
Model-Based Testing of Object-Oriented
Reactive Systems with Spec Explorer

Margus Veanes Colin Campbell Wolfgang Grieskamp
Wolfram Schulte Nikolai Tillmann

Lev Nachmanson

Microsoft Research, Redmond, WA, USA
{margus,colin,wrwg,schulte,nikolait,levnach}@microsoft.com

February 5, 2007

Abstract

Testing is one of the costliest aspects of commercial software development.
Model-based testing is a promising approach addressing these deficits. At Mi-
crosoft, model-based testing technology developed by the Foundations of Software
Engineering group in Microsoft Research has been used since 2003. The second
generation of this tool set, Spec Explorer, deployed in 2004, is now used on a daily
basis by Microsoft product groups for testing operating system components, .NET
framework components and other areas. This chapter provides a comprehensive
survey of the concepts of the tool and their foundations.

1 Introduction

Testing is one of the costliest aspects of commercial software development. Not only
laborious and expensive, it also often lacks systematic engineering methodology, clear
semantics and adequate tool support.

Model-based testing is one of the most promising approaches for addressing these
deficits. At Microsoft, model-based testing technology developed by the Foundations
of Software Engineering group in Microsoft Research has been used internally since
2003 [18, 6]. The second generation of this tool set, Spec Explorer [1], deployed in
2004, is now used on a daily basis by Microsoft product groups for testing operating
system components, .NET framework components and other areas. While we can refer
the reader to papers [20, 28, 12, 11, 34] that describe some aspects of Spec Explorer,
this chapter provides a comprehensive survey of the tool and its foundations.

Spec Explorer is a tool for testing reactive, object-oriented software systems. The
inputs and outputs of such systems can be abstractly viewed as parameterized action
labels, that is, as invocations of methods with dynamically created object instances
and other complex data structures as parameters and return values. Thus, inputs and

1



outputs are more than just atomic data-type values, like integers. From the tester’s
perspective, the system under test is controlled by invoking methods on objects and
other runtime values and monitored by observing invocations of other methods. This is
similar to the “invocation and call back” and “event processing” metaphors familiar to
most programmers. The outputs of reactive systems may be unsolicited, for example,
as in the case of event notifications.

Reactive systems are inherently nondeterministic. No single agent (component,
thread, network node, etc.) controls all state transitions. Network delay, thread schedul-
ing and other external factors can influence the system’s behavior. In addition, a sys-
tem’s specification may leave some choices open for the implementer. In these cases,
the freedom given to the implementer may be interpreted as nondeterminism, even if
a given version of the system does not exploit the full range of permitted behavior.
Spec Explorer handles nondeterminism by distinguishing between controllable actions
invoked by the tester and observable actions that are outside of the tester’s control.

Reactive systems may be “large” in terms of the number of possible actions they
support and the number of runtime states they entail. They can even have an unbounded
number of states, for example, when dynamically instantiated objects are involved.
Spec Explorer handles infinite states spaces by separating the description of the model
state space which may be infinite and finitizations provided by user scenarios and test
cases.

The following sections provide a detailed overview of Spec Explorer foundations.
Section 2 introduces the methodology used by Spec Explorer with a small exam-

ple, a distributed chat server. The system’s behavior is described by a model program
written in the language Spec# [2], an extension of C#. A model program defines the
state variables and update rules of an abstract state machine [22]. The states of the ma-
chine are first-order structures that capture a snapshot of variable values in each step.
The machine’s steps (i.e., the transitions between states) are invocations of the model
program’s methods that satisfy the given state-based preconditions. The tool explores
the machine’s states and transitions with techniques similar to those of explicit state
model checkers. This process results in a finite graph that is a representative subset of
model states and transitions. Spec Explorer provides powerful means for visualizing
the results of exploration. Finally, Spec Explorer produces test cases for the explored
behavior that may be run against the system under test to check the consistency of
actual and predicted behavior.

Subsequent sections give a more in-depth look at the semantic foundations of Spec
Explorer. In Section 3, we introduce model automata, an extension of interface au-
tomata over states that are first-order structures. The basic conformance notion, alter-
nating simulation [4, 14], is derived from interface automata. Model automata also
include the concept of accepting states familiar in formal languages, which character-
ize those states in which a test run is conclusive. Model automata include states and
transitions, but they extend traditional model-based testing by admitting open systems
whose transitions are not just a subset of the specification’s transitions and by treating
states as first-order structures of mathematical logic.

Section 4 gives techniques for scenario control, in cases where the model describes
a larger state space than the tester wants to cover. Scenario control is achieved by
method restriction, state filtering, state grouping and directed search. This section also

2



introduces the exploration algorithm.
Section 5 describes our techniques for test generation. Traditionally, test generation

and test execution are seen as two independent phases, where the first generates an
artifact, called the test suite, that is then interpreted by the second phase, test execution.
We call this traditional case offline testing. However, test generation and test execution
can be also folded in one process, where the immediate result of test execution is used
to prune the generation process. This we call online testing (also called “on-the-fly”
testing in the literature). Online testing is particularly useful for reactive systems with
large state spaces where deriving an exhaustive test suite is not feasible. In the testing
framework presented here, both the online case and the offline case are viewed as
special cases of the same general testing process. In the offline case the input to the test
execution engine (discussed in Section 6) is a test suite in form of a model automaton
of a particular form. In the online case the input to the test execution engine is a
dynamic unfolding of the model program itself, i.e. the test suite has not been explicitly
precomputed.

Section 6 discusses the conformance relation (alternating refinement) that is used
during both online and offline testing. We address the problem of harnessing a dis-
tributed system with an observationally complete “wrapper” and of creating bindings
between abstract entities (such as object identities) found in the model and the system
under test.

The chapter closes with a survey of related work in Section 7 and a discussion of
open problems in Section 8.

Users perspective. The focus of this chapter is on the foundations of the tool. The
main functionality of Spec Explorer from users perspective is to provide an integrated
tool environment to develop models, to explore and validate models, to generate tests
from models, and to execute tests against an implementation under test. The authoring
of models can be done in MS Word that is integrated into Spec Explorer, or in a plain
text editor. Spec Explorer supports both AsmL and Spec# as modeling languages. Sev-
eral examples of how modeling can be done in either of those langauges is provided
in the installation kit [1]. A central part of the functionality of Spec Explorer is to vi-
sualize finite state machines generated from models as graphs. This is a very effective
way to validate models and to understand their behavior, prior to test case generation.
Generated test cases can either be saved as programs in C# or VB (Visual Basic), and
executed later, or generated tests can also be directly executed against an implemen-
tation under test. The tool provides a way to bind actions in the model to methods
in the implementation. A project file is used where most of the the settings that the
user chooses during a session of the tool are saved. Internally, the tool has a service
oriented architecture that allows more sophisticated users to extend the tool in various
ways. Most of the services provide a programmatic access to the datastructures used
internally and the various algorithms used for test case generation. The best way to get
a more comprehensive user experience for what Spec Explorer is all about, is to install
it and to try it out.

3



2 A Sample: Chat

To illustrate the basic concepts and the methodology of Spec Explorer, we look at a
simple example: a distributed chat system. We will also refer back to this sample to
illustrate points made in later sections.

The chat system is a distributed, reactive system with an arbitrary number of clients.
Each client may post text messages that will be delivered by the system to all other
clients that have entered the chat session. The system delivers pending messages in
FIFO order with local consistency. In other words, a client always receives messages
from any given sender in the order sent. However, if there are multiple senders, the
messages may be interleaved arbitrarily.

Figure 1 shows the Spec# model of the chat system. The model consists of a class
that represents the abstract state and operations of a client of a chat session. Each in-
stance of the class will contain two variables. The variable entered records whether
the client instance has entered the session. A mapping unreceivedMsgs maintains
separate queues for messages that have been sent by other clients but not yet received
by this client. Messages in the queues are “in flight”. Note that the model program
is not an example implementation. No client instance of an implementation could be
expected to maintain queues of messages it has not yet received! Not surprisingly,
modeling the expected behavior of a distributed system is easier than implementing it.

We model four actions:

• The Client constructor creates an instance of a new client. The state of the
system after the constructor has been invoked will include empty message queues
between the new client and all previously created client instances. These queues
can be thought of as virtual one-way “channels” between each pair of client
instances. There will n(n− 1) queues in the system overall if there are n clients.

• The Enter action advances the client into a state where it has entered the chat
session. A Boolean-valued flag is enough to record this change of state.

• The Send action appends a new message to the queues of unreceived messages
in all other clients which have entered the session.

• The Receive method extracts a message sent from a given sender from the
sender’s queue in the client.

Typically the terms “input” and “output” are used either relative to the model or
relative to the system. To avoid possible confusion, we use the following terminology:
The Send action is said to be controllable because it can be invoked by a user to
provide system input. The Receive action is observable; it is an output message
from the system.

For a model like in Figure 1, Spec Explorer extracts a representative behavior ac-
cording to user-defined parameters for scenario control. To do this Spec Explorer uses
a state exploration algorithm that informally works as follows:

1. in a given model state (starting with the initial state) determine those invocations
– action/parameter combinations – which are enabled by their preconditions in
that state;

4



class Client {
bool entered;
Map<Client,Seq<string>> unreceivedMsgs;

[Action] Client() {
this.unreceivedMsgs = Map;
foreach (Client c in enumof(Client), c != this){

c.unreceivedMsgs[this] = Seq{};
this.unreceivedMsgs[c] = Seq{};

}
entered = false;

}

[Action] void Enter()
requires !entered; {
entered = true;

}

[Action] void Send(string message)
requires entered; {
foreach (Client c in enumof(Client), c != this, c.entered)

c.unreceivedMsgs[this] += Seq{message};
}

[Action(Kind=ActionAttributeKind.Observable)]
void Receive(Client sender, string message)

requires sender != this &&
unreceivedMsgs[sender].Length > 0 &&
unreceivedMsgs[sender].Head == message; {

unreceivedMsgs[sender] = unreceivedMsgs[sender].Tail;
}

}

Figure 1: Model program written in Spec# specifying the possible behavior of a chat
system. The Map and Seq data types are special high-level value types of Spec#
that provide convenient notations like display and comprehensions (Seq{} denotes the
empty sequence). The Action attribute indicates that a method is an action of the
abstract state machine given by the model program. The enumof(T) form denotes
the set of instances of type T that exist in the current state. The requires keyword
introduces a method precondition.

5



S10

S9

c0.Send(’’hi from c0’’)

S3

S5

c0.Enter()

S0

S1

Client()/c0

S2

Client()/c1

S6

c0.?Receive(c1, ’’hi from c1’’)

S7

c1.?Receive(c0, ’’hi from c0’’)

S8

S4

c1.Enter()c1.Send(’’hi from c1’’)

c0.Send(’’hi from c0’’)

c1.Send(’’hi from c1’’)

c1.Enter() c0.Enter()c1.?Receive(c0, ’’hi from c0’’)

c0.?Receive(c1, ’’hi from c1’’)

Figure 2: A model automaton of a scenario, extracted from the chat model program
and visualized by Spec Explorer, with two clients (c0 and c1) and a fixed message
send by each client (“hi from ...”). The initial state is shown in grey. Actions labels
prefixed by “?” indicate observable actions. Labels without prefix indicate controllable
actions. Active states (where no observable actions are expected) are shown as ovals.
Passive states (where the tester may observe system actions) are shown as diamonds.
The unlabeled transitions represent an internal transition (“timeout”) from passive to
active.

2. compute successor states for each invocation;

3. repeat until there are no more states and invocations to explore.

The parameters used for the invocations are provided by parameter generators
which are state dependent; if in a given state the parameter set is empty, the action
will not be considered. Default generators are selected automatically (for example,
for objects the default parameter generator delivers the enumof(T) collection). En-
abledness is determined by the precondition of the method. Besides of the choice of
parameters, the exploration can be pruned by various other scenario control techniques
(see Section 4).

Figure 2 shows a scenario extracted from the chat model as a model automaton
(cf. Section 3). State filters restrict the number of clients and avoid the case where
the same message is sent twice by a client. The message parameter of the Send
method is restricted to the value "hi". Additional method restrictions avoid sending
any messages before both the two clients have been created and entered the session
(cf. Section 4 for a discussion of scenario control).

6



G2

G3

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

G5

c1.?Receive(c0, ’’bye’’)|
c2.?Receive(c0, ’’bye’’)

G0

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

G6

c1.?Receive(c0, ’’bye’’)|
c2.?Receive(c0, ’’bye’’)

G1

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

G4

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

G7

c0.?Receive(c1, ’’hi’’)|
c2.?Receive(c1, ’’hi’’)

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

c2.?Receive(c0, ’’hi’’)|
c1.?Receive(c0, ’’hi’’)

Figure 3: A projection on a model automaton extracted and visualized by Spec Explorer
for a scenario with three clients, where client c0 sends two messages (“hi” and “bye”)
in order, client c1 sends one message (“hi”), and client c2 does not send any message.
The projection groups states equivalent under a user defined grouping function into
one node, and in the visualization merges arcs between these nodes. In this case, the
range of the grouping function is a mapping of clients to the sequences of messages
which have been sent by that client but not yet received by all the other clients. This
visualization also hides all transitions with actions different from Receive, and hides
loops on grouped states.

The nodes of the graph in Figure 2 represent distinct states of the system as a whole.
The arcs are transitions that change the system state. Each state in the graph is either
passive or active. Ovals represent active states where a client may give the system new
work to do. Diamonds represent passive states where the client may wait for an action
from the system or transition into an active state after a state-dependent timeout occurs.

We say that a model and an implementation under test (IUT) conform if the fol-
lowing conditions are met: The IUT must be able to perform all transitions outgoing
from an active state. The IUT must produce no transitions other than those outgoing
from a passive state. Every test must terminate in an accepting state. In other words,
these conditions mean that the system being tested must accept all inputs provided by
the tester and only produce outputs that are expected by the tester. Further, to prevent
unresponsive systems from passing the test, tests must end in an expected final state.

Note that in some passive states there is a race between what the tester may do
and what the system may do. The timeout transition, here represented by a transition
with no label, indicates that an internal transition from a passive state to an active
state occurred without observing output from the system. In other words, nothing was
observed in the time the tester was willing to wait (cf. Section 5).

The scenario shown in Figure 2 does not yet reveal the chat system’s desired prop-
erty of local consistency, i.e. preserving the ordering of messages from one client. For
that scenario we need at least three clients, where one of them posts at least two mes-
sages. In this case we should observe that the ordering of the two messages is preserved

7



from the receiver’s point of view, regardless of any interleaving with other messages.
Figure 3 illustrates local consistency. The full model automaton underlying this view
has too many transitions to be amenable for depiction in this context. However, the
projected view (where some states are grouped together) shows that there is no path
where the “bye” message of client c0 is received before the “hi” message of the same
client.

The actual conformance testing of an implementation based on model automata as
described above happens either offline or online (“on-the-fly”) in Spec Explorer. For of-
fline testing, the model automaton is reduced to an automaton that represents a test suite
and can then be compiled to a stand-alone program. The resulting program encodes the
complete oracle as provided by the model. For online testing, model exploration and
conformance testing are merged into one algorithm. If the system-under-test is a non-
distributed .NET program, then all test harnessing will be provided automatically by
the tool. In other cases, the user has to write a wrapper in a .NET language which
encapsulates the actual implementation, using .NET’s interoperability features. This
technique has been used to test a very wide variety of systems, including distributed
systems and components that run in the operating system kernel.

3 Model programs and model automata

In this section we describe the semantic framework on which Spec Explorer is built
upon. We introduce the notion of model automata as an extension of interface au-
tomata [15, 14] over first-order structures. Instead of the terms “input” and “output”
that are used in [14] we use the terms “controllable” and “observable” here. This choice
of terminology is motivated by our problem domain of testing, where certain operations
are under the control of a tester, and certain operations are only observable by a tester.

3.1 States

A state is a first-order structure over a vocabulary Σ; its universe of values is denoted
by U and is assumed to be fixed for all states. The vocabulary symbols are function
symbols; each function symbol has a fixed arity and is given an interpretation or mean-
ing in s. The interpretation of some function symbols in Σ may change from state to
state. The function symbols whose interpretation may change are called state variables
or dynamic functions [22]. The set of state variables is denoted by V . Any ground term
over Σ − V has the same interpretation in all states. As far as this paper is concerned,
all state variables are either nullary or unary. A dynamic universe C is a dynamic unary
Boolean function; we say that o is in C if C(o) = true.

We assume that U contains a distinguished element for representing undefinedness,
denoted by undef. All functions in Σ have total interpretations in U , mapping to the
undef value as required. Note that we do not assume that undef can be denoted by a
symbol in Σ.

Given a first-order structure s over Σ and a vocabulary V ⊆ Σ, we use the notation
s�V for the reduct of s to the vocabulary V. We write S�V for {s�V : s ∈ S}.

8



By a state based expression E we mean a term over Σ that may contain (logical)
variables, i.e. placeholders for values. If E contains no (logical) variables, E is said to
be ground or closed. If E contains variables all of which are among x = x 1, . . . , xn we
indicate this by E[x], and given closed terms v = v1, . . . , vn over F ∪ V we write E[v]
for the closed expression after substituting or replacing each x i in E by vi for 1 ≤ i ≤ n.
The value of a closed state based expression E in a state s is denoted by E(s). We write
E(S) for {E(s) : s ∈ S}, where s is a set of states.

3.2 Model automata

Definition 1 An model automaton M has the following components:

• A set S of states over a vocabulary Σ, where Σ contains a finite sub-vocabulary
V of state variables or dynamic functions.

• A nonempty subset S init of S called initial states.

• A subset Sacc of S called accepting states.

• A set Acts of actions that are (ground) terms over Σ−V . Acts is a disjoint union
of controllable actions Ctrl and observable actions Obs.

• A transition relation δ ⊆ S × Acts × S

M is deterministic if for any state s and action a there is at most one state t such that
(s, a, t) ∈ δ, in which case we write δ(s, a) = t. In this paper we consider only
deterministic model automata.

When it is clear from the context, we often say automata for model automata. Notice
that actions have the same interpretation in all states, this will allow us later to relate
actions in different states in a uniform way. Intuitively, a state is uniquely defined by
an interpretation of the symbols in V .

For a given state s ∈ S, we let Acts(s) denote the set of all actions a ∈ Acts such
that (s, a, t) ∈ δ for some t; we say that a is enabled in state s. We let Ctrl(s) =
Acts(s) ∩ Ctrl and Obs(s) = Acts(s) ∩ Obs.

In order to identify a component of a model automaton M, we sometimes index that
component by M, unless M is clear from the context. When convenient, we denote M
by the tuple

(Sinit, S, Sacc, Obs, Ctrl, δ).

We will use the notion of a sub-automaton and a reduct when we define tests in
Section 5.1. Tests are special automata that have been expanded with new state vari-
ables and actions but that preserve the transitions when the additional state variables
and actions are ignored.

Definition 2 A model automaton M is a sub-automaton of a model automaton N, in
symbols M ⊆ N, if SM ⊆ SN , Sinit

M ⊆ Sinit
N , Sacc

M ⊆ Sacc
N , CtrlM ⊆ CtrlN , ObsM ⊆ ObsN ,

and δM ⊆ δN .

9



We lift reduction on vocabularies, S�V, to automatons:

Definition 3 Given an automaton M and a vocabulary V ⊆ ΣM , we write T�V for the
following automaton N, called the reduct of M to V:

• SN = SM�V, Sinit
N = Sinit

M �V, Sacc
N = Sacc

M �V,

• ActsN is the set of all a in ActsM such that a is a term over V,

• δN = {(s�V, a, t�V) : (s, a, t) ∈ δM, a ∈ ActsN}.

M is called an expansion of N.

A reduct of an automaton to a subset of the state variables may collapse several states
into a single state, which is illustrated later. Therefore, projection does not always
preserve determinism. In this paper, projections are used in a limited way so that the
resulting automaton is always deterministic.

3.3 Model programs

A model program P declares a finite set M of action methods and a set of state vari-
ables V . A state of P is given by the values (or interpretations) of the state vocabulary
symbols Σ that occur in the model program. The value of a state variable in V ⊆ Σ
may change as a result of program execution. Examples of function symbols whose
interpretation does not change are built-in operators, data constructors, etc. A nullary
state variable is a normal (static) program variable that may be updated. A unary state
variable represents either an instance field of a class (by mapping from object identities
to the value of that field) or a dynamic universe of objects that have been created during
program execution.

Each action method m, with variables x as its formal input parameters, is associ-
ated with a state based Boolean expression Prem[x] called the precondition of m. The
execution of m in a given state s and with given actual parameters v, produces a sequel
state where some of the state variables have changed. In general the execution of m
may also do other things, such as write to an external file, or prompt up a dialog box
to a user, but abstractly we consider m as an update rule that is a function that given
a state and actual parameters for m that satisfy the precondition of m, produces a new
state t where some state variables in V have been updated.

A model program can be written in a high level specification language such as
AsmL [23] or Spec# [7], or in a programming language such as C# or Visual Basic.
A guarded update rule in P is defined as a parameterized method, similar to the way
methods are written in a normal program. A guarded update rule defined by a method
is called an action method.

The model automaton MP defined by a model program P is a complete unwinding
of P as defined below. We omit the subscript P from MP when it is clear from the
context. Since model programs deal with rich data structures, states are not just abstract
entities without internal structure, but full first-order structures. We define actions and
the state to state transition function δM that represents execution of actions. Unlike an
explicit transition system with given sets of nodes and arcs, the states and transitions of

10



a model program must be deduced by executing sequences of atomic actions starting
in the initial state. For this reason, we use the term exploration to refer to the process
of producing δM .

The set of initial states Sinit is the singleton set containing the state with the initial
values of state variables as declared in P. The set of all states S is the least set that
contains Sinit

M and is closed under the transition relation δM defined below.

Example 1 Consider the Chat example. The set V contains the dynamic universe
Client for the instances to that type (denoted as enumof(Client) in Spec#), and
a unary dynamic function for the entered and unreceivedMsgs instance fields.
In the initial state of the model, say s0, there are no elements in Client, and the unary
functions that represent the instance fields map to undef. In addition, Σ contains other
function symbols such as the empty sequence, Seq{}, the binary Boolean function in
that in this context checks if a given element is in the domain of a map, etc. All the
symbols in Σ − V have the same interpretation or meaning in all states in S M , whereas
the interpretation of symbols in V may change from state to state.

3.4 State exploration

Actions are not considered as abstract labels but have internal structure. The vocabulary
of non-variable symbols Σ−V is divided into the following disjoint sub-vocabularies:
a set F of function symbols for operators and constructors on data, and a set M of
function symbols for methods.

An action over (M,F) is a term m(v1, . . . , vk) where m ∈ M, k ≥ 0 is the arity of
m, and each vi is a term over F . Each parameter of m is either an input parameter or an
output parameter. We assume that all the input parameters precede all the output para-
meters in the parameter list of m. When the distinction between input parameters and
output parameters is relevant we denote m(v1, . . . , vk) by m(v1, . . . , vl)/vl+1, . . . , vk,
where v1, . . . , vl, l ≤ k, are input parameters. The set of all actions over (M,F) is
denoted by ActsM,F , or simply Acts, when F and M are clear from the context. Any
two terms over F are equal if and only if they denote the same value in U , and the
value of a term over F is the same for all states in SM . The symbols in M have the
term interpretation, i.e. m(v) and m′(v) are equal if and only if m and m ′ are the same
symbol and v and w are equal.

Given an action a = m(v)/w and a state s, a is enabled in s (i.e. a ∈ ActsM(s)) if
the following conditions hold:

• Prem[v] is true in s;

• The invocation of m(v) in s yields the output parameters w.

Let Actsm(s) denote the set of all enabled actions with method m in state s. The
set of all enabled actions ActsM(s) in a state s is the union of all Actsm(s) for all action
methods m; s is called terminal if ActsM(s) is empty. Notice that Actsm(s) may be
infinite if there are infinitely many possible parameters for m. The set Acts M is the
union of all ActsM(s) for all s in SM.

11



Given a = m(v)/w ∈ ActsM(s), we let δM(s, a) be the target state of the invocation
m(v). The invocation of m(v) in a state s can be formalized using ASM theory [22].
Formally, a method invocation produces a set of updates that assign new values to some
state variables that are then applied to s to produce the target state with the updated
values. The interested reader should consult [23] for a detailed exposition of the update
semantics of AsmL programs, or [17] that includes the update semantics for the core
language constructs.

Example 2 To illustrate how exploration works, let us continue from Example 1. We
can invoke the Client constructor method in state s0, since the precondition is true.
This invocation produces an update that adds a new object, say c0, to the dynamic
universe Client. Let s1 be the resulting state. We have explored the transition
δ(s0,Client()/c0) = s1.

From state s1 we can continue exploration by invoking c0.Enter(). 1 The pre-
condition PreEnter[c0] requires that c0 is a member of Client (due to the type dec-
laration) and that c0.entered is false. Thus c0.Enter() is enabled in s1. The
invocation produces updates on the dynamic unary function for entered. Let the new
target state be s2. We have thus explored the transition δ(s1,c0.Enter()) = s2.

3.5 Controllable and observable actions

In order to distinguish behavior that can be controlled from behavior that can only
be observed, the methods in M are split into controllable and observable ones. This
induces, for each state s, a corresponding partitioning of Acts M(s) into controllable
actions CtrlM(s) and observable actions ObsM(s) which are enabled in s. The action
set ActsM is partitioned accordingly into ObsM and CtrlM .

Example 3 In the Chat server model there are three action methods Client, Enter,
and Send that are controllable, and a single observable action method Receive. The
reason why Receive is observable is that it corresponds to a reaction of the system
under test that cannot be controlled by the tester.

In Spec Explorer, observable and controllable actions can either be indicated by
attaching corresponding .NET attributes to the methods in the source text of the model
program, or by using the actions settings part of the project configuration for the model.

3.6 Accepting states

The model program has an accepting state condition that is a closed Boolean state
based expression. A state s is an accepting state if the accepting state condition is true
in s. The notion of accepting states is motivated by the requirement to identify model
states where tests are allowed to terminate. This is particularly important when testing
distributed or multi-threaded systems, where it is not always feasible to stop the testing
process in an arbitrary state, i.e. prior tests must first be finished before new tests can
be started. For example, as a result of a controllable action that starts a thread in the

1The notation o.f (. . .) is the same as f (o, . . .) but provides a more intuitive object-oriented view when o
is an object and f a field or a method of o.

12



IUT, the thread may acquire shared resources that are later released. A successful test
should not be finished before the resources have been released.

Formally, there is an implicit controllable succeed action and a special terminal
goal state g in SM , s.t. for all accepting states s, δM(s, succeed) = g. It is assumed
that in the IUT the corresponding method call takes the system into a state where no
observable actions are enabled. Thus, ending the test in an accepting state, corresponds
to choosing the succeed action.

In every terminal non-accepting state s there is an implicit controllable fail action
such that δM(s, fail) = s. It is assumed that the corresponding action in the imple-
mentation is not enabled in any state. In other words, as will become apparent from
the specification relation described below, if a terminal non-accepting model state is
reached, the test case fails.

Example 4 A natural accepting state condition in the Chat example is to exclude the
initial state and states where pending messages have not yet been received. In such a
state there are no observable actions enabled:

enumof(Client).Size > 0 &&
Forall{ c in enumof(Client), s in c.unreceivedMsgs.Keys;

c.unreceivedMsgs[s].Length == 0}

3.7 State invariants

The model program may also have state invariants associated with it. A state invariant
is a closed Boolean state based expression that must hold in all states. The model
program violates a state invariant ϕ if ϕ is false in some state of the model, in which
case the model program is not valid. A state invariant is thus a safety condition on the
transition function or an axiom on the reachable state space that must always hold.

Example 5 We could add the following state invariant to the Chat example:

Forall{ c in enumof(Client); c notin c.unreceivedMsgs.Keys }

It says that no client should be considered as a possible recipient of his own messages.
This state invariant would be violated, if we had by mistake forgotten the c != this
condition in the foreach-loop in the body of the Client method in Figure 1.

Execution of an action is considered to be an atomic step. In Example 5 there are
“internal states” that exists during execution of the Client action; however, these
internal states are not visible in the transition relation and will not be considered for
invariant checking by the Spec Explorer tool.

4 Techniques for scenario control

We saw in Section 3 how the methods of a model program can be unwound into a
model automaton with controllable and observable actions. In typical practice, the
model program defines the operational contract of the system under test without regard
for any particular test purpose. Hence, it is not unusual that a model program may

13



correspond to an automaton with a large or even infinite number of transitions. When
this happens we may want to apply techniques for selectively exploring the transitions
of the model program. These techniques are ways of limiting the scenarios that will
be considered. They allow us to produce automata that are specialized for various test
purposes or goals that the tester wishes to achieve. This is also a useful technique for
analyzing properties of the model, regardless of whether an implementation is available
for testing.

In the remainder of this section, we introduce techniques for scenario control used
by Spec Explorer. We define each technique as a function that maps a model automaton
M into a new automaton M ′ with the property described. These techniques take advan-
tage of the fact that states are first-order structures that may be queried and classified.
The techniques also rely on the fact that the transition labels are structured into action
names with parameter lists (terms and symbolic identifiers).

We will describe the following techniques:

• Parameter selection limits exploration to a finite but representative set of para-
meters for the action methods.

• Method restriction removes some transitions based on user-provided criteria.

• State filtering prunes away states that fail to satisfy a given state-based predicate.

• Directed search performs a finite-length walk of transitions with respect to user-
provided priorities. States and transitions that are not visited are pruned away.
There are several ways that the search may be limited and directed.

• State grouping selects representative examples of states from user-provided equiv-
alence classes [11, 18].

4.1 Parameter selection

Using the action signatures of Section 3, we define parameter selection in terms of a
relation, D, with (s, m,v) ∈ D where s ∈ S, m ∈ Acts, and v are tuples of elements in
F with as many entries as m has input parameters.

The result of applying parameter selection D to M is an automaton M ′ whose transi-
tion relation is a subset of the transition relation of M. A transition δM(s, m(v)/w) = t
of M is included as a transition of M ′ if (s, m,v) is in D. The initial states of M′ are
the initial states of M. The states of M′ consist of all states that are reachable from an
initial state using the transition rules of M ′.

Note that if there is no v such that (s, m,v) ∈ D, no transition for m will be
available in the state s: parameter selection can also prune away actions, and overlaps
to that end with method restriction.

Implementation. The Spec Explorer tool provides a user interface for parameter se-
lection with four levels of control. Rather than populate the relation D in advance, the
tool uses expressions that encode the choice of parameters and evaluates these expres-
sions on demand.

14



Defaults. Spec Explorer uses the type system of the modeling language as a way to
organize default domains for parameter selection. The user may rely upon built-
in defaults provided by the tool for each type. For example, all action input
parameters of type bool will be restricted in all states to the values true and false
by default. Moreover, all input parameters which represent object instances will
default to all available instances of the object type in the given state.

Per Type. If the tool’s built-in parameter domain for a given data type is insufficient,
the user may override it. This is done by giving an expression whose evaluation
in a each state provides defaults for parameters of the given type.

Per Parameter. The user may specify the domain of individual parameters by a state-
based expression, overriding defaults associated with the parameter’s type. If not
otherwise specified, the tool will combine the domains associated with individual
parameters of a method (either defined directly with the parameter or with the
parameter’s type) to build a Cartesian product or a pairwise combination of the
parameter domains.

Per Method. The user can also define parameter tuples for a given method explicitly
by providing a state based expression which delivers a set of tuples. This allows
one to express full control over parameter selection, expressing dependencies
between individual parameter selections.

Example 6 For the Chat example given in Section 2, the Send action has an implicit
parameter this and an explicit parameter message. By default, the parameter domain
of parameter this ranges over all client instances, while message ranges over some
predefined strings. These domains come from the defaults associated with the types
of the parameters, Client and string respectively. We can change the default by
associating the domain Set{"hi"} with the parameter message. Combined with
the default for type Client, this would be equivalent to providing explicit parameter
tuples with the expression Set{c in enumof(Client); <c, "hi">}.

4.2 Method restriction

An action m is said to be enabled in state s if the preconditions of m are satisfied. We
can limit the scenarios included in our transition system by strengthening the precon-
ditions of m. We call this method restriction.

To do this the user may supply a parameterized, state-based expression e as an
additional precondition of m. The action’s parameters will be substituted in e prior to
evaluation.

The result of applying method restriction e to M is an automaton M ′ whose transi-
tion relation is a subset of the transition relation of M. A transition δM(s, m(v)/w) = t
of M is included as a transition of M ′ if e[v](s) is true. The initial states of M′ are
the initial states of M. The states of M′ consist of all states that are reachable from an
initial state using the transition rules of M ′.

Example 7 In the Chat sample, we used method restriction to avoid that clients send
messages before all configured clients are created and entered the session. To that end,

15



we used an auxiliary type representing the mode of the system, which is defined as
follows:

enum Mode { Creating, Entering, Sending };

Mode CurrentMode {
get {

if (enumof(Client).Size < 2)
return Mode.Creating;

if (Set{c in enumof(Client), !c.entered;c}.Size < 2)
return Mode.Entering;

return Mode.Sending;
}

}

Now we can use expressions like CurrentMode == Mode.Creating to restrict
the enabling of the actions Client, Enter and Send to those states where we want
to see them.

Note that in this sample we are only restricting controllable actions. It is usually
safe to restrict controllable actions since it is the tester’s choice what scenarios should
be tested. Restricting observable actions should be avoided, since their occurrence is
not under the control of the tester and may result in inconclusive tests.

4.3 State filtering

A state filter is a set Sf of states where Sinit ⊆ Sf . Applying state filter Sf to automaton
M yields M′. A transition δM(s, m(v)/w) = t of M is included as a transition of M ′ if
t ∈ Sf . The initial states of M′ are the initial states of M. The states of M ′ consist of all
states that are reachable from an initial state of M ′ using the transition rules of M ′.

Implementation. Spec Explorer allows the user to specify the set Sf in terms of a
state-based expression. A state s is considered to be in Sf if e(s) is true.

Example 8 In the Chat sample, we used a state filter to avoid states in which the same
message is posted more than once by a given client before it has been received. The
filter is given by the expression:

Forall{c in enumof(Client), s in c.unreceivedMsgs.Keys,
m1 in c.unreceivedMsgs[s], m2 in c.unreceivedMsgs[s]; m1 != m2}

This has the effect of pruning away all transitions that result in a state which does
not satisfy this expression. Note that in the case of the Chat sample, this filter in
combination with the finite parameter selection and finite restriction on the number
of created clients makes the extracted scenario finite, since we can only have distinct
messages not yet received by clients, and the number of those messages is finite.

16



var frontier = {(s, a, t) | s ∈ Sinit, (s, a, t) ∈ δ}
var included = Sinit

var δ′ = ∅

while frontier �= ∅ ∧ InBounds
choose (s, a, t) ∈ frontier

frontier := frontier \ {(s, a, t)}
if t ∈ included ∨ IncludeTarget(s, a, t)

δ′ := δ′ ∪ {(s, a, t)}
if t /∈ included

frontier := frontier ∪ {(t, a′, t′) | (t, a′, t′) ∈ δ}
included := included ∪ {t}

Figure 4: Directed search in Spec Explorer

4.4 Directed search

When the number of states of M is large, it is sometimes useful to produce M ′ using
a stochastic process that traverses (or explores) M incrementally. Bounded, nondeter-
ministic search is a convenient approach. The version used in Spec Explorer allows the
user to influence the choice of scenarios by fixing the probability space of the random
variables used for selection. Transitions and states are explored until user-provided
bound conditions are met, for example, when the maximum number of explored tran-
sitions exceeds a fixed limit. Suitably weighted selection criteria influence the kinds of
scenarios that will be covered by M ′.

For the purposes of exposition, we can assume that the directed search algorithm
operates on a model automaton that has already been restricted using the methods de-
scribed in sections 4.1 to 4.3 above.

The general exploration algorithm is given in Figure 4. It assumes two auxiliary
predicates:

• InBounds is true if user-given bounds on the number of transitions, the number
of states, etc., are satisfied.

• IncludeTarget(s, a, t) is true for those transitions (s, a, t) that lead to a desired
target state. By default, IncludeTarget returns true. (We will see in Section 4.5
an alternative definition.)

In the algorithm the variable frontier represents the transitions to be explored and is
initially set to all those transitions which start in an initial state. The variable included
represents those states of M′ whose outgoing transitions have been already added to
the frontier, and is initially set to the initial states of M. The variable δ ′ represents
the computed transition relation of the sub-automaton M ′. The algorithm continues
exploring as long as the frontier is not empty and the bounds are satisfied. In each

17



iteration step, it selects some transition from the frontier, and updates δ ′, included and
frontier.

Upon completion of the algorithm, the transitions of M ′ are the final value of δ ′.
The initial states of M′ are the initial states of M. The states of M ′ consist of all states
that are reachable from an initial state of M ′ using the transitions of M ′. (This will be
the same as the final value of included.)

The freedom for directing search of this algorithm appears in the choose opera-
tion. We can affect the outcome by controlling the way in which choice occurs. We
consider two mechanisms: per-state weights and action weights.

Per-state weights prioritize user-specified target states for transitions of control-
lable actions. The weight of state s is denoted by ω s. At each step of exploration the
probability of choosing a transition whose target state is t is

prob(t) =
{

0, if t /∈ T;
ωt/

∑
s∈T ωs, t ∈ T.

where T = {t | (s, a, t) ∈ frontier, a ∈ Ctrl}.
As an alternative to per-state weights, we can introduce action weights that priori-

tize individual transitions.
Let ω(s, m, δ′) denote the weight of action method m in state s with respect to

the current step of the exploration algorithm and the transitions found so far in δ ′. If
m1, . . . , mk are all the controllable action methods enabled in s, then the probability of
an action method mi being chosen is

prob(s, mi, δ
′) =

{
0, if ω(s, mi, δ

′) = 0;
ω(s, mi)/

∑k
j=1 ω(s, mj, δ

′), otherwise

The state of the exploration algorithm, namely, the set of transitions already selected
for inclusion (δ ′), may affect an action method’s weight. This occurs in the case of
decrementing action weights where the likelihood of selection decreases with the num-
ber of times a method has previously included in δ ′. A more detailed exposition of
action weights is given in [34].

Implementation. Weights are given in Spec Explorer as state-based expressions that
return non-negative integers.

4.5 State grouping

State grouping is a technique for controlling scenarios by selecting representative states
with respect to an equivalence class. We use a state-based grouping expression G to
express the equivalence relation. If G(s) = G(t) for states s and t, then s and t are of
member of the same group under grouping function G. The G-group represented by a
state s is the evaluation of G with respect to state s, namely G(s). S/G denotes the set
of all G-groups represented by the elements of set S.

State groupings are useful for visualization and analysis (as we saw in Section 2),
but they can also be used as a practical way to prune exploration to distinct cases of
interest for testing, in particular to avoid exploring symmetric configurations.

18



For a given model automaton M and a state s ∈ SM, let [s]Gi denote the set of states
which are equivalent under one grouping G i, i.e. the set {s′ | s′ ∈ SM, Gi(s′) = Gi(s)}.

We can limit exploration with respect to state groupings G1, . . . , Gn by using state-
based expressions the yield the desired number of representatives of each group. Let
B1, . . . , Bi be state-based bound expressions which evaluate to a non-negative integer
for each i, 1 ≤ i ≤ n.

Pruning based on state-grouping bounds can be interpreted in the context of the
bounded search algorithm shown in Figure 4, if the IncludeTarget(s, a, t) predicate
is defined as ∃(i ∈ {1 . . . k})#([t]Gi ∩ included) < Bi(t). In other words, a newly
visited target state is included if there exists at least one state grouping of the target
state whose bound has not yet been reached. Note that the effect of pruning with state
grouping depends on the strategy used by the exploration algorithm, i.e. the order in
which states and transitions are explored.

Implementation. Spec Explorer visualizes a state grouping G of model automaton
M as a graph. The nodes of the graph are elements of S /G. Arc a is shown between
G(s) and G(t) if (s, a, t) ∈ δM .

Figure 3 is a drawing produced by Spec Explorer using this technique.

Example 9 Recall the model automaton for the Chat sample in Figure 2. Here, after
two clients have been constructed, two different orders in which the clients enter the
session, as well as two different orders in which clients send the message "hi" are
represented. We might want to abstract from these symmetries for the testing problem
at hand. This can be achieved by providing a state grouping expression which abstracts
from the object identities of the clients:

Bag{c in enumof(Client); <c.entered,Bag{<s,m> in c.unreceivedMsgs; m}>}

In the resulting model automaton, the scenarios where clients enter in different order
and send messages in different order are not distinguished. Note that with n clients
there would be n! many orders that are avoided with the grouping. The use of groupings
has sometimes an effect similar to partial order reduction in model-checking.

5 Test generation

Model based test generation and test execution are two closely related processes. In one
extreme case, which is also the traditional view on test generation, tests are generated
in advance from a given specification or model where the purpose of the generated tests
is either to provide some kind of coverage of the state space, to reach a state satisfying
some particular property, or to generate random walks in the state space. We call this
offline testing since test execution is a secondary process that takes the pregenerated
tests and runs them against an implementation under test to find discrepencies between
the behavior of the system under test and the predicted behavior. Tests may include
aspects of expected behavior such as expected results, or may be intended just to drive
the system under test, with the validation part done separately during test execution. In
another extreme, both processes are intertwined into a single process where tests are

19



generated on-the-fly as testing progresses. We call this mode of testing online testing,
or on-the-fly testing.

In the testing framework presented here, both the online case and the offline case
are viewed as special cases of a general testing process in the following sense. In the
offline case the input to the test execution engine (dicussed in Section 6) is a test suite
in form of a model automaton that is pregenerated from the model program. In the
online case the input to the test execution engine is a dynamic unfolding of the model
program itself, i.e., the test suite has not been explicitly precomputed.

5.1 Test suites an test cases

Let M be a finitization of the automaton MP of the model program P; M has been com-
puted using techniques described in Section 4. Recall that M is a finite sub-automaton
of MP. A test suite is just another automaton T of a particular kind that has been pro-
duced by a traversal of M as discussed in Section 5.2. A path of T from s1 to sn is a
sequence of states (s1, s2, . . . , sn) in T such that there is a transition from si to si+1 in
T.

Definition 4 A test suite generated from an automaton M is an automaton T such that:

1. The states in T may use new state variables called test variables, i.e. VM ⊆ VT .

2. The set of action methods MT of T contains a new controllable action (method)
Observe of arity 0 and a new observable action (method) Timeout of arity 0 that
are not in ΣM . Observe and Timeout are called test actions and corresponding
transitions in T are called test transitions. For any test transition δT(s, a) = t,
s�ΣM = t�ΣM .

3. The reduction of T to ΣM is a sub-automaton of M, i.e. T�ΣM ⊆ M.

4. An accepting state is reachable from every state in ST .

5. For all non-terminal states s ∈ ST , either

(a) s is active: CtrlT(s) �= ∅ and ObsT(s) = ∅, or

(b) s is passive: ObsT(s) �= ∅ and CtrlT(s) = ∅.

The target state of a transition is passive if and only if it is an Observe-transition.

6. For all transitions δT(a, s) = t, there is no path in T from t to s.

By a test case in T we mean the sub-automaton of T that includes a single initial state
of T and is closed under δT . Given a state s ∈ ST , s�ΣM is called the corresponding
state of M.

Here is an intuitive explanation for each of the conditions: 1) The use of test variables
makes it possible to represent traversals of M, i.e. to record history that distinguishes
different occurrences of corresponding states in M. 2) The Observe action encodes the
decision to wait for an observable action. The Timeout action encodes that no other

20



observable action happened. Test actions are not allowed to alter the corresponding
state of M. 3) For all states s ∈ ST , all properties of the corresponding state of M
carry over to s. Typically, there may be several initial states in T; all test cases start in
the corresponding initial state of M. Moreover, each transition in T, other than a test
transition, must correspond to a transition in M. Note that the source and the target of
any test transition must correspond to the same state in SM. 4) It must be possible to end
each test case in an accepting state. In particular, each terminal state must correspond
to accepting state of M. 5) The strategy of a test, whether to be passive and expect an
observable action or to be active and invoke a controllable action is made explicit by
the Observe action. If several controllable actions are possible in a given active state,
one is chosen randomly. 6) The test suite does not loop, i.e., T is a directed asyclic
graph (dag). This guarantees termination of a test, either due to a conformance failure
or due to reaching a terminal accepting state.

The distinction between a test suite and a single test case will only be relevant
during test execution, when the distiction is irrelevant we say that T is a test. Note that
if M itself satisfies all these properties, M can be considered as a test (that is a single
test case because M has a single initial state). A test T is control deterministic if for all
active states s ∈ ST , CtrlT(s) is a singleton set. A test T is observationally deterministic
if for all passive states s ∈ ST , ObsT(s) is a singleton set. A test is deterministic if it is
both control deterministic and observationally deterministic.

Given a test T and an active state s ∈ ST , we write T(s) for a choice of an action
a ∈ CtrlT(s).

Implementation. In Spec Explorer tests are represented explicitly in the offline case
as sets of action sequences called test segments. Test segments are linked together
to encode branching with respect to observable actions. In a deterministic test, the
segments correspond to test sequences in the traditional sense. Some segments may
be used multiple times, there is an additional test variable that records the number of
times each segment has been used to guarantee termination of test execution.

Example 10 Consider the following model program P with M = {F,G,H} where all
action methods are controllable and have arity 0, and V = {mode}.

enum Mode = {A,B,C}
Mode mode = A;
void F() requires mode == A {mode = B;}
void G() requires mode == B {mode = C;}
void H() requires mode == B {mode = C;}

Suppose that the accepting state condition is that mode is C. Consider also a model
program P′ that is P extended with an action I that takes the model back to its initial
state:

void I() requires mode == C {mode = A;}

The full exploration of P (P ′) yields a finite automaton M = MP (M′ = PP′) shown in
Figure 5.

21



M
A B C

F G

H

T
1,A 1,B 1,C

F G
2,A 2,B 2,C

F

H

M′

A B C
F G

H

I
T′

1,A 1,B 1,C
F G

2,A 2,B 2,C
I F

H

Figure 5: Automaton M (M ′) for the model program P (P ′) in Example 10; T is a test
for M and M′; T ′ is a test for M′.

States of M are denoted by the value of mode. A deterministic test T for M, as
illustrated in Figure 5, uses an additional state variable, say n, that represents the “test
case number” (similarly for T ′). Each state of T is labeled by the pair (n,mode). In
Spec Explorer the test T is represented by the action sequences (F,G) and (F,H). Note
that M itself is a test for M, where M(B) is a random choice of G or H.

Each m ∈ M with formal input parameters x is associated in Spec Explorer with a
positive real valued state based expression Weightm[x] whose value by default is 1. The
weight of an action a = m(v)/w in a state s is given by Weightm[v]. A random choice
of an action a ∈ CtrlT(s) in an active state s has probability

WeightsT(a)∑
b∈CtrlT (s) WeightsT(b)

.

5.2 Traversal algorithms

Given M, a traversal algorithm produces a test suite T for M, for a particular test pur-
pose. A test purpose might be to reach some state satisfying a particular condition, to
generate a transition coverage of M, or to just produce a set of random walks. There
is extensive literature on different traversal algorithms from deterministic finite state
machines [27], that produce test suites in form of test sequences. When dealing with
non-deterministic systems, the game view of testing was initially proposed in [3] and
is discussed at length in [37].

In the following we discuss the main definitions of test purposes used in our frame-
work. The definitions can be analyzed separately for control determinisitic and control
non-determinisitic (stochastic) tests. For ease of presentation, we limit the discussion
to control deterministic tests. We introduce first the following notion.

Definition 5 An alternating path P of T starting from s is a tree with root s:

• P has no sub-trees and is called a leaf, or

• P has, for each state t ∈ {δT(s, a) | a ∈ ActsT(s)} an immediate sub-tree that is
an alternating path of T starting from t.

In the case when T is deterministic, any alternating path is also a path and vice versa.
The difference arises in the presence of observational non-determinism. Intuitively, an
alternating path takes into account all the possible observable actions in a passive state,

22



whereas a path is just a branch of some alternating path. We say that an alternating
path P reaches a set S of states if each leaf of P is in S.

Definition 6 Let T be a test for M.

1. Given a subset S ⊆ SM , T covers S if S ⊆ ST�ΣM .

2. T covers all transitions of M if T�ΣM = M.

3. Given a subset S ⊆ SM, T can reach S if there is a path from some initial state of
T to a state t such that t�ΣM ∈ S.

4. Given a subset S ⊆ SM, T is guaranteed to reach S if, for some initial state s of
T, there is an alternating path of T from s to a state t such that t�ΣM ∈ S.

5. Given a grouping G for M, T covers G, if G(SM) = G(ST�ΣM).

For active tests, the definitions are more or less standard, and execution of a test
case produces the given coverage. In the case of reactive systems with observable ac-
tions, assumptions have to be made about fairness and the probabilities of the observ-
able actions. In the general case, we have extended the Chinese postman tour algorithm
to non-deterministic systems. For alternating reachability a version of Dijkstra’s short-
est path can be extended to alternating paths, that is used, if possible, to generate tests
that are guaranteed to reach a a set of states. Both algorithms are discussed in [28]. For
computing test cases that optimize the expected cost, where the system under test is
viewed as nature, algorithms from Markov decision process theory can be adapted [9].

Implementation In Spec Explorer, the algorithms discussed in [28] have been im-
plemented for the purposes of reaching a set of states and for state and transition cover-
age. Also in Spec Explorer, the desired set of states is always specified by a state based
expression. Each action is associated with a cost and a weight using a state based ex-
pression as well. Weights are used to calculate action probabilities. Spec explorer uses
the value iteration algorithm for negative Markov decision problems, that is discussed
in [9], to generate tests that optimize the expected cost where the observable actions
are given probabilities.

For certain traversal algorithms in Spec Explorer, such as a random walks, the
tests are limited to a maximum number of steps. Once the maximum number has
been reached the test continues with a shortest path to an accepting state. For other
test purposes, such as transition coverage, one may need to reexceute some of the test
segments in order to observe different observable actions from the same underlying
state. In such cases, there is a limit on the number of tries related to each segment
that always limits each test to a finite number of steps. In those cases, the tests are not
explicitly represented as automata, but implicitly by a program that produces the tests
dynamically (during test execution) from the segments generated from M.

Example 11 Consider M in Example 10. The test T for M that is illustrated in Figure 5
covers all transitions of M.

23



5.3 Online test generation

Rather than using pregenerated tests, in online testing or on-the-fly testing, test cases
are created dynamically as testing proceeds. Online testing uses to the model program
“as is”. The online technique was motivated by problems that we observed while test-
ing large-scale commercial systems; it has been used in an industrial setting to test
operating system components and Web service infrastructure.

We provide here a high level description of the basic OTF (on-the-fly) algorithm [35]
as a transformation of M. Given a model program P, let M = MP. OTF is a transfor-
mation of M that given a desired number of test cases n and a desired number of steps
k in each test case, produces a test suite T for M. The OTF transformation is done
lazily during test execution. We present here the mathematical definition of T as a
non-deterministic unfolding of M, where the choices of observable actions reflect the
observable actions that take place during test execution. The choices of controllable
actions are random selections of actions made by the OTF algorithm. It is assumed that
an accepting state is reachable from every state of M.

T has the test variables TestCaseNr, StepNr that hold integer values, and a Boolean
test variable active. OTF produces test cases Ti with TestCaseNr = i for 1 ≤ i ≤ n.

Each Ti is an unfolding of M produced by the following non-deterministic algo-
rithm. Consider a fixed Ti. Let s0 be the initial state of M. We let s denote the current
state of M. Initially s = s0, StepNr = 0, and active = true.

The following steps are repeated first until StepNr = k, or s is a terminal state, and
after that until s is an accepting state.

1. Assume active = true. If CtrlM(s) �= ∅ and ObsM(s) �= ∅ choose randomly to
do either either (1a) or (1b), else if CtrlM(s) �= ∅ do (1a), otherwise do (1b).

(a) Choose randomly a controllable action a ∈ CtrlM(s), let t = δM(a, s),
and let a be the only action enabled in the current state and let StepNr :=
StepNr + 1, active := true, s := t.

(b) Let Observe be the only action enabled in the current state and switch to
passive mode active := false.

2. Assume active = false. All actions in ObsM(s) and Timeout are enabled in the
current state, no controllable actions are enabled. Choose non-deterministically
an action a ∈ ObsM(s) ∪ {Timeout}, let StepNr := StepNr + 1, active := true,
and if a �= Timeout let s := δM(a, s).

A single test case in T is formally an unfolding of M from the initial state in form
of an alternating path from the initial state, all of whose leaves are accepting states and
either the length of each branch is at least k, and ends in a first encounter of an accepting
state, or the length of the branch is less than k and ends in a terminal accepting state.
Since T is created during execution, only a single path is created for each test case that
includes the actual observable actions that happened.

Implementation The implementaion of OTF in Spec Explorer uses the model pro-
gram P. Action weights are used in the manner explained in Example 10, to select

24



controllable actions from among a set of actions for which parameters have been gen-
erated from state based parameter generators. Besides state based weights one can also
associate decrementing weights with action methods. Then the likelihood of selection
decreases with the number of times a method has previously been used, i.e. the weight
expression depends on the test variables. The OTF algorithm is dicussed in more detail
in [34, 35].

6 Test execution

We discuss here the conformance relation that is used during testing. The testing
process assumes that the implementation under test is encapsulated in an observation-
ally complete “wrapper”, that is discussed first. This is needed in order to be able to
guarantee termination of test execution. We then discuss how object bindings between
the implementation and the model world are maintained and how these bindings affect
the conformance relation. Next, the conformance relation is defined formally as an ex-
tension of alternating simulation. Finally, we discuss how action bindings are checked
and how the conformance engine works.

6.1 Observational completness of implementation under test

The actual implementation under test may be a distributed system consisting of sub-
systems, a (multithreaded) API (application programmers interface), a GUI (graphical
user interface), etc. We think of the behavior of the IUT (implementation under test) as
an automaton I that provides an interleaved view of the behavior of the subsystems if
there are several of them. The implementation uses the same set of function symbols F
and action methods M as the model. Values are interpreted in the same universeU . For
testability, the IUT is assumed to have a wrapper N that provides an observationally
complete view of the actual behavior in the following sense:

1. The action method vocabulary MN of N is M extended with the test actions
Observe and Timeout used in tests.

2. The reduct of N to ΣMIUT is MIUT.

3. For each state s ∈ SN , Observe ∈ CtrlN(s) and, given t = δN(s, Observe),
ObsN(t) �= ∅, and ObsI(t) ⊆ ObsN(t) ⊆ ObsI(t) ∪ {Timeout}.

4. Only Observe transitions to a state of N where observable actions are enabled.

Implementation. The timeout action is approximated by using a state based expres-
sion that determines the amount of time to wait for observable actions from I to occur.
In general, the timeout may not necessarily indicate absence of other actions, e.g., if
the waiting time is too short.

25



6.2 Object bindings

The universe U includes an infinite sub-universeO of objects. Each object o ∈ O has a
name and any two distinct object names in a given automaton denote distinct objects in
O. An automaton M and an automaton N may use distinct objects in their actions. We
want to compare the executions of M and N modulo a partial isomorphism from the set
of objects used in M to the set of objects used in N. The isomorphism is partial in the
sense that it only relates objects that have been encountered in actions. The isomor-
phism between objects extends naturally to arbitrary values in the so called background
universe that includes maps, sets, sequences, etc. The theory of background is worked
out in detail in [8], where objects are called reserve elements.

By an object binding function σ from M to N, we mean a partial injective (one-
to-one) function over O that induces a partial isomorphism, also denoted by σ, from
actions in M to actions in N. Given an action a of M, we write σ(a) or aσ for the
corresponding action in N. Given that σ(o) = o ′, we say that o is bound to o′ in σ and
denote it by o �→σ o′; we omit σ and write o �→ o′ when σ is clear from the context.

6.3 Refinement of model automata

The refinement relation from a model P1 to an implementation P2 is formalized as the
refinement relation between the underlying automata

Mi = (Sinit
i , Si, Sacc

i , Obsi, Ctrli, δi), for i ∈ {1, 2}.

The following definitions of alternating simulation and refinement for model au-
tomata extend the corresponding notions of interface automata as defined in [14]. We
denote the universe of finite object binding functions by Bind.

Definition 7 An alternating simulation from M1 to M2 is a relation ρ ⊂ S1×Bind×S2

such that, for all (s, σ, t) ∈ ρ,

1. For each action a ∈ Ctrl1(s), there is a smallest extension θ of σ such that
aθ ∈ Ctrl2(t) and (δ1(s, a), θ, δ2(t, aθ)) ∈ ρ;

2. For each action a ∈ Obs2(t), there is a smallest extension θ of σ such that
aθ−1 ∈ Obs1(s) and (δ1(s, aθ−1), θ, δ2(t, a)) ∈ ρ.

The intuition behind alternating simulation is as follows. Consider fixed model
and implementation states. The first condition ensures that every controllable action
enabled in the model must also be enabled in the implementation modulo object bind-
ings, and that the alternating simulation relation must hold again after transitioning to
the target states, where the set of object bindings may have been extended for objects
that have not been encoutered before. The second condition is symmetrical for observ-
able actions, going in the opposite direction. The role of object bindings is important;
if a model object is bound to an implementation object then the same model object can-
not subsequently be bound to a different implementation object and vice versa, since
that would violate injectivity of an object binding function.

26



In the special case when no objects are used, it is easy to see that the projection of ρ
to states is an alternating simulation from M1 to M2 viewed as interface automata, pro-
vided that controllable actions are considered as input actions and observable actions
are considered as output actions [14]. In general though, alternating simulation with
object bindings cannot be reduced to alternating simulation because object bindings
are not known in advance and may be different along different paths of execution; this
is illustrated with the following example.

Example 12 Consider the chat example. Let M1 = MChat and let M2 be the automaton
of a chat system implementation. Consider the following sequence of transitions in M 1:

(s0,Create()/c1, s1), (s1,Create()/c2, s2)

In other words, two clients are created one after another. Assume these are the only
controllable actions enabled in s0 and s1. The same method call in the initial state of
the implementation, say t0 would result in different objects being created each time
Create is invoked. For example, the following transitions could be possible in the
implementation:

(t0,Create()/d1, t1), (t1,Create()/d2, t2),
(t0,Create()/e1, t3), (t3,Create()/e2, t4), . . .

There is an alternating simulation from M1 to M2 where c1 is bound to d1 and c2 is
bound to d2 along one possible path, or where c1 is bound to e1 and c2 is bound to
e2 along another path.

Definition 8 A refinement from M1 to M2 is an alternating simulation from M1 to M2

such that Sinit
1 × {∅} × Sinit

2 ⊂ ρ.

A refinement relation is essentially an alternating simulation relation that must hold
from all initial states (with no initial object bindings). We say that M1 specifies M2,
or M2 conforms to or is specified by M1, if there exists a refinement from M1 to M2.
Again, it is easy to see that when there are no objects then the refinement relation re-
duces essentially to refinement of interface automata as defined in [14]. The following
example shows a case when refinement does not hold due to a conflict with object
bindings.

Example 13 Let M1 be as in Example 12, and let M3 be the automaton of a buggy im-
plementation that in successive calls of Create returns the same object that is created
initially after the first call. For example the transitions of M3, where t0 is the initial
state, could be:

(t0,Create()/d1, t1), (t1,Create()/d1, t2)

Let us try to build up a refinement relation ρ iteratively following definitions 7 and 8.
Initially (s0, ∅, t0) ∈ ρ. After the first iteration,

(s0, ∅, t0), (s1, {c1 �→ d1}, t1) ∈ ρ.

27



After another invocation of Create from s1 there are two distinct objects c1 and c2
in s2. It is not possible to further extend ρ, since one would need to extend {c1 �→ d1}
with the bindingc2 �→ d1 that would identify two distinct model objects with the same
implementation object.

6.4 Checking enabledness of actions

We describe in more detail, given a model automaton M = MP and an implementation
automaton N, a procedure for deciding if an action a of M and an action b of M can
be bound by extending a given set of object bindings σ. It is assumed here that the
signatures of M and N are such that F = FM = FN and M = MM = MN .

Implementation. Spec Explorer provides a mechanism for the user to bind the action
methods in the model to methods with matching signatures in the IUT. Abstractly, two
methods that are bound correspond to the same element in M.

In the following we describe how, in a given model state s with a given set σ of
object bindings, a controllable action a = m(v)/w is chosen in M and how its en-
abledness in N is validated.

1. Input parameters v for m are generated in such a way that the precondition
Prem[v] holds in s. All object symbols in v must already be bound to correspond-
ing implementation objects, otherwise a can not be bound to any implementation
action.

2. The method call m(v) is executed in the model and the method call m(vσ−1) is
executed in the implementation.

3. The method call in the model produces output parameters w and the method call
in the implementation produces output parameters w ′. Values in w and w′ are
compared for equality and σ is extended with new bindings, if an extension is
possible without violating injectivity, otherwise the actions cannot be bound.

Conversely, in order to check enabledness of an observable implementation action
a = m(v)/w in the model the following steps are taken.

1. A binding error occurs if there is an implementation object in v that is not in σ
and a corresponding model object cannot be created. If σ can be extended to σ ′,
Prem[vσ′] is checked in s. If the precondition does not hold, a is not enabled in
the model.

2. The method call m(vσ ′) is executed in the model yielding output parameters w ′.

3. This may yield a conformance failure if either σ ′ cannot be extended or if the
values do not match.

Example 14 Calling a controllable action a in the model may return the value 1, but
IUT throws an exception, resulting in a conformance failure. A binding violation oc-
curs if for example the implementation returns an object that is already bound to a
model object, but the model returns a new object or an object that is bound to a differ-
ent implementation object.

28



6.5 Conformance automaton

The conformance automaton is a machine that takes a model M, a test T and an obser-
vationally complete implementation wrapper N. It executes each test in T against N.
The conformance automaton keeps track of the set of object bindings. The following
variables are used:

• A variable verdict, that may take one of the values Undecided, Succeeded, Failed,
TimedOut, or Inconclusive.

• A set of object bindings β that is initially empty.

• The current state of T, sT .

• The current state of N, sN .

For each initial state s0 of T, the following is done. Let sT = s0. Let sN be the initial
state of N. The following steps are repeated while verdict = Undecided.

Observe: Assume sT is passive. Observe an action b ∈ ObsN(sN) and let sN :=
δN(b, sN). There are two cases:

1. If β can be extended to β ′ such that a = bβ ′−1 ∈ ObsM(sT) then β := β′.

(a) If a ∈ ObsT(sT) then sT := δT(a, sT).
(b) Otherwise verdict := Inconclusive.

2. Otherwise, if a = Timeout then verdict := TimedOut else verdict :=
Failed.

Control: Assume sT is active. Let a = T(sT) and let sT := δT(a, sT). There are two
cases:

1. If β can be extended to β ′ such that b = aβ ′ ∈ CtrlN(sN) then β := β′ and
sN := δN(b, sN).

2. Otherwise verdict := Failed.

Finish: Assume sT is terminal. Let verdict := Succeeded.

An inconclusive verdict corresponds to the case when the test case has elimi-
nated some possible observable actions, i.e., an observable action happens but the test
case does not know how to proceed, although the observable action is enabled in the
model. One may consider a class of complete tests T such that for each passive state s,
ObsT(sT) ⊇ ObsM(sT), to avoid inconclusive verdicts. The test produced by the OTF
transformation is complete in this sense. The TimedOut verdict is a violation of the
specification from T to N but not a violation of the specification from M to I. However,
if the verdict is Failed then I does not conform to M, which follows from the assump-
tion that the reduct of T to ΣM is a sub-automaton of M and that the reduct of N to Σ I

is I.

29



Implementation. The inconclusive verdict is currently not implemented in Spec Ex-
plorer; it is the testers responsibility to guarantee that the test is complete or to tolerate
a failure verdict also for inconclusive tests.

The implementation of the conformance automaton does not know the full state
of N. The description given above is an abstract view of the behavior. In particular,
the choice of an observable action a in ObsN(sN) corresponds to the implementation
wrapper producing an action a, which is guaranteed by observational completness of N.

7 Related work

Extension of the FSM-based testing theory to nondeterministic and probabilistic FSMs
received attention some time ago [21, 29, 38]. The use of games for testing is pio-
neered in [3]. A recent overview of using games in testing is given in [37]. Games
have been studied extensively during the past years to solve various control and verifi-
cation problems for open systems. A comprehensive overview on this subject is given
in [14], where the game approach is proposed as a general framework for dealing with
system refinement and composition. The paper [14] was influential in our work for for-
mulating the testing problem by using alternating simulation of automata. The notion
of alternating simulation was first introduced in [4].

Model-based testing allows one to test a software system using a specification
(a.k.a. a model) of the system under test [6]. There are other model-based testing
tools [5, 24, 25, 26, 32]. To the best of our knowledge, Spec Explorer is the first tool
to support the game approach to testing. Our models are Abstract State Machines [22].
In Spec Explorer, the user writes models in AsmL [23] or in Spec# [7].

The basic idea of online or on-the-fly testing is not new. It has been introduced in
the context of labeled transition systems using ioco (input-output conformance) the-
ory [10, 31, 33] and has been implemented in the TorX tool [32]. Ioco theory is a
formal testing approach based on labeled transition systems (that are sometimes also
called I/O automata). An extension of ioco theory to symbolic transition systems has
recently been proposed in [16].

The main difference between alternating simulation and ioco is that the system un-
der test is required to be input-enabled in ioco (inputs are controllable actions), whereas
alternating smulation does not require this since enabledness of actions is determined
dynamically and is symmetric in both ways. In our context it is often unnatural to as-
sume input completeness of the system under test, e.g., when dealing with objects that
have not yet been created. An action on an object can only be enabled when the object
actually exists in a given state. Refinement of model automata also allows the view of
testing as a game, and one can separate the concerns of the conformance relation from
how you test through different test strategies that are encoded in test suites.

There are other important differences between ioco and our approach. In ioco the-
ory, tests can in general terminate in arbitrary states, and accepting states are not used
to terminate tests. In ioco, quiescence is used to represent the absence of observable ac-
tions in a given state, and quiescence is itself considered as an action. Timeouts in Spec
Explorer are essentially used to model special observable actions that switch the tester
from passive to active mode and in that sense influence the action selection strategies

30



in tests. Typically a timeout is enabled in a passive state where also other observable
actions are enabled; thus timeouts do not, in general, represent absence of other observ-
able actions. In our approach, states are full first-order structures from mathematical
logic. The update semantics of an action method is given by an abstract state machine
(ASM) [22]. The ASM framework provides a solid mathematical foundation to deal
with arbitrarily complex states. In particular, we can use state-based expressions to
specify action weights, action parameters, and other configurations for test generation.
We can also reason about dynamically created object instances, which is essential in
testing object-oriented systems. Support for dynamic object graphs is also present in
the Agedis tools [24].

Generating test cases from finite model automata is studied in [9, 28]. Some of the
algorithms reduce to solving negative Markov decision problems with the total reward
criterion, in particular using value iteration [30], and the result that linear program-
ming yields a unique optimal solution for negative Markov decision problems after
eliminating vertices from which the target state is not reachable [13, Theorem 9].

The predecessor of Spec Explorer was the AsmLT tool [6]. In AsmLT accepting
states and timeouts were not used. The use of state groupings was first studied in [18]
and extended in [11] to multiple groupings.

8 Conclusion

We have presented the concepts and foundations of Spec Explorer, a model-based
testing tool that provides a comprehensive solution for the testing of reactive object-
oriented software system. Based on an accessible and powerful modeling notation,
Spec#, Spec Explorer covers a broad range of problems and solutions in the domain,
including dynamic object creation, non-determinism and reactive behavior, model analy-
sis, offline and online testing and automatic harnessing.

Being used on a daily basis internally at Microsoft, user feedback indicates that
improvements to the approach are necessary. We identify various areas below, some of
which we are tackling in the design and implementation of the next generation of the
tool.

Scenario control. Scenario control is the major issue where improvements are needed.
Currently, scenario control is realized by parameter generators, state filters, method
restriction, state grouping, and so on. For some occasions, describing scenario
control can be more challenging than describing the functionality of the test or-
acle. This is partly because of the lack of adequate notations for scenario con-
trol, and also because fragments of the scenario control are spread over various
places in the model and configuration dialog settings, making it hard to under-
stand which scenarios are captured.

It would be desirable to centralize all scenario control related information as one
“aspect” in a single document, which can be reviewed in isolation. Moreover,
scenario-oriented notations like use cases would simplify formulating certain
kind of scenarios.

31



We are currently working on an extension of our approach that allows the user to
write scenarios in an arbitrary modeling style, such as Abstract State Machines or
Use Cases. The scenario control can be seen as an independent model, which can
be reviewed and explored on its own. Model composition combines the scenario
control model with the functional model.

Model Composition. Another important issue identified by our users is model com-
position. At Microsoft, as is typical in the industry as a whole, product groups
are usually organized in small feature teams, where one developer and one tester
are responsible for a particular feature (part of the full functionality of a product).
In this environment it must be possible to model, explore and test features inde-
pendently. However, for integration testing, the features also need to be tested
together. To that end, Spec Explorer users would like to be able to compose
compound models from existing models. For the next generation of the tool, we
view the scenario control problem as a special instance of the model composition
problem.

Symbolic exploration. The current Spec Explorer tool requires the use of ground data
in parameters provided for actions. This restriction is sometimes artificial and
required only by underlying technical constraints of the tool. Consider the Chat
example from earlier in the chapter: it does not really matter which data is send
by a client, but only that this same data eventually arrives at the other clients. For
the next generation of the tool, we are therefore generalizing exploration to the
symbolic case [19]. We will use an exploration infrastructure that connects to an
underlying constraint solver.

Measuring coverage and testing success. One major problem of model-based test-
ing is developing adequate coverage and test sufficiency metrics. Coverage be-
comes particularly difficult in the case of internal non-determinism in the imple-
mentation: how can behavioral coverage be achieved for observable actions of
the implementation? Testing success is often measured in industry by rates of
bug detection; however, model-based testing might show lower bug counts since
bugs can be discovered during modeling and resolved before any test is ever run.

Failure analysis and reproduction cases. Understanding the cause of a failure after
a long test run is related to a similar problem in the context of model-checking.
There might be a shorter run that also leads to the error and which should be
used as the reproduction case passed to the developer. Moreover, in the case
of non-deterministic systems, it is desirable to have a reproduction sample that
discovers the error reliably with every run. Generating reproduction cases is
actually closely related to the problem of online testing, but here we want to
drive the IUT into a certain state where a particular error can be discovered.
Some of these problems can be recast as problems of test strategy generation
in the game-based sense. We are currently extending the work started in [9]
to online testing, using Markov decision theory for optimal strategy generation
from finite approximations of model automata. For online testing, we are also
investigating the use of model-based learning algorithms [36].

32



Continuing testing after failures. If a failure is detected by model-based testing –
offline or online – testing can usually not be continued from the failing state,
since the model’s behavior is not defined for that case. In practice, however, the
time from when a bug is discovered and when it is fixed might be rather long, and
it should be possible to continue testing even in the presence of bugs. Current
practice is to modify scenarios to deal with this problem, but there could be more
systematic support for dealing with this standard situation.

In this chapter we have provided a detailed description of the foundations of the model-
based testing tool Spec Explorer. The tool is publicly avaliable from [1]. The develop-
ment of the features in the tool have in many respects been driven by demands of users
within Microsoft. Model-based testing is gaining importance in the software industry
as systems are getting more complex and distributed, and require formal specifications
for interoperability. Spec Explorer has shown that model-based testing can be very
useful and can be integrated into the software development process. There are several
interesting directions for further research in which the technology can be improved.
Some of the main directions are compositional modeling, improved online algorithms,
and symbolic execution.

References

[1] Spec Explorer tool. http://research.microsoft.com/specexplorer, public release
January 2005, updated release October 2006.

[2] Spec# tool. http://research.microsoft.com/specsharp, public release March 2005.

[3] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nondeter-
ministic and probabilistic machines. In Proc. 27th Ann. ACM Symp. Theory of
Computing, pages 363–372, 1995.

[4] R. Alur, T. A. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement
relations. In Proceedings of the Ninth International Conference on Concurrency
Theory (CONCUR’98), volume 1466 of LNCS, pages 163–178, 1998.

[5] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
G. Rosu, and W. Visser. Experiments with test case generation and runtime
analysis. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State
Machines 2003, volume 2589 of LNCS, pages 87–107. Springer, 2003.

[6] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Towards a tool environment for model-based testing with AsmL.
In Petrenko and Ulrich, editors, Formal Approaches to Software Testing, FATES
2003, volume 2931 of LNCS, pages 264–280. Springer, 2003.

33



[7] M. Barnett, R. Leino, and W. Schulte. The Spec# programming system: An
overview. In M. Huisman, editor, Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices: International Workshop, CASSIS 2004, volume
3362 of LNCS, pages 49–69. Springer, 2005.

[8] A. Blass and Y. Gurevich. Background, reserve, and Gandy machines. In Com-
puter Science Logic: 14th International Workshop, CSL 2000, volume 1862 of
LNCS, pages 1–17, 2000.

[9] A. Blass, Y. Gurevich, L. Nachmanson, and M. Veanes. Play to test. In Formal
Approaches to Software Testing, FATES 2005, volume 3997 of LNCS, pages 32–
46. Springer, 2006.

[10] E. Brinksma and J. Tretmans. Testing Transition Systems: An Annotated Bibli-
ography. In Summer School MOVEP’2k – Modelling and Verification of Parallel
Processes, volume 2067 of LNCS, pages 187–193. Springer, 2001.

[11] C. Campbell and M. Veanes. State exploration with multiple state groupings.
In D. Beauquier, E. Börger, and A. Slissenko, editors, 12th International Work-
shop on Abstract State Machines, ASM’05, March 8–11, 2005, Laboratory of
Algorithms, Complexity and Logic, University Paris 12 – Val de Marne, Créteil,
France, pages 119–130, 2005.

[12] C. Campbell, M. Veanes, J. Huo, and A. Petrenko. Multiplexing of partially
ordered events. In F. Khendek and R. Dssouli, editors, 17th IFIP International
Conference on Testing of Communicating Systems, TestCom 2005, volume 3502
of LNCS, pages 97–110. Springer, 2005.

[13] L. de Alfaro. Computing minimum and maximum reachability times in prob-
abilistic systems. In International Conference on Concurrency Theory, volume
1664 of LNCS, pages 66–81. Springer, 1999.

[14] L. de Alfaro. Game models for open systems. In N. Dershowitz, editor, Verifica-
tion: Theory and Practice: Essays Dedicated to Zohar Manna on the Occasion
of his 64th Birthday, volume 2772 of LNCS, pages 269–289. Springer, 2004.

[15] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the 8th
European Software Engineering Conference and the 9th ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE), pages 109–120.
ACM, 2001.

[16] L. Franzen, J. Tretmans, and T. Willemse. Test generation based on symbolic
specifications. In J. Grabowski and B. Nielsen, editors, Proceedings of the Work-
shop on Formal Approaches to Software Testing (FATES 2004), volume 3395 of
LNCS, pages 1–15. Springer, 2005.

[17] U. Glässer, Y. Gurevich, and M. Veanes. Abstract communication model for
distributed systems. IEEE Transactions on Software Engineering, 30(7):458–
472, July 2004.

34



[18] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state
machines from abstract state machines. In ISSTA’02, volume 27 of Software
Engineering Notes, pages 112–122. ACM, 2002.

[19] W. Grieskamp, N. Kicillof, and N. Tillmann. Action machines: a framework
for encoding and composing partial behaviors. International Journal of Software
Engineering and Knowledge Engineering, 16(5):705–726, 2006.

[20] W. Grieskamp, N. Tillmann, and M. Veanes. Instrumenting scenarios in a
model-driven development environment. Information and Software Technology,
46(15):1027–1036, 2004.

[21] S. Gujiwara and G. V. Bochman. Testing non-deterministic state machines with
fault-coverage. In J. Kroon, R. Heijunk, and E. Brinksma, editors, Protocol Test
Systems, pages 363–372, 1992.

[22] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Speci-
fication and Validation Methods, pages 9–36. Oxford University Press, 1995.

[23] Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL. Theoreti-
cal Computer Science, 343(3):370–412, 2005.

[24] A. Hartman and K. Nagin. Model driven testing - AGEDIS architecture interfaces
and tools. In 1st European Conference on Model Driven Software Engineering,
pages 1–11, Nuremberg, Germany, December 2003.

[25] C. Jard and T. Jéron. TGV: theory, principles and algorithms. In The Sixth World
Conference on Integrated Design and Process Technology, IDPT’02, Pasadena,
California, June 2002.

[26] V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B. Bourdonov. UniTesK:
Model based testing in industrial practice. In 1st European Conference on Model
Driven Software Engineering, pages 55–63, Nuremberg, Germany, December
2003.

[27] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
– a survey. In Proceedings of the IEEE, volume 84, pages 1090–1123, Berlin,
August 1996. IEEE Computer Society Press.

[28] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Opti-
mal strategies for testing nondeterministic systems. In ISSTA’04, volume 29 of
Software Engineering Notes, pages 55–64. ACM, July 2004.

[29] A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Testing deterministic imple-
mentations from nondeterministic FSM specifications. In B. Baumgarten, H.-J.
Burkhardt, and A. Giessler, editors, IFIP TC6 9th International Workshop on
Testing of Communicating Systems, pages 125–140. Chapman & Hall, 1996.

[30] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, New York, 1994.

35



[31] J. Tretmans and A. Belinfante. Automatic testing with formal methods. In Eu-
roSTAR’99: 7th European Int. Conference on Software Testing, Analysis & Re-
view, Barcelona, Spain, November 8–12, 1999.

[32] J. Tretmans and E. Brinksma. TorX: Automated model based testing. In 1st Euro-
pean Conference on Model Driven Software Engineering, pages 31–43, Nurem-
berg, Germany, December 2003.

[33] M. van der Bij, A. Rensink, and J. Tretmans. Compositional testing with ioco.
In A. Petrenko and A. Ulrich, editors, Formal Approaches to Software Testing:
Third International Workshop, FATES 2003, volume 2931 of LNCS, pages 86–
100. Springer, 2004.

[34] M. Veanes, C. Campbell, W. Schulte, and P. Kohli. On-the-fly testing of reactive
systems. Technical Report MSR-TR-2005-03, Microsoft Research, January 2005.

[35] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model
programs. In ESEC/FSE-13: Proceedings of the 10th European software engi-
neering conference held jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 273–282. ACM, 2005.

[36] M. Veanes, P. Roy, and C. Campbell. Online testing with reinforcement learning.
In Formal Approaches to Software Testing and Runtime Verification, FATES/RV
2006, volume 4262 of LNCS, pages 240–253. Springer, 2006.

[37] M. Yannakakis. Testing, optimization, and games. In Proceedings of the Nine-
teenth Annual IEEE Symposium on Logic In Computer Science, LICS 2004, pages
78–88. IEEE Computer Society Press, 2004.

[38] W. Yi and K. G. Larsen. Testing probabilistic and nondeterministic processes. In
Testing and Verification XII, pages 347–61. North Holland, 1992.

36


