
Using Dynamic Symbolic Execution
to Improve Deductive Verification

Dries Vanoverberghe, Nikolaj Bjørner, Jonathan de Halleux, Wolfram Schulte,
and Nikolai Tillmann

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

{t-drivan�,nbjorner,jhalleux,schulte,nikolait}@microsoft.com

Abstract. One of the most challenging problems in deductive program verifica-
tion is to find inductive program invariants typically expressed using quantifiers.
With strong-enough invariants, existing provers can often prove that a program
satisfies its specification. However, provers by themselves do not find such in-
variants. We propose to automatically generate executable test cases from failed
proof attempts using dynamic symbolic execution by exploring program code as
well as contracts with quantifiers. A developer can analyze the test cases with a
traditional debugger to determine the cause of the error; the developer may then
correct the program or the contracts and repeat the process.

1 Introduction

Many modern specification and verification systems such as Spec# [3], JML [25] and so
forth, use a design-by-contract approach [27], where the specification language is typ-
ically an extension of the underlying programming language. The verification of these
contracts often uses verification condition generation (VCG). The verification condi-
tions are first-order logical formulas whose validity implies the correctness of the pro-
gram. The formulas are then fed to interactive or automatic theorem provers.

In practice, there are two limitations of this VCG and proving approach. First, most
program verification tools do not by themselves produce sufficiently strong contracts.
Such contracts need to be crafted or synthesized independently, usually by a human
being. Second, if the program verification tool fails to prove the desired properties, then
discovering the mismatch between the contracts and the code, or why the contracts were
not strong enough, remains a difficult task. In practice, the program verification tools
offer only little help.

Most of the above mentioned program verification tools employ an automated solver
to prove program properties. These solvers must typically be able to handle a combina-
tion of domains, such as integers, bit-vectors, arrays, heaps, and data-types, which are
often found in programming languages. In addition most interesting contracts involv-
ing functional correctness and the heap involve quantifiers, which solvers must reason
about, as well. Solvers, that combine various theories are called SMT (Satisfiability
Modulo Theories). Such solvers have recently gained a lot of attention, see for instance

� Permanent email address: Dries.Vanoverberghe@cs.kuleuven.be

K. Havelund, R. Majumdar, and J. Palsberg (Eds.): SPIN 2008, LNCS 5156, pp. 9–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 D. Vanoverberghe et al.

Simplify [16], CVC3 [4], Fx7 [28], Verifun [19], Yices [18], and Z3 [15]. To support
quantifiers, a commonly used technique for SMT solvers is to use pattern matching
to determine relevant quantifier instantiations. Pattern matching happens inside of the
solver on top of the generated verification condition. When a proof attempt fails, pin-
pointing the insufficient annotation within the context of the SMT solver is obscured by
the indirection from the program itself. To give good feedback to the developer in such
a case, the SMT solver should provide a human-readable counter-example, i.e. a model
of the failed proof attempt. However, producing (informative) models from quantified
formulas remains an open research challenge. Producing models for quantifier-free for-
mulas, is on the other hand easy and relatively well understood.

Symbolic execution [24] is a well-known technique to generate test cases. In partic-
ular, test cases that expose errors help a developer in debugging problems. Symbolic
execution analyzes individual execution traces, where each trace is characterized by a
path condition, which describes an equivalence class of test inputs. A constraint solver
is used to decide the feasibility of path conditions, and to obtain concrete test inputs as
representatives of individual execution paths. Note that constraints can also be solved by
SMT solvers with model generation capabilities. Recently symbolic execution has been
extended to deal with contracts, even contracts involving quantifiers over (sufficiently
small) finite domains [30].

In this paper, we propose an extension of symbolic execution for programs involving
contracts with quantifiers over very large, and potentially unbounded domains. This is
of benefit for debugging failed proof attempts. If a deductive proof fails due to insuf-
ficient quantified assertions, we use symbolic execution to generate concrete test cases
that exhibit mismatches between the program and its contracts with quantifiers. Quan-
tifiers are furthermore instantiated using symbolic values encountered during a set of
exhibited runs. In this setting, quantifier instantiation is limited to values supplied to or
produced by a symbolic execution. With a sufficient set of instances, we can derive test
cases that directly witness limitations of the auxiliary assertions. The SMT solver no
longer needs to handle these quantifiers.

In particular, we handle branch conditions with quantifiers as follows: When a branch
condition of the program involves an unbounded universal quantifier, we first recover
the quantified formula φ(x) (which must be embedded by the compiler into the code),
we introduce a Boolean variable t that represents whether the quantifier holds, and we
introduce a branch in the program over t. Conceptually, program execution forks at this
branch. If t = false, we introduce another additional test input c that represents the
bound variable, and explore the quantified formula until we find a c such that ¬φ(c),
If t = true, then we proceed with the program. Quantifier instantiations are identified
lazily using pattern matching over the symbolic trace.

An extended form of pattern matching, called E-matching [12], is used for instantiat-
ing quantifiers in SMT solvers. E-matching admits matching modulo a set of equalities.
We lift E-matching to combine run-time information with symbolic execution. To this
end, we use dynamic symbolic execution, which executes the program for particular
test inputs in order to obtain derived run-time values. Run-time values are used to de-
termine which symbolic terms may be equal. Thus, pattern matching is performed on the

Using Dynamic Symbolic Execution to Improve Deductive Verification 11

Algorithm 2.1. Dynamic symbolic execution

Set J := false intuitively, J is the set of already...
loop ...analyzed program inputs

Choose program input i such that ¬J(i) stop if no such i can be found
Output i
Execute P (i); record path condition C in particular, C(i) holds
Set J := J ∨ C

end loop

symbolic trace, where concrete run-time values are used to supply a set of alternative
views of values appearing in a trace.

We implemented a prototype of our approach as an extension to the dynamic sym-
bolic execution platform Pex [34,32] for .NET, which we develop at Microsoft Re-
search. Pex contains a complete symbolic interpreter for safe programs that run in the
.NET virtual machine. Pex uses Z3 [15,14] as a constraint solver, using Z3’s ability to
compute models for satisfiable constraint systems. Pex has been used within Microsoft
to test core .NET components developed at Microsoft. Pex is integrated with Microsoft
Visual Studio.

The rest of the paper is structured as follows: Section 2 gives an overview of dy-
namic symbolic execution. Section 3 walks through a simple example of how our ap-
proach generates test cases for a program with contracts involving quantifiers. Section 4
describes in detail how we extend dynamic symbolic execution to handle quantifiers.
Section 5 discusses related work. Section 6 concludes.

2 Dynamic Symbolic Execution

2.1 Introduction

Dynamic symbolic execution [22,5] is a variation of conventional static symbolic ex-
ecution [24]. Dynamic symbolic execution consists in executing the program, starting
with arbitrary inputs, while performing a symbolic execution in parallel to collect sym-
bolic constraints on inputs obtained from predicates in branch statements along the
execution. Then a constraint solver is used to compute variations of the previous inputs
in order to steer future program executions along different execution paths. In this way,
all execution paths will be exercised eventually.

Algorithm 2.1 shows the general dynamic symbolic execution algorithm.
The advantage of dynamic symbolic execution over static symbolic execution is that

the abstraction of execution paths can leverage observations from concrete executions,
and not all operations must be expressed and reasoned about symbolically. Using con-
crete observations for some values instead of fully symbolic representations leads to
an under-approximation of the set of feasible execution paths, which is appropriate for
testing. Such cases can be detected, e.g. when a function is called that is defined outside
of the scope of the analysis. Our tool reports them to the user.

12 D. Vanoverberghe et al.

2.2 Symbolic State Representation

In concrete execution, the program’s state is given by a mapping from program variables
to concrete values, such as 32 or 64-bit integers and heap-allocated (object) pointers.
In symbolic execution, the state is a mapping from program variables to terms built
over symbolic input values, together with a predicate over symbolic input values, the
so-called path condition.

The terms represent symbolically which computations were performed over the sym-
bolic inputs. For example, if x, y, z are the symbolic inputs for the program variables x,
y, z, then the statement

u = x * (y + z);

causes the program variable u to be mapped to the term x ∗ (y + z). If the concrete
inputs for x, y, z are 2, 3, and 4, respectively, then the concrete value of u will be 14.

The path condition is the conjunction of all the guards of all conditional branches that
were performed to reach a particular point in an execution trace. For example, when the
function

void foo(int x) {
if (x>0) {

int y = x*x;
if (y==0) {

// target
}

}
}

reaches the target, then the path condition consists of two conjuncts, (x > 0) and
(x ∗ x == 0). Note that the symbolic state is always expressed in terms of the sym-
bolic input values, that is why the value of the local variable y was expressed with the
symbolic input x.

2.3 Test Inputs and Non-deterministic Programs

Dynamic symbolic execution determines a set of concrete test inputs for a program. In
practice, this means that we determine parameter values for a designed top-level func-
tion. In addition to the immediate parameter values, our dynamic symbolic execution
platform Pex [34] allows the code-under-test to call the generic functionChoose in order
to obtain an additional test input. In C# syntax, the function has the following signature:

T Choose<T>();

Each invocation of this function along an execution trace provides the program with
a distinct additional symbolic test input. In the following, we will also refer to the
functions ChooseTruth and ChooseBoundVariable. They work just as Choose, and
their main purpose is to easily distinguish between different choices.

2.4 Making Basic Contracts Executable

Most design-by-contract languages support function pre-conditions and post-conditions,
class invariants and loop invariants. In the following, we describe how most contracts

Using Dynamic Symbolic Execution to Improve Deductive Verification 13

Program 2.1. Implementation of Assume and Assert in C# syntax

void Assume(bool b) {
if (!b) throw new AssumptionException();

}
void Assert(bool b) {

if (!b) throw new AssertionException();
}

can be turned into executable code using Assert and Assume. This code can then be
explored by symbolic execution.

As shown in Program 2.1, the Assume and Assert functions contain a conditional
branch over their Boolean parameter, and they throw an exception when the argument
is false. An AssumptionException is treated by the symbolic execution engine as
a filter: test inputs that cause this exception to be thrown are not shown to the user. An
AssertException indicates an error, since a mismatch between the program under
test and its contracts has been found. Test inputs that cause this exception are shown to
the user.

We reduce a class invariant to both a pre- and post-condition of each affected function
(see e.g. [27]), and a loop invariant to a call to an Assert function with the positive
condition at the loop entry and with the negative condition at the loop exit. Given a
designated top-level function to explore, we turn its pre-conditions into calls to the
Assume function, and all pre-conditions of called functions into calls of the Assert

function which are placed at the beginning of the functions. We turn all post-conditions
into calls to the Assert function which are placed at the end of the function. We discuss
the treatment of universal quantifiers in depth in Section 4.

3 Example

Program 3.1 shows an implementation of a swap function. In this example we use C#
syntax extended with pre-conditions and post-conditions (requires and ensures),
and old expressions.1 It has two pre-conditions: the array a must not be null, and
the indices must be within the bounds of the array. The three post-conditions express
that the elements at index lo and hi in the array a are swapped, and that all remaining
elements of the array are identical to the old elements in the array. (Note that the last if
statement introduces an error into program.)

Program 3.2 shows the translation of the swap function, including its pre and post-
condition as described in 2.4. The old expression is realized by creating a copy of
the referenced values in the initial state. The Forall<int>(i => p(i)) expression
refers to a generic function Forall that takes a predicate expression p(i) as an argu-
ment. Intuitively, it represents ∀i.p(i). shows the translated program.

1 In fact, the syntax we use is Spec# [3], except for our Forall function that does not involve
bounds. In contrast, the universal quantifier in Spec# must state a finite enumeration of possible
values for the bound variable.

14 D. Vanoverberghe et al.

Program 3.1. Swap Example

public void Swap(byte[] a, int lo, int hi)
requires a != null;
requires 0 <= lo && lo <= hi && hi < a.Length;

ensures a[hi] == old(a[lo]);
ensures a[lo] == old(a[hi]);
ensures Forall<int>(i =>

!(i >= 0 && i < a.Length && i !=lo && i !=hi)
|| a[i] == old(a[i]));

{
byte tmp = a[hi];
a[hi] = a[lo];
a[lo] = tmp;
if (lo != 0 && hi != 0)

a[0] = 42;
}

When symbolic execution of this program reaches the Assert(Forall(...))

statement, our treatment of the quantifier (that we describe in detail in Section 4) will
consider the case in which the quantifier does not hold. To this end, our technique ex-
plores the body of the quantifier using symbolic execution with the intention to find test
inputs that make the asserted quantifier true and false.

Case 1: Let’s assume the quantifier does not hold. The following code snippet rep-
resents a test case that was generated during the search.

IPexOracleRecorder oracle = PexOracle.NewTest();
oracle.OnComprehension(0)

.ChooseTruth(false)

.ChooseBoundVariable(1610612732);
byte[] bs0 = new byte[2];
TestSwap2(bs0, 1, 1);

In this code, oracle is initialized by a call to OnComprehension, which indicates
which quantifier is about to be initialized (here, 0 indicates that it is the first quantifier
in the execution trace). Calls to ChooseTruth and ChooseBoundVariable, set the
truth value of the quantifier and the value of the bound variable (in this case, the truth
value false indicates that the quantifier should not hold, and the bound variable i gets
the value 1610612732). The argument for the parameter a is an array of size 2, so
the index i, chosen earlier, is outside of the range of the array. With these assignments
the body of the quantifier evaluates to true. Since we are looking for a case where
the quantifier does not hold, these test inputs get pruned and the search for a counter-
example continues.

When the exploration finds the case in which i is zero, it discovers that the body of
the quantifier evaluates to false. In this case, the Assert statement fails and a failing
test case has been found:

Using Dynamic Symbolic Execution to Improve Deductive Verification 15

Program 3.2. Translated Swap Example

public void Swap(byte[] a, int lo, int hi) {
Assume(a != null);
Assume(0 <= lo && lo <= hi && hi < a.Length);
byte[] old_a = a.Clone();

byte tmp = a[hi];
a[hi] = a[lo];
a[lo] = tmp;
if (lo != 0 && hi != 0)

a[0] = 42;

Assert(a[hi] == old_a[lo]);
Assert(a[lo] == old_a[hi]);
Assert(Forall<int>(i =>

!(i >= 0 && i < a.Length && i != lo && i !=hi)
|| a[i] == old_a[i]));

}

IPexOracleRecorder oracle = PexOracle.NewTest();
oracle.OnComprehension(0)

.ChooseTruth(false)

.ChooseBoundVariable(0);
byte[] bs0 = new byte[3];
TestSwap2(bs0, 1, 2);

Case 2: Let’s assume the quantifier holds. In this case, the quantifier is instantiated
lazily using pattern matching when relevant constraints become available. The execu-
tion continues normally at first. Whenever the program tries to observe a value that
should not exist according to the asserted quantifier, the path will be pruned. For exam-
ple, suppose that we add the code in Program 3.3 at the end of Program 3.2.

In this case, the code checks if the value of a at an arbitrary index j satisfying j>=0
&& j < a.Length && lo != j && hi != j is still equal to its old value.

At this point our pattern matching engine will detect a match with the quantifier, and
thus the engine instantiates the quantifier. However, the instantiated quantifier together
with the current path condition is unsatisfiable. We detect that the path is infeasible,
stop its execution, and prune the path. The Assert(false) statement will never be
executed.

The following code snippet shows a test case for which the quantifier holds:

IPexOracleRecorder oracle = PexOracle.NewTest();
oracle.OnComprehension(0)

.ChooseTruth(true);
byte[] bs0 = new byte[3];
TestSwap2(bs0, 1, 2);

16 D. Vanoverberghe et al.

Program 3.3. Extra code

int j = Choose<int>();
if (j>=0 && j < a.Length &&

lo != j && hi != j && a[j] != old(a[j]))
Assert(false);

Fig. 1. Example Report of Pex

When exploring the if statement of Program 3.3, the exploration observes the term
a[j]. Since this term matches with a subterm of the quantifier body, the body of
the quantifier gets instantiated and added as an extra constraint (!(j >= 0 && j <

a.Length && j != lo && j != hi) || a[j] == old(a[j])). After entering
the body of the if test, we know that the left disjunct of this constraint is false,
the right disjunct is true. This contradicts the if test that a[j] == old(a[j]) and
therefore this path is infeasible.

Figure 1 shows a partial report that is the result of running Pex on the example
(including the extra code). The failing test is the same as the one we discussed earlier.

Using Dynamic Symbolic Execution to Improve Deductive Verification 17

4 Quantifiers

4.1 Introduction

Universal and existential quantifiers are a noteworthy example of an extension of a pro-
gramming language to support design-by-contract specifications. To make quantifiers
executable, existing approaches typically require the bound variables to be in a range
or from a set. A significant drawback is that executing these quantifiers for all elements
within a range is often impractical. For instance, a contract that involves bound vari-
ables that ranges over all records in a database or over all 64-bit integers will require
significant resources and be impractical to check repeatedly at run-time. Our approach
does not require such bounds.

In the following, we assume that the quantifier body is a pure expression, i.e. that
it does not have side-effects. Also, we do not consider nested quantifiers, and leave it
for future work to explore several alternative ways of handling nested quantifiers (such
as, relying on the SMT solver for these, using prenex forms, or executing the body in a
separate run so that we can apply the techniques recursively).

4.2 Compiling a Quantifier to a Non-deterministic Program

We describe how quantifiers within contracts can be transformed into executable, non-
deterministic code. We focus on the treatment of universal quantifiers. Since ∃x.ϕ(x)
is equivalent to ¬∀ x.¬ϕ(x), we can use the same approach for existential quantifiers.

Program 4.1 shows the executable version of a universal quantifier. It is implemented
as a library function Forall<T> where T is the type of the bound variable. It takes
the body of the quantifiers as input as a predicate p (Predicate<T> is the type of a
function which takes an input of type T and returns a Boolean value).

Program 4.1. Executable Version of Universal Quantifier

bool Forall<T>(Predicate<T> p) {
bool q_holds = ChooseTruth<bool>();
if (q_holds) { // Quantifier holds

AssumeForall<T>(p);
} else { // Quantifier does not hold.

T val = ChooseBoundVariable<T>();
Assume(!p(val));

}
return q_holds;

}

The implementation first obtains a value by calling ChooseTruth and stores it in
the variable q_holds. The value represents whether the quantifier holds. The imple-
mentation branches over this value. This is a non-deterministic choice.

18 D. Vanoverberghe et al.

Case 1: When q_holds is true. In this case, the rest of the computation should
assume that the quantifier indeed is true for all values. This is represented by a call
to the function AssumeForall<T>(p), which we will explain in detail in Section 4.3.
In a nutshell, the quantifier is added to a list of active quantifiers, and the symbolic
execution engine will look out for relevant values that appear in the program.

For all such relevant values v1, . . . , vn, the instantiated quantifier p(vi) represents
a condition that the test inputs must fulfill. All execution paths in which the quantifier
does not hold for these values will be cut off.

In other words, the statement

AssumeForall<T>(p);

conceptually just represents a set of statements

Assume(p(v1));
Assume(p(v2));
...
Assume(p(vn));

for all relevant values v1, . . . , vn.
However, since the relevant values might only be discovered as the program execu-

tion continues, these additional Assume(p(...)) clauses are realized by our symbolic
execution engine.

Case 2: When q_holds is false. In this case, the implementation will attempt to
obtain a value val for which the predicate p is false. This is realized by performing
another non-deterministic choice to obtain a value val, checking whether the predicate
holds on that value, and pruning all execution paths where p(val) did not hold by
calling Assume(!p(val)). The underlying dynamic symbolic execution engine will
attempt to obtain values for val such that the execution proceeds beyond the call to
Assume. When no such value is found, all execution paths starting from the assumption
that q_holds is false will be effectively cut off.

Illustration. Figure 2 shows an execution tree for evaluating a quantifier whose
branches represent the choices introduced by the ChooseTruth and ChooseBound-

Variable functions. The first node with the outgoing branches false and true rep-
resents the program branch over q_holds. If q_holds is true, the predicate p(i) is
added to the list of quantifiers; If q_holds is false, the body of the quantifier p is
explored in order to find a value for which the predicate does not hold.

4.3 Pattern Based Quantifier Instantiation

SMT solvers based on integrations of modern sat-solving techniques [20], theory lem-
mas and theory combination [13] have proven highly scalable, efficient and suitable
for integrating theory reasoning. However, numerous applications from program anal-
ysis and verification require furthermore to handle proof-obligations involving quan-
tifiers. As we notice here, quantifiers are often used for capturing frame conditions
over loops, summarizing auxiliary invariants over heaps. Quantifiers can also be used

Using Dynamic Symbolic Execution to Improve Deductive Verification 19

Fig. 2. Example Exploration Tree

for supplying axioms of theories that are not already equipped with solvers. A well
known approach for incorporating quantifier reasoning with ground decision proce-
dures uses an E-matching algorithm that works with the set of ground equalities as-
serted during search to instantiate bound variables. The ground equalities are stored
in a data-structure called an E-graph. E-matching is used in several theorem provers:
Simplify [16], CVC3 [4], Fx7 [28], Verifun [19], Yices [18], Zap [2], and Z3 [12].

We will now describe the quantifier instantiation process and E-matching problem in
more detail.

Quantifiers and SAT-Solvers. Suppose ϕ is a quantifier free formula we wish to show
unsatisfiable (conversely ¬ϕ is valid), then ϕ can be converted into an equi-satisfiable
set of clauses [35] of the form (�1 ∨ �2 ∨ �2)∧ (�4 ∨ . . .)∧ . . ., where each literal �i is an
atom or a negation of an atom, each atom is either an equality t � s, a predicate symbol
P , or some other relation applied to ground arguments. Then SAT solving techniques
are used for searching through truth assignments to the atoms [29]. An equality t � s
assigned to true cause as a side-effect a partition of ground terms in the E-graph for ϕ to
be collapsed. When an equality t � s is assigned to false, the theory solvers check that
s and t do not appear in the same partition; otherwise, the assignment is contradictory.
If ϕ contains quantifiers, then quantified sub-formulas are treated as atomic predicates.
Thus, if ϕ contains a sub-formula of the form ∀x.ψ, then this sub-formula is first re-
placed by a predicate p∀x.ψ. The SAT solver core, and the E-graph structure can then
work in tandem to find a satisfying assignment to ϕ [∀x.ψ ← p∀x.ψ]. Suppose first the
SAT solver core chooses to set p∀x.ψ to false; it means that under the current assign-
ment of truth values to sub-formulas of ϕ, it must be the case that ¬∀x.ψ, or in other
words, there is some (Skolem) constant sk, such that ¬ψ[x ← sk]. Thus we may add
the additional fact

¬p∀x.ψ → ¬ψ[x ← sk]

20 D. Vanoverberghe et al.

to ϕ, propagate the truth assignment for p∀x.φ, and have the resulting formula ¬ψ[x ←
sk] participate in subsequent search. Conversely, if the SAT solver core chooses to
set p∀x.ψ to true, then for the assignment to be consistent with ϕ, it must be the case
that ∀x.ψ. In this case, φ holds for every instantiation of x. We will later describe
how suitable instantiations for x are determined, but suppose for a moment that an
instantiation t1 is identified. We can then add the following fact to ϕ

p∀x.ψ → ψ[x ← t1]

while maintaining satisfiability, and use the current truth-assignment to propagate the
instantiation.

The E-matching Problem. As mentioned above, a widely used algorithmic component
for finding suitable instantiations consists of an E-matching algorithm. The E-matching
problem is more precisely defined as: Given a set of ground equations E, where E is a
set of the form {t1 � s1, t2 � s2, . . .}, a ground term t and a term p possibly containing
variables. Provide the set of substitutions θ, modulo E, over the variables in p, such that
E |= t � θ(p). Two substitutions are equivalent if their right hand sides are pairwise
congruent modulo E.

When solving the E-matching problem, it is common to build a congruence closure
based on the equalities in E. The congruence closure partitions terms in E and ground
sub-terms from p and t; it is the least partition (≡C) closed under equivalence (reflexiv-
ity, symmetry, and transitivity), and functionality: if t1 ≡C s1, t2 ≡C s2, and f(t1, t2),
and f(s1, s2) are sub-terms, then f(t1, t2) ≡C f(s1, s2). Efficient implementations of
congruence closure typically use union-find data-structures and use-lists [17]. A con-
gruence closure is the finest partition induced by the equalities E.

The E-matching problem is NP-complete, but in the context of SMT problems the
harder practical problem is to handle a massive number of patterns and a dynamically
changing set of patterns and equalities E. Efficient data-structures and algorithms for
these situations are described in [12].

Patterns. So what do we E-match against? For most practical purposes, the answer is
a set of sub-terms in the quantified formula (from the above example, ψ) that contain
the bound variables (from the above example, the variable x).

Example 1. Consider one of the axioms used for characterizing arrays [26]:

∀a, i, j, v . i �� j → read(write(a, i, v), j) � read(a, j) .

When should it be instantiated? One clear case is when the sub-term read(write(a, i, v),
j) matches a term in set of current ground terms. A less obvious case is when both
write(a, i, v) and read(a, j) occur as terms. These terms combined contain all bound
variables, so they can be used for instantiating the quantifier. The latter condition refers
to two occurrences of a. These two occurrences can match any pair of terms in the
current context as long as they belong to the same equality partition.

In Simplify [16], such patterns are annotated together with the quantifier.

∀a, i, j, v . (PATS read(write(a, i, v), j) (MPAT write(a, i, v) read(a, j))) :
i �� j → read(write(a, i, v), j) � read(a, j) .

Using Dynamic Symbolic Execution to Improve Deductive Verification 21

We here perform a partial lifting of the concept of patterns to the context of C#
programs.

Example 2. A contract that assumes the array a to be 0 on every index i can be formu-
lated as:

Assume(Forall<int>(i =>
!(i >= 0 && i < a.Length)
|| Pattern<int>(a[i]) == 0));

In this contract we have used the generic function:

T Pattern<T>(T value);

The pattern specifies that the quantifier on i be instantiated whenever a sub-term of
the form a[i] is created during search. Multiple occurrences of Pattern are treated as
alternatives. Our pattern extension in Pex does not currently provide a counter-part to
multi-patterns (conceptually it is a relatively easy extension, that has yet to be exercised:
add a numeric argument to Pattern, all occurrences using the same numeral argument
belong to the same multi-pattern).

Note that this does not directly limit the set of values for instantiating the quantifier.
There are still 232 or 264 possible values of the type int to instantiate the quantifier.
Operationally, the Pattern function implements the identity function.

4.4 Run-Time-Guided Pattern Matching

As we outlined, modern SMT solvers use E-matching for instantiating patterns. E-
matching uses congruence relations between ground terms. During search for unsat-
isfiability or satisfiability, congruence relations encode equalities that hold under all
possible interpretations of the current state of the search. We will here deviate from this
use of congruence relations for finding pattern matches. The basic observation is that,
instead of searching through a set of different congruence relations, we use the model
produced by a concrete execution for identifying a (coarse) partition of terms appear-
ing in the corresponding symbolic trace. Two terms in a symbolic trace are treated as
potentially equal if their run-time values are equal. E-matching can now be replaced
by a pattern matching function that uses run-time values. We call this version the M-
matching problem, where M refers to a model. The M-matching problem is more
precisely, given a model M, that provides an interpretation for a set of terms T , and a
ground term t ∈ T and pattern p; provide the set of substitutions θ mapping variables in
p to terms in T , such that M |= t � θ(p). Notice that M-matching is an approximation
of E-matching, since E |= t � θ(p) and M |= E implies that M |= t � θ(p). On
the other hand, M-matching allows going beyond congruences of uninterpreted func-
tion symbols: the model provided by a concrete run provides interpretations to arbitrary
functions. M-matching may be implemented in a way similar to E-matching, using
code-trees [12], but using a model M instead of relying on a congruence closure.

The main steps used by the M-matching algorithm are summarized below.

1. Let T be the set of all terms appearing in a symbolic state.
2. Let p be a pattern we wish to match with terms in T .

22 D. Vanoverberghe et al.

3. Recursively, match function symbols used in p with all possible matching symbols
from T . For example, if p is of the form f(p1, p2), then select every occurrence of
f(t1, t2) in T and create the sub-matching problems p1, t1 and p2, t2.

4. If, in the recursive matching step, pi is ground, then check if the matching terms
pMi equals tMi . If, pi is a bound variable x, then bind the value tMi to x if x has not
been bound before. If x was bound before to tMj , then check tMi = tMj .

A match succeeds if the concrete run-time values coincide. The symbolic represen-
tations may be different, but the use of run-time values ensures that every match that
may be valid at a give execution point is found by using the run-time values. Thus,
this process may be used for supplying a superset of useful values for parameters to
quantified contracts. Our method restricts quantifier instantiation to observed values.
Symbolic values that are not observed are don’t cares from the point of view of the
program under test, so we admit test inputs that violate contracts on unobserved values.

Example 3. Suppose we seek to match a pattern of the form:

w ∗ ((w + u) + V)

where w is an identifier used in a program and V is the bound variable of a quantifier.
Consider the program fragment:

y = u + 4;
w = 4;
if (x == y - u) {

u = x * (y + z);
. . .

}

We match the pattern w ∗ ((w + u) + V) against the term x ∗ ((u + 4) + z) which
got built by expanding the assignment to y by u + 4. Matching proceeds by following
the structure of the pattern:

Match(w ∗ ((w + u) + V), x ∗ ((u + 4) + z)) =
Match(w, x) and
Match(((w + u) + V), ((u + 4) + z))

Since the pattern occurs only under the if-condition (x == y − u) it must be the case
that the run-time value of both x and w is 4. So by using the run-time values, the first
match reduces to

Match(4, 4)

which holds. The second call to Match reduces to:

Match((w + u), (u + 4))
Match(V, z)

Where the first matching obligation can be solved by looking at the run-time values of
w and u:

Using Dynamic Symbolic Execution to Improve Deductive Verification 23

Match(8, 8)

The second matching obligation binds the variable V to z.

Models induced by run-time values will produce a possibly coarser partition than a
corresponding congruence closure, so more terms may be identified as matches than
really exist. We can compensate for the approximation by adding a side-condition to
the instantiated quantifier. Namely, if

∀x . pat(x) : φ(x)

is a quantifier with bound variable x and pattern pat(x), and the symbolic term t is
identified as a run-time match of pat(x), with the instantiation x ← s, then we can
create the instantiated formula:

pat(s) � t → φ(s)

5 Related Work

Automated testing has been used in the past to guide the refinement of invariants when
proof attempts fail [11], however their work was not applied to design-by-contract
specifications.

The use of specifications as test oracle to decide the result for a particular test case is
a well-known technique. This idea was first explored by Peters and Parnas [31]. Many
approaches have followed this technique to run-time check design-by-contract specifi-
cations for JML [6], Eiffel [27] and Spec# [3]. Design-by-contract specifications have
also been used for test generation using more or less random approaches to the test in-
put generation problem, e.g. for JML [8,7] and Eiffel [9,10]. Notably, their approaches
do not handle unbounded quantifiers. Unlike existing approaches, we provide a way to
evaluate unbounded quantifiers (or quantifiers over an impractically large domain).

The idea of symbolic execution was pioneered by [24]. Dynamic symbolic execution
was first suggested in DART [22]. Their tool analyzes C programs. Several related ap-
proaches followed [33,5,23]. They differ between each other in the extent of how much
concrete information is lifted in the analysis and how much is treated symbolically, i.e.
the extent of the under-approximation that they perform. We describe how to extend
dynamic symbolic execution with a symbolic treatment of quantifiers.

Contracts can be used to make dynamic symbolic execution more modular and thus
scalable [30]. Several attempts have been made to even infer such contracts dynami-
cally [21,1].

Our approach relies on using the SMT solver Z3 to generate inputs that drive a pro-
gram into its different reachable configurations. An overview of related work on E-
matching is detailed in [12].

6 Conclusion

This paper described an approach for using dynamic testing for debugging deductive
verification of contracts with quantifiers. We extended symbolic execution to handle

24 D. Vanoverberghe et al.

unbounded quantifiers. We translated quantifiers to non-deterministic programs and in-
troduced M-matching as a technique for finding quantifier instances among symbolic
values exercised in a run. Future work includes assessing scalability and the coverage
exercised by the quantifier instances.

Acknowledgments

We would like to thank Ernie Cohen, Herman Venter, and Songtao Xia for the discus-
sions and their support.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic execution.
In: Proc. of TACAS 2008. LNCS, vol. 4963, pp. 367–381. Springer, Heidelberg (2008)

2. Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated theorem proving for software analy-
sis. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 2–22.
Springer, Heidelberg (2005)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automatically gener-
ating inputs of death. In: CCS 2006: Proceedings of the 13th ACM conference on Computer
and communications security, pp. 322–335. ACM Press, New York (2006)

6. Cheon, Y.: A runtime assertion checker for the Java Modeling Language. Technical Report
03-09, Department of Computer Science, Iowa State University, The author’s Ph.D. disserta-
tion. (April 2003), http://archives.cs.iastate.edu

7. Cheon, Y.: Automated random testing to detect specification-code inconsistencies. Techni-
cal report, Department of Computer Science The University of Texas at El Paso, 500 West
University Avenue, El Paso, Texas, USA (2007)

8. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The JML and
JUnit way. In: Proc. 16th European Conference Object-Oriented Programming, pp. 231–255
(June 2002)

9. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Experimental assessment of random testing for
object-oriented software. In: ISSTA 2007: Proceedings of the 2007 international symposium
on Software testing and analysis, pp. 84–94. ACM, New York (2007)

10. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Artoo: adaptive random testing for object-
oriented software. In: ICSE 2008: Proceedings of the 30th international conference on Soft-
ware engineering, pp. 71–80. ACM, New York (2008)

11. Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: Beckert, B.,
Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 48–65. Springer, Heidelberg (2008)

12. de Moura, L., Bjørner, N.: Efficient E-matching for SMT Solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

13. de Moura, L., Bjørner, N.: Model-based Theory Combination. Electron. Notes Theor. Com-
put. Sci. 198(2), 37–49 (2008)

14. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver (2007),
http://research.microsoft.com/projects/Z3

http://archives.cs.iastate.edu
http://research.microsoft.com/projects/Z3

Using Dynamic Symbolic Execution to Improve Deductive Verification 25

15. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963. Springer, Heidelberg (2008)

16. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

17. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J.
ACM 27(4), 758–771 (1980)

18. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

19. Flanagan, C., Joshi, R., Saxe, J.B.: An explicating theorem prover for quantified formulas.
Technical Report HPL-2004-199, HP Laboratories, Palo Alto (2004)

20. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Deci-
sion Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188.
Springer, Heidelberg (2004)

21. Godefroid, P.: Compositional dynamic test generation. In: Proc. of POPL 2007, pp. 47–54.
ACM Press, New York (2007)

22. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. SIGPLAN
Notices 40(6), 213–223 (2005)

23. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In: Proceedings of
NDSS 2008 (Network and Distributed Systems Security), pp. 151–166 (2008)

24. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
25. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface

specification language for Java. Technical Report TR 98-06i, Department of Computer Sci-
ence, Iowa State University (June 1998)

26. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress, pp. 21–28
(1962)

27. Meyer, B.: Eiffel: The Language. Prentice Hall, New York (1992)
28. Moskal, M., Lopuszański, J.: Fast quantifier reasoning with lazy proof explication (2006),

http://nemerle.org/malekith/smt/smt-tr-1.pdf
29. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient

SAT solver. In: 38th Design Automation Conference (DAC 2001) (2001)
30. Mouy, P., Marre, B., Williams, N., Gall, P.L.: Generation of all-paths unit test with function

calls. In: Proceedings of ICST 2008 (International Conference on Software Testing, Verifi-
cation and Validation), pp. 32–41 (2008)

31. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documentation. IEEE
Trans. Softw. Eng. 24(3), 161–173 (1998)

32. Pex development team. Pex (2007), http://research.microsoft.com/Pex
33. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proc. of

ESEC/FSE 2005, pp. 263–272. ACM Press, New York (2005)
34. Tillmann, N., de Halleux, J.: Pex – white box test generation for .NET. In: Proc. of Tests

and Proofs (TAP 2008), Prato, Italy, April 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

35. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning 2: Classical Papers on Computational Logic 1967-1970, pp. 466–483. Springer,
Heidelberg (1983)

http://nemerle.org/malekith/smt/smt-tr-1.pdf
http://research.microsoft.com/Pex

	Using Dynamic Symbolic Execution to Improve Deductive Verification
	Introduction
	Dynamic Symbolic Execution
	Introduction
	Symbolic State Representation
	Test Inputs and Non-deterministic Programs
	Making Basic Contracts Executable

	Example
	Quantifiers
	Introduction
	Compiling a Quantifier to a Non-deterministic Program
	Pattern Based Quantifier Instantiation
	Run-Time-Guided Pattern Matching

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

