a set of paird(I,dr)}, where eachl is either
a candidate or an existing index, angd is the amount that Fig. 3. Benefit of materializing a candidate index.
1 would speed up query (if I is a candidate index), or the
amount that'’s absence would slow down(if I is an existing To determine whether a large enough increment or decre-
and used index). Since during optimization we know the cogtent beyond the index creation cost has taken place we
¢, of each original sub-plam, we can easily calculaté; can maintain the history ofA values associated to each
for both a candidate index (by subtracting the cost of theindex. However, this option is too expensive (both in the
bestplan that used from ¢,), and an existing index,;.q Space required to storA values and in the time it takes to
(by subtracting the cost of thalternativeplan that does not process such time series). Instead, we effectively determi
usesl,sea from c,). We store thetask-setof ¢ along with such conditions by maintaining the minimum and maximum

the compiled execution plan for future reference. For updat
P P up 4Note that we maintain the metadata of candidate, non-raéitzil indexes

queries, we add|t|0na||y store the expected number of mﬂa¥n a global data structure. These candidate indexes do nipt dpeery
rows and the columns that are updated. processing but can eventually be created.

Fig. 2. Identifying sub-plans and candidate indexes.

Amin

values of A (denotedA,,;, and A,,.., respectively), and efficient but, in some rare situations, can miss some saisitio
resetting the three counters to zero when an index is eithiesulting in fewer alternatives to tune indexes). If line 11
created or dropped. In this way, we should create a candidegturns a solution inf7'D, we implement it in lines 12-14
index I simply if (A — A,,;») is greater than the cost toby dropping all indexes idT D (if any) and creating/,;.
create it. Similarly, we should drop an existing indéxif
(Anaz — A) is greater than its creation cost. In general,
we useB; to denote the cost to create indéxwe define the Although the algorithm described in the previous section is
residual costof an existing index! as B;—(A,..-—A). If correct, it can lead to oscillations in some situations,(Cases
residual(I) < 0, I should be dropped. Otherwisegsidual on which multiple indexes are useful but there is space for
values indicate how much slack an index has before beingly some of them). To understand this, suppose that we have
deemed “droppabl€’ Also, we define thenet-benefitfor a a working set of useful indexes but do not fit in the available
candidate index agA—A,,;,)—By. If net-benefitl) > 0, space. We know that, by definitiongsidual(I) is bounded
index I should be added. Also, positiveet-benefitvalues by B; for existing indexes. At the same timeet-benefitl)
indicate the excess in confidence for creating indlex keeps growing for candidate indexésas new queries arrive.
The procedure described above assumes that we can alwBlygs, eventually candidate indexes would replace existing
create a new index. In practice, this assumption does ndt haidexes. But now, the indexes that we just dropped would
because there is a bound on the memory we can allocatert increasing theinet-benefivalues while the ones we just
for redundant data structures. In these situations, we nemdated would have a boundeesidual value. We are caught
to (i) decide which indexes to create in case of competirig an endless oscillation although the relative benefit of al
alternatives, (ii) decide whether to drop a somewhat usefaodexes is similar.
index to make space for better alternatives. In the follgwin To address this oscillation problem, we proceed as follows.
section we introduce the full tuning algorithm and addressuppose that we are updating thg value of some existing

#ddressing the Oscillation Problem

these challenges. index I in line 5 with an additionalb;, but residuall) is
already B; (i.e., the maximum value). After updating
C. Index Reorganization to A;+dr, Anax Would also be updated appropriately and

Figure 4 shows a pseudo-code of our algorithm for afgSiduall) stays unchanged af;. To make this benefit ex-
tomatic index tuning. Each time a query is optimized, walicit, in these situations we proportionally decredsealues

generate itgask-setT’ as explained in Section IV-A. When of all the candidate indexeE so that their newnet-benefit
a query is executed, we retrieve itask-setT (line 1) and yalue ismax(0,net-benefitl’)—4). In other word_s, as e>_<isting
updateA values for the indexes if (lines 2-7). (We globally indexes are heIpfuI_, we _reduce the excess in confidence of
maintain in H the set of candidate indexes in the workload§€ rémaining candidate indexes by adjusting down their
Note that lines 1-7 are very efficient because they oannefltvall_Jes _(but we never decreaset-benefibbelow zero
manipulate scalars. in these situations).

Lines 8-14 analyz_eA values and optior_lal_ly imp_le_m_entD' Statistics Management
changes in the set of indexes that are materialized. Firfihe

8 we drop all existing indexes for which residuall) < 0. The cost model used to both choose execution plans during

In lines 9-14 we analyze the current candidate indexes afimization and to obtaid values for candidate indexes

determine if we can create candidate indexes (and opt';onam“ght beneﬂt_ from the presence of sta‘u_stlcs. Howeve_r, we
drop existing indexes). For that purpose, we initialiZB) cannot greedily trigger statistics computation due to tthdi-a

with all the candidate indexefor which netBenefitr) > 0, tional overhead that this would impose. As a middle ground,

and process each index "M sequentially (we arbitrarily we trigger statistic; creation tasks on an i.ndex key column
decide the order of elements fi"'M to process, but several WNeNeverA—A.;,, is larger than a fraction (in our case, 0.5)

heuristics can be applied). When processinge ITM, we of the index creation cost. In other words, after we gather
first obtain a subset of exi.sting index&&D such that (i’)IM some evidence about the usefulness of a given index, weecreat

is still attractive if we subtract from itsetBenefitthe sum supporting statistics to have more accurate informatiotén

of residuals inIT' D, and (ii) the space after removing' D near future.

?s enough to materiglizéﬁ,f (note t_hatlTD m.ight b_e empty V. EXPERIMENTAL EVALUATION

if we can creatd;; without removing any existing index). In , i

general, solving this sub-problem is computationally hard We now p_resen_t an experimental evaluation of the tech-
we approximate it by adapting the solution to the fraction&!09y described in this work. For that purpose, we used a
knapsack problem. Specifically, we sort all existing indexdYPOthetical online-store application with a product &zga

in residual(I')/size(I') order, and progressively grofd’D organized by category, which allows users tq browse the
until we obtain a solution or fail (this greedy approach isyve product catalog and to create one or more shopping cartsewher
they can track the items they are interested in buying. Eigur

SNote that the criterium for dropping indexes is based ondetf between shows th_e rele_vant por_tlon of the database schema thateelu
benefits and penalties rather than on when the index washalligicreated. the functionality described above.

IndexReorganization (¢;: query)
01 T = get task-set for ¢

/I Update A values
02 for each (I,6;) in T

04 H=H U {I};

/I Remove bad indexes

10 for each index Iy in ITM

(I I) I'eITD

03 if (I is not materialized)

05 Ar = A7 +6; Il Section IV-B
06 if ¢; is update on table T and colums C
07 Ap=Ap - "update cost" for I’ on T and C

08 drop existing I if residual(l) <0
/I Analyze candidate indexes to materialize

/I Approximate adapting fractional knapsack solution
09 ITM = {I € H: netBenefit(I)>0}

/I Initially, global H=() (no candidate indexes to materialize)

11 ITD= subset of existing indexes such that:
(i) Y yerrpsizeI’) fits in menory
resi dual (I')+net Benefit (Ia) >0

12 if (ITD is feasible solution)
13 drop I' € ITD; create I
14 H= H — {I]V[};A[M =0

Fig. 4. Online physical tuning algorithm.

Our application has three main workload types that appear- browseProductsfl) =

fromp in Products. AsEnunerabl e()
join c in Categories. AsEnuner abl e()
on p.Field<int>("caid") equals

simultaneously or independently at different times, in aywa
that is not controllable or predictable by the applicatian o
the administrators of the system. Specifically, the vaegainc
workload characteristics mostly depends on the custonss ba
and other external factors. The workloads are charactedzge

c. Fi el d<i nt>("i d")

where c.par_id = $1

follows:
- checkCarts$l) =

fromp in Products. AsEnunerabl e()
join cart in Carts. AsEnunerabl e()
on p.Field<int>("id") equals
cart.Field<int>("pdid")
join c in Custoners. AsEnunerabl e()
on cart.Field<int>("cudd") equals

c. Fi el d<i nt>("i d")
where c.nanme = $1
sel ect new { cart, p }

Categories

name

Carts Products
id id
p_id »| c_id (category) [
cu_id [name
quantity
Customers
N id
—» [name

Fig. 5. Database schema for the experimental evaluation.

select p

- updateProductswhich consists of a large number of
updates to adjust product information (e.g., seasona pric
discounts).

An interesting aspect of this application scenario is that a
large portion of the data (the whole product catalog) hag ver
low volatility, making it a good candidate for caching. We
usedDat aSet s as middle-tier caches designed to offload work
from the DBMSs. We generated 200,000 products, 50,000
customers, 1,000 categories, and 5,000 items in the shgpppin
carts. To evaluate our techniques and highlight its feature
we used a small workloadll’ consisting of 20 instances of
query browseProducts followed by 20 instances of query
checkCartsfollowed by 10 instances of quenpdateProducts
To make the example interesting, we give enough memory to
create only one index over the larBeoductstable, and some
on the remaining tables.

I, | Categories(par.d)
I> | Products(c.d)

I3 | Carts(cudd)

I, | Products(ca.id)

Is | Cust omer s(nane)

Fig. 6. Indexes considered during the experiments.

Figure 8 shows a trace of the execution of workld&din evaluate all queries efficiently. In contrast, if we only Bav
our system. To keep Figure 8 concise, we refer by name to tace for a single index on taldReoducts as in the evaluation
indexes of Figure 6 and to the execution plans of Figure 7.above, we would create only one of the two indexes, which

Initially, there are no indexes materialized. Conseqyentcorresponds to the query that would make the larger diffexen
the initial two executions obrowseProductaise a hash join in performance. If the relative frequency of queries varies
betweenProductsand Categories and a plain filter to select over time, we would obtain something similar to the case of
the desired categories (see plgh in Figure 7). At this point, Figure 8, where we drop an index to accommodate a better
we gather statistics to obtain better cardinality estiorei one.
of both the filter and the join predicates. After another two
instances obrowseProductswe create index; on Categories)) o
and use it to seek the relevant category tuples (see BRn We.star.ted this work_wnh the goal of comblm_ng new tech-
After another execution dirowseProductswe create index, Nologies in programming languages and relational database
on Products which allows an index join alternative (plapf). Systems to enable declarative query processing over aeapti
The remaining 15 executions bfowseProductsre evaluated data structures in the .NET framework. We first introduced va
in around 0.04 seconds, or around 22 times faster than {AES €lements that we characterized as interesting fodingil
original plan. Next, we start evaluatirdneckCartsusing the data-centric applications. The choicemft aSet over ad-hoc
naive planP} that uses two hash joins. After 2 executions, waata structures provided a uniform way of representing in-
gather statistics and create indBxon Carts, which allows an memory d_ata a_nd facilitated the use of generic algorithms fo
index join betweerCustomerandCarts After four additional data manipulation. We then addedlNQ to have access to a
executions ofcheckCartswe gather enough evidence on th&€chanism to declarative query formulation and also toyunif
benefit of indexZ; on product, and we choose to drdp to the algorithms used to perf(_)rm queries. With both umfor—mly
make space (since the net benefitigfexceeds the residual 'ePresented data and algorithms, we introduced a lightweig
benefit of ;). The remaining 12 executions @heckCarts OPtimizer that adjusts j[he execution strategies using ep)le]m
use plan P, with two index joins and taking only 0.03 cost-model for assessing query plans and_ sub—plans. F,_lnall
seconds. Finally, the updatesRooductsbegin executing and We extended the query optimizer/execution engine with a
the benefit of indexy gradually diminishes. After 3 executionsContinuous monitoring infrastructure that allowed theteys
of updateProductsve dropI;, and the remaining 7 updated© Self-tune as workloads change.
execute in a fraction of the original cost. We note that when e believe that adaptive data structures that can be actesse
we dropIy, there is enough space to create indexwhose declgratlvely and alsp can adapt themselves to _the Work_load
net benefit was positive but not big enough whnwas €0ming from .the environment wnhoyt d(_eyelqper intervemtio
present. The total time, including index and statisticatiom Will have an increasingly high applicability in current dat
of the workload is 27.8 seconds. Figure 9 shows a traBgNtric applications.
of the execution of the same workload when the automatic
index creation is turned off. We can see that the self-tuning
alternative takes onlg7% of the time.

VI. CONCLUSIONS

Discussion

)))) REFERENCES
The experimental setting described above was designed

to highlight the main self-tuning features of our technis;ue[l] ‘;Bhgn_ m"é'\rl%sof tp_roéf)crtr; dat 27°f§?'5"f’i nq.at http://-

but was rather simplistic in nature. In an actual deployment] E. Meijer, B. Beckman, and G. Bierman, “LINQ: Reconcifiobjects,
workloads would typically be much Iarger and varied. We relations and XML in the .NET framework,” iRroceedings of the ACM

. . . . International Conference on Management of Data (SIGMQI)06.
believe, however, that the experimental evaluation make 4 “ADO.NET” accessible 9 at (http://-

possible to understand how those scenarios would be handledrsdn2. mi crosoft. conf en- us/ dat a/ -

using our techniques. 2a937699. aspx.) _ '
. hat duplicate each obthase- [4] “LINQ over DataSet, accessible at http://-
For instance, suppose that we dupli nmsdn. m crosoft.confdata/ref/ling.

Productsand checkCartsquery instances 100 times. In thig5] S. Chaudhuri, “An overview of query optimization in rétmal systems,”
case, our techniques would process most of the queries Veryin Proceedings of the Symposium on Principles of Databasesi@ygst
1998

efficiently. Specifically, for this expanded workload, wewld [6] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasay§Towards
expect the naive execution to last about 3,565 seconds (Orestimation error guarantees for distinct values,”Froceedings of the
around one hour) while the self-tuning evaluation would las Symposium on Principles of Database Systems (POZIB0.
7] G. Graefe, “The Cascades framework for query optimarati Data
for Only around 34 seconds. Engineering Bulletinvol. 18, no. 3, 1995.
Of course, applications typically exhibit workloads with @8] P. G. Selingert al, “Access path selection in a relational database man-
mixture of queries at all times. Suppose that at any givee tim agement system,” ifProceedings of the ACM International Conference

on Management of Datal979.
we have a stream of bothrowseProductsand checkCarts [9] N. Bruno and S. Chaudhuri, “An online approach to phylsitesign tun-

queries. If the allowed space is enough to accommodate all ing,” in Proceedings of the International Conference on Data Eriing
indexes, after a short period of time we would be able to (ICDE), 2007.

HashJoin HashJoin IndexJoin
c id = id c id = id id = c_id
Products Filter Products IndexFilter IndexFilter Products.I2
par id=s$1 par_id=s1 par_id=s1l
Categories Categories.Il Categories.Il
Plan P}. Plan P2 Plan P}.
HashJoin HashJoin IndexJoin
id = p_id id = p id p_id = id
Products HashJoin Products IndexJoin IndexJoin Products
cu_id = id Id = cu_id id = cu_id
Carts Filter Filter Carts Filter Carts
name=S$1 name=351 name=5351
Customers Customers Customers
Plan P3. Plan PZ. Plan P3.
Fig. 7. Execution plans for the evaluation queries.
[Query[Plan] | Background Action | Time per query (secs)
2x browseProductsi;] 0.9
Create Stats(Categories.fd) | 0.01
Create Stats(Productsid) 0.12
2x browseProductsi;] 0.9
Create Index{;) 0.03
1x browseProductsA?] 0.89
Create Index{2) 1.05
15x browseProductsA;] 0.04
2x checkCarts P;] 0.7
Create Stats(Carts.ad) 0.01
Create Stats(Productsd) 0.01
Create Index(s) 0.13
6x checkCarts P3] 0.67
Drop Index() 0
Create Index{s) 0.64
12x checkCarts P3] 0.03
3x updateProducts 2.6
Drop Index(4) 0
Create Index{s) 0.16
7x updateProducts 0.56
Total 27.8

Fig. 8. Generated schedule when tuning was enabled.

[Query[Plan] | Time per query (secs)
20x browseProductsi;] | 0.9
20x checkCarts Ps] 0.7
10x updateProducts 0.56
Total 41.2

Fig. 9. Generated schedule when tuning was disabled.

