High Performance Discrete Fourier Transforms on
Graphics Processors

Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli
Microsoft Corporation
{nagag,dalloyd,yurido,burtons,jmanfer } @ microsoft.com

Abstract—We present novel algorithms for computing discrete
Fourier transforms with high performance on GPUs. We present
hierarchical, mixed radix FFT algorithms for both power-of-two
and non-power-of-two sizes. Our hierarchical FFT algorithms
efficiently exploit shared memory on GPUs using a Stockham
formulation. We reduce the memory transpose overheads in
hierarchical algorithms by combining the transposes into a block-
based multi-FFT algorithm. For non-power-of-two sizes, we use a
combination of mixed radix FFTs of small primes and Bluestein’s
algorithm. We use modular arithmetic in Bluestein’s algorithm
to improve the accuracy. We implemented our algorithms using
the NVIDIA CUDA API and compared their performance with
NVIDIA’s CUFFT library and an optimized CPU-implementation
(Intel’s MKL) on a high-end quad-core CPU. On an NVIDIA
GPU, we obtained performance of up to 300 GFlops, with typical
performance improvements of 2-4x over CUFFT and 8-40x
improvement over MKL for large sizes.

I. INTRODUCTION

The Fast Fourier Transform (FFT) refers to a class of
algorithms for efficiently computing the Discrete Fourier
Transform (DFT). The FFT is used in many different fields
such as physics, astronomy, engineering, applied mathematics,
cryptography, and computational finance. Some of its many
and varied applications include solving PDEs in computational
fluid dynamics, digital signal processing, and multiplying large
polynomials. Because of its importance, the FFT is used
in several benchmarks for parallel computers such as the
HPC challenge [1] and NAS parallel benchmarks [2]. In this
paper we present algorithms for computing FFTs with high
performance on graphics processing units (GPUs).

The GPU is an attractive target for computation because of
its high performance and low cost. For example, a $300 GPU
can deliver peak theoretical performance of over 1 TFlop/s
and peak theoretical bandwidth of over 100 GiB/s. Owens et
al. [3] provides a survey of algorithms using GPUs for general
purpose computing. Typically, general purpose algorithms for
the GPU had to be mapped to the programming model pro-
vided by graphics APIs. Recently, however, alternative APIs
have been provided that expose low-level hardware features
that can be exploited to provide significant performance gains
[4], [5], [6], [7]. In this paper we target NVIDIA’s CUDA API,
though many of the concepts have broader application.

Main Results: We present algorithms used in our library
for computing FFTs over a wide range of sizes. For smaller
sizes we compute the FFT entirely in fast, shared memory.
For larger sizes, we use either a global memory algorithm or
a hierarchical algorithm, depending on the size of the FFTs

and the performance characteristics of the GPU. We support
non-power-of-two sizes using a mixed radix FFT for small
primes and Bluestein’s algorithm for large primes. We address
important performance issues such as memory bank conflicts
and memory access coalescing. We also address an accuracy
issue in Bluestein’s algorithm that arises when using single-
precision arithmetic. We perform comparisons with NVIDIA’s
CUFFT library and Intel’s Math Kernel Library (MKL) on a
high end PC. On data residing in GPU memory, our library
achieves up to 300 GFlops at factory core clock settings,
and overclocking we achieve 340 GFlops. We obtain typical
performance improvements of 2—4x over CUFFT and 8-
40x over MKL for large sizes. We also obtain significant
improvements in numerical accuracy over CUFFT.

The rest of the paper is organized as follows. After dis-
cussing related work in Section II we present an overview
of mapping FFT computation to the GPU in Section III. We
then present our algorithms in Section IV and implementation
details in Section V. We compare results with other FFT
implementation in Section VI and then conclude with some
ideas for future work.

II. RELATED WORK

A large body of research exists on FFT algorithms and
their implementations on various architectures. Sorensen and
Burrus compiled a database of over 3400 entries on efficient
algorithms for the FFT [8]. We refer the reader to the book
by Van Loan [9] which provides a matrix framework for
understanding many of the algorithmic variations of the FFT.
The book also touches on many important implementation
issues.

The research most related to our work involves accelerating
FFT computation by using commodity hardware such as GPUs
or Cell processors. Most implementations of the FFTs on the
GPU use graphics APIs such as current versions of OpenGL
or DirectX [10], [11], [12], [13], [14], [15]. However, these
APIs do not directly support scatters, access to shared memory,
or fine-grained synchronization available on modern GPUs.
Access to these features is currently provided only by vendor-
specific APIs. NVIDIA’s FFT library, CUFFT [16], uses the
CUDA API [5] to achieve higher performance than is possible
with graphics APIs. Concurrent work by Volkov and Kazian
[17] discusses the implementation of FFT with CUDA. We
also use CUDA for FFTs, but we handle a much wider range
of input sizes and dimensions.

| Muprocessor Multiprocessor Multprocessor Multiprocessor

o s B | S s 5o s |) s s
o B | e [s |) s s s
(560 [Se (e s | R s s s [0 S e s || e s S| -
B B | EE HEE| | EE =)
Shared Memory Shared Memory Shared Memory Shared Memory
| Multiprocessor Multiprocessor | Multiprocessor
(560 [Se (e (R || R s s s [0 (SR s | e s SRR
(560 [se (e || R s s s EHE EE| | EE =EE
ol s B | o |) s
[| e [0 [s || s s
Shared Memory Shared Memory Shared Memory Shared Memory

Fig. 1.

Problem Domain

Thread Block <}

EE E e

§ § . § hread)

" Execution

Manager

Thread Block <[~

Shared Memory

Architecture and programming model on the NVIDIA GeForce 8800 GPU. On the left, we illustrate a high-level diagram of the GPU scalar processors

and memory hierarchy. This GPU has 128 scalar processors and 80 GiB/s peak memory bandwidth. On the right, we illustrate the programming model for
scheduling computation on GPUs. The data in the GPU memory is decomposed into independent thread blocks and scheduled on the multiprocessors.

Several researchers have examined the implementation of
the FFT on the Cell processor [18], [19], [20], [21], [22].
Our results for large sizes on commodity GPUs are generally
higher than published results for the Cell for large sizes.

III. OVERVIEW OF GPUS AND FFTSs
A. Overview of GPUs

In this paper we focus primarily on NVIDIA GPUs, al-
though many of the principles and techniques extend to other
architectures as well. Fig. 1 highlights the hardware model
of a NVIDIA GeForce 8800 GPU. The GPU consists of a
large number of scalar, in-order processors that can execute the
same program in parallel using threads. Scalar processors are
grouped together into multiprocessors. Each multiprocessor
has several fine-grain hardware thread contexts, and at any
given moment, a group of threads called a warp, executes
on the multiprocessor in lock-step. When several warps are
scheduled on a multiprocessor, memory latencies and pipeline
stalls are hidden primarily by switching to another warp. Each
multiprocessor has a large register file. During execution,
the program registers are allocated to the threads scheduled
on a multiprocessor. Each multiprocessor also has a small
amount of shared memory that can be used for communication
between threads executing on the scalar processors. The GPU
memory hierarchy is designed for high bandwidth to the global
memory that is visible to all multiprocessors. The shared
memory has low latency and is organized into several banks
to provide higher bandwidth.

At a high-level, computation on the GPU proceeds as
follows. The user allocates memory on the GPU, copies the
data to the GPU, specifies a program that executes on the
multiprocessors and after execution, copies the data back to
the host. In order to execute the program on a domain, the
user decomposes the domain into blocks. The thread execution
manager then assigns threads to operate on the blocks and
write the output to global memory.

B. Overview of FFTs

The forward Discrete Fourier Transforms (DFT) of a
complex sequence r = Zg,...,Tny—1 1S an N-point
complex sequence, X = Xj,...,Xny_1, wWhere X =
SN @,e2mkn/N The inverse DFT is similarly defined
as o, = & Soay Xpe? /N A naive implementation of
DFTs requires O(N?) operations and can be expensive. FFT
algorithms compute the DFT in O(/V log V) operations. Due to
the lower number of floating point computations per element,
the FFT can also have higher accuracy than a naive DFT. A
detailed overview of FFT algorithms can found in Van Loan
[9]. In this paper, we focus on FFT algorithms for complex
data of arbitrary size in GPU memory.

C. Mapping FFTs to GPUs

Performance of FFT algorithms can depend heavily on the
design of the memory subsystem and how well it is exploited.
Although GPUs provide a high degree of memory parallelism,
the index-shuffling stage (also referred to as bit-reversal for
radix-2) of FFT algorithms such as Cooley-Tukey can be
quite expensive due to incoherent memory accesses. In this
paper, we avoid the index-shuffling stage using Stockham
formulations of the FFT. This, however, requires that we
perform the FFT out-of-place. Fig. 2 shows pseudo-code for
a Stockham radix-R FFT with specialization for radix-2. In
each iteration, the algorithm can be thought of combining the
R FFTs on subsequences of length N, into the FFT of a new
sequence of length RN, by performing an FFT of length R
on the corresponding elements of the subsequences.

The performance of traditional GPGPU implementations of
FFT using graphics APIs is limited by the lack of scatter
operations, that is, a thread cannot write to an arbitrary location
in memory. The pseudo-code shown in Fig. 2 writes to R
different locations each iteration (line 29). Without scatter,
R values must be read for each output generated rather than
reading R values for every R outputs [14]. GPUs and APIs

that support writing multiple values to the same location in
multiple buffers can save the redundant reads, but must either
use more complex indexing when accessing the values written
in a preceding iteration, or after each iteration, they must
copy the values to their proper location in a separate pass
[15], which consumes bandwidth. Thus scatter is important
for conserving memory bandwidth.

Fig. 2 also shows pseudo-code for an implementation of the
FFT on a GPU which supports scatter. The main difference
between GPU_FFT () and CPU_FFT () is that the index j
into the data is generated as a function of the thread number ¢
(line 13). Also, the iterations over values of N, are generated
by multiple invocations of GPU_FFT () rather than in a loop
(line 3) because a global synchronization between threads is
needed between the iterations, and for many GPUs the only
global synchronization is kernel termination.

Despite the fact that GPU_FFT () uses scatter, it still has
a number of performance issues. First, it only computes a
single FFT and does not take advantage of all available
parallelism. Processing multiple FFTs at the same time is
important because the number of warps used for small-sized
FFTs may not be sufficient to achieve full utilization of the
multiprocessor or to hide memory latency while accessing
global memory. Second, the writes to memory have coalescing
issues. The memory subsystem tries to coalesce memory
accesses from multiple threads into a smaller number of
accesses to larger blocks of memory. But the spacing between
consecutive accesses generated during the first few iterations
(small Ny) is too large for coalescing to be effective (line
29). Third, the algorithm does not exploit low-latency shared
memory to improve data reuse. This is also a problem for tradi-
tional GPGPU implementations as well, because the graphics
APIs do not provide access to shared memory. Finally, to
handle arbitrary lengths, we would need to write a separate
specialization for all possible radices R. This is impractical,
especially for large R. In the next section we will discuss how
we address each of these issues.

Because GPUs vary in shared memory sizes, memory, and
processor configurations, the FFT algorithms should ideally
be parameterized and auto-tuned across different algorithm
variants and architectures.

IV. FFT ALGORITHMS

In this section, we present several FFT algorithms — a
global memory algorithm that works well for larger FFTs with
larger radices on architectures with high memory bandwidth, a
shared memory algorithm for smaller FFTs, a hierarchical FFT
that exploits shared memory by decomposing large FFTs into a
sequence of smaller ones, mixed-radix FFTs that handle sizes
that are multiples of small prime factors, and an implementa-
tion of Bluestein’s algorithm for handling larger prime factors.
We also discuss extensions to handle multi-dimensional FFTs,
real FFTs, and discrete cosine transforms (DCTs).

1 float2* CPU_FFT(int N, int R,

2 float2* data0O, float2* datal) {
3 for (int Ns=1; Ns<N; Ns*=R) {

4 for (int j=0; J<N/R; j++)

5 FftIteration(j, N, R, Ns, data0O, datal);
6 swap (dataO, datal);

7 }

8 return data0;

9 }

10

11 void GPU_FFT (int N, int R, int Ns,

12 float2* datal, float2* dataO) {
13 int § = b*N + t;

14 FftIteration(j, N, R, Ns, dataI, dataO);
15 }

16

17 void FftIteration(int j, int N, int R, int Ns,
18 float2* datal, float2*datal) {
19 float2 vI[R];

20 int idxS = j;

21 float angle = -2*M PI* (j%Ns)/(Ns*R);

22 for(int r=0; r<R; r++) {

23 v[r] = data0[idxS+r*N/R];

24 v[r] *= (cos(r*angle), sin(r*angle));

25 }

26 FFT<R>(v);

27 int idxD = expand(j,Ns,R);

28 for(int r=0; r<R; r++)

29 datal [idxD+r*Ns] = v[r];

30 }

31

32 void FFT<2>(float2* v) {

33 float2 v0O = v[0];

34 v[0] = v0 + v[1];

35 v[1l] = v0 - v[1];

36 }

37

38 int expand(int idxL, int N1, int N2) {

39 return (idxL/N1)*N1*N2 + (idxL%N1);
40 }

Fig. 2. Reference implementation of the radix-R Stockham algorithm. Each
iteration over the data combines R subarrays of length Ny into arrays of
length RN. The iterations stop when the entire array of length IV is obtained.
The data is read from memory and scaled by so-called twiddle factors (lines
20-25), combined using an R-point FFT (line 26), and written back out to
memory (lines 27-29). The number of threads used for GPU_FFT () is N/R
and ¢ is the thread number. The expand () function can be thought of as
inserting a dimension of length N2 after the first dimension of length N7 in
a linearized index.

A. Global Memory FFT

As mentioned in Section II.B, the pseudo-code for
GPU_FFT () in Fig. 2 does not take full advantage of
available parallelism. We introduce more thread blocks by
processing multiple FFTs at a time and for large FFTs,
processing a single FFT in multiple blocks. We do this by
introducing the 2D block index b. We change line 13 to
j = b.y*N + b.x*T + t, where the block dimensions
are (B, By) = (max(1, N/(RT)),M) and M is the number
of FFTs to process simultaneously.

GPU_FFT () can also have poor memory access coalesc-
ing, which reduces performance. On some GPUs the rules
for memory access coalescing are quite stringent. Memory
accesses to global memory are coalesced for groups of CW
threads at a time, where C'W is the coalescing width. CW is
16 for recent NVIDIA GPUs. Coalescing is performed when
each thread in the group access either a 32-bit, 64-bit, or 128
bit word in sequential order and the address of the first thread

1 void exchange(float2* v, int R, int stride,
2 int idxD, int incD,
3 int idxS, int incS) {
4 float* sr = shared, *si = shared+T*R;
5 __syncthreads () ;
6 for (int r=0, ; r<R; r++) {
7 int i = (idxD + r*incD) *stride;
8 (srlil, sili]) = vIrl;
9 }
10 __syncthreads () ;
11 for(r=0; r<R; r++) {
12 int i = (idxS + r*incS) *stride;
13 vir] = (srlil], silil);
14 }
15 }
Fig. 3. Function for exchanging the R values in v between T threads.

The real and imaginary components of v are stored in separate arrays to
avoid bank-conflicts. The second synchronization avoids read-after-write data
hazards. The first synchronization is necessary to avoid data hazards only
when exchange () is invoked multiple times.

is aligned to (CW x word size). Bandwidth for non-coalesced
accesses is about an order of magnitude slower. Later GPUs
have more relaxed coalescing requirements. Coalescing is
performed for any access pattern. The hardware issues memory
transactions in blocks of 32, 64, or 128 bytes while seeking to
minimize the number and size of the transactions to satisfy the
requests. For both sets of coalescing requirements, the greatest
bandwidth is achieved when the accesses are contiguous and
properly aligned.

Assuming that the number of threads per block 7= N/R
is no less than C'W, our mapping of threads to elements in
the Stockham formulation ensures that the reads from global
memory are in contiguous segments of at least CW in length
(line 23 in Fig. 2). If the radix R is a power of two, the
reads are also properly aligned. Writes are not contiguous for
the first [logr CW| iterations where N, < CW (line 29),
although under the assumption that 77 > CW, when all the
writes have completed, the memory areas touched do contain
contiguous segments of sufficient length. Therefore, we handle
the first few iterations by first exchanging data between threads
using shared memory so that it can then be written out in
larger contiguous segments to global memory. We do this by
replacing lines 27-29 with the following:

int idxD = (t/Ns)*R + (t%Ns);
exchange(v, R, 1, idxD,Ns,
idxD = b.y*N + b.x*R*T + t;

for(int r=0; r<R; r++)
datal [1dxD+r*T] = v([r];

T)

The pseudo-code for exchange () can be found in Fig. 3.
To maximize the reuse of data read from global memory
and to reduce the total number of iterations, it is best to use
a radix R that is as large as possible. However, the size of
R is limited by the number of registers and the size of the
shared memory on the multiprocessors. Reducing the number
of threads reduces the total number of registers and the amount
of shared memory used, but with too few threads there are not
enough warps to hide memory latency.
Bank conflicts: Shared memory on current GPUs is orga-
nized into 16 banks with 32-bit words distributed round-
robin between them. Accesses to shared memory are serviced

1 template<int R> void

2 FftShMem(int sign, int N, float2* data) {
3 float2 vI[R];
4 int idxG = b*N + t;
5 for(int r=0; r<R; r++)
6 v[r] = data[idxG + r*T];
7 if(T == N/R)
8 DoFft(v, R, N, t);
9 else {
10 int idx = expand(t.v,N/R,R);
11 exchange (v,R,1, idx,N/R, t,T);
12 DoFft(v, R, N, t);
13 exchange (v,R,1, t,T, idx,N/R);
14 }
15 float s = (sign < 1) 2 1 : 1/N;
16 for(int r=0; r<R; r++)
17 data[idxG + r*T] = s*v[r];
18 }
19
20 void DoFft (float2* v, int R, int N,
21 int j, int stride=1) {
22 for(int Ns=1; Ns<N; Ns*=R) {
23 float angle = sign*2*M PI* (j%Ns)/ (Ns*R);
24 for(int r=0; r<R; r++)
25 v[r] *= (cos(r*angle), sin(r*angle));
26 FFT<R>(v);
27 int idxD = expand(j,Ns,R);
28 int idxS = expand(j,N/R,R);
29 exchange (v,R,stride, idxD,Ns, idxS,N/R);
30 }
31 }
Fig. 4. Pseudo-code for shared memory radix-R FFT. This kernel is used

when N is small enough that the entire FFT can be performed using just
shared memory and registers.

for groups of 16 threads at a time (half-warps). If any of
the threads in a half-warp access the same memory bank
at the same time, a conflict occurs, and the simultaneous
accesses must be serialized, which degrades performance. In
order to avoid bank conflicts, exchange () writes the real
and imaginary components to separate arrays with stride 1
instead of a single array of float2. When a float2 is
written to shared memory, the two components are written
separately with stride 2, resulting in bank conflicts. The call
to exchange () still results in bank conflicts when R is a
power of two and Ny < 16. The solution is to pad with N,
empty values between every 16 values. For R = 2 the extra
cost of computing the padded indices actually outweighs the
benefit of avoiding bank conflicts, but for radix-4 and radix-
8, the net gain is significant. Padding requires extra shared
memory. To reduce the amount of shared memory by a factor
of 2, it is possible to exchange only one component at a time.
This requires 3 synchronizations instead of 1, but can result
in a net gain in performance because it allows more in-flight
threads. When R is odd, padding is not necessary because R
is relatively prime w.r.t. the number of banks.

B. Shared Memory FFT

For small N, we can perform the entire FFT using only
shared memory and registers without writing intermediate
results back to global memory. This can result in substantial
performance improvements. The pseudo-code for our shared
memory kernel is shown in Fig. 4. We set the number of
threads to 7' = max([64]r:, N/R), where [x]r: represents
the smallest power of R not less than x. These lower bounds

1 template<int R> void

2 FftShMemCol (int sign, int N, int strideO,

3 float2* datalI, float2* dataO) {

4 float2 v[R];

5 int strideI = B.x*T.x;

6 int idxI = (((b.y*N+t.y)*B.x+b.x)*T.x)+t.x;
7 int incI = T.y*strideI;

8 for (int r=0; r<R; r++)

9 v[r] = data[idxI + r*incI];

10 DoFft(x, R, N, t.y, T.x);

11 if(strideO < stridel) {

12 int i = t.y, J = (idxI%stridel)/strideO;
13 angle = sign*2*M PI*j/(N*strideI/strideO);
14 for(int r=0; r<R; r++) {

15 v[r] *= (cos(i*angle),sin(i*angle)):;

16 i += T.y;

17 }

18 }

19

20

int incO = T.y*strideO;

int idxO = b.y*R*incI+expand(idxI%$incI,incO,R);
21 if(strideO == 1) {
22 int idxD = t.x*N + t.y;
23 int idxS = t.y*T.x + t.x;
24 incO = T.y*T.x;
25 idx0 = (b.y*B.x+b.x)*N + idxS;
26 exchange(v,R,1, 1dxD,T.y, idxS,incO);
27 }
28 float s = (sign < 1) ? 1 : 1/N;
29 for (int r=0; r<R; r++)
30 data[idxO + r*incO] = s*v([r];
31 }
Fig. 5. Pseudo-code for shared memory radix-R FFT along columns

used with the hierarchical FFT. strideI and strideO are the strides
of sequence elements on input and output. The kernel is invoked with
T, set to a multiple of R not smaller than CW, T, = N/R, and
B = (strideI/Ty, M/strideI). The twiddle stage (lines 11-18) and
the transposes (lines 19-27) of the hierarchical algorithm are also included in
the kernel.

on the thread count also ensure that when the data is read from
global memory (lines 4-6), it will be read in contiguous seg-
ments greater than CW in length. However, when T > N/R,
the data must first be exchanged between threads. In this case,
the kernel computes more than one FFT at a time and the
number of thread blocks used are reduced accordingly. The
data is then restored to its original order to produce large
contiguous segments when written back to global memory.
When 7' = N/R, no data exchange is required after reading
from global memory. Because the data is always written back
to the same location from which it was read, the FFT can be
performed in-place. As mentioned previously, bank conflicts
that occur when R is a power of two can be handled with
appropriate padding.

The large number of registers available on NVIDIA GPUs
relative to the size of shared memory can be exploited to
increase performance. Because the data held by each thread
can be stored entirely in registers (in the array v), the FFT
in each iteration (line 26) can be computed without reading
or writing data to memory, and is therefore faster. Shared
memory is used only to exchange data between registers of
different threads. If the number of registers were smaller, then
the data would have to reside primarily in shared memory.
Additional memory might be required for intermediate results.
In particular, the Stockham formulation would require at least
twice the amount of shared memory due to the fact that it is
performed out-of-place. Larger memory requirements reduce
the maximum N that can be handled.

C. Hierarchical FFT

The shared memory FFT is fast but limited in the sizes it
can handle. The hierarchical FFT computes the FFT of a large
sequence by combining FFTs of subsequences that are small
enough to be handled in shared memory. This is analogous to
how the shared memory algorithm computes an FFT of length
N by utilizing multiple FFTs of length R that are performed
entirely in registers. Suppose we have an array A of length
N = N,Ng. We first consider a variation of the standard
“four-step” hierarchical FFT algorithm [23]:

1) Treating A as N, X Ng array (row-major), perform NV,
FFTs of size Ng along the columns.

2) Multiply each element A,, in the array with twiddle
factors w = eT2m=y/N (_ for a forward transform, +
for the inverse).

3) Perform Ng FFTs of size N, along the rows.

4) Transpose A from N, X Ng to Ng x N,

Npg is chosen to be small enough that the FFT can be
performed in shared memory. If N, is too large to fit into
shared memory, then the algorithm recurses, treating each
row of length N, as an N,, X N,g array, etc. One way to
think about this algorithm is that it wraps the original one
dimensional array of length N into multiple dimensions, each
small enough that the FFT can be performed in shared memory
along that dimension. The dimensions are then transformed
from highest to lowest. The effect of the multiple transposes
that occur when coming out of the recursion is to reverse the
order of the dimensions, which is analogous to bit-reversal.
The original “four-step” algorithm swaps steps 3 and 4. The
end result is the same, except that FFTs are always performed
along columns. For example, suppose A is partitioned wrapped
into a 3D array with dimensions (N7, N3, N3). The execution
of the original and the modified algorithms can be depicted as
follows:

(N1, Na, N3) (N1, N2, N3)
(N1, N3, N3) (N3, N1, N3)
(N{,N27N3) (Ng,NQ,N{)
(N3, N2, N1)

where ’ indicates an FFT transformation along the specified
dimension. The a index in step 2 corresponds an element’s
index in the transformed dimension (/V,) and the b index cor-
responds to the concatenation of the indices in the underlined
dimensions (Ng). The original algorithm (left) performs all of
the FFTs in-place and uses a series of transposes at the end
to reverse the order of the dimensions. The entire algorithm
can be performed in-place if the transposes are performed
in-place. In-place algorithms can be important for large data
sizes because a second array is not needed. In the modified
algorithm, the FFT computation always takes place in the
current highest dimension and the transposes are interleaved
with the computation. This is analogous to the data shuffling
in a Stockham formulation of a radix-2 FFT used to avoid
bit-reversals.

To reduce the number of passes over the data, we use the
modified algorithm and perform the FFT, the twiddle, and
the transpose all in the same kernel. Pseudo-code is shown
in Fig. 5. This version of the FFT assumes that stridelI,
the stride between elements in a sequence (the product of the
dimensions preceding the one transformed), is greater than
1 and that product of all the dimensions is a power of R.
The data accesses to global memory for a single FFT along
a dimension greater than 1 are not contiguous. To obtain
contiguous accesses, we transform a block of M; sequences
at the same time, where M, is a power of R no smaller than
CW. One side benefit of this is that when R is a power of
two, padding is no longer required to avoid bank conflicts in
exchange () because M, = CW = 16 is the same as the
number of banks. However, performing such a large number
of FFTs simultaneously means that the /N must be partitioned
in dimensions of shorter length due to limits on the number
of registers and the size of shared memory.

Cases where the strides of sequence elements on input and
output, strideI or strideO, are less than M, require
special handling. When strideI > M, and strideO
= 1, we rearrange the data in shared memory so that it
can be written out in large contiguous segments (lines 22—
26). strideI can be 1 only if the preceding dimensions
have the trivial length of 1, in which case the FFT can be
computed with Fft ShMem () from Fig. 4. For all other cases,
specialized code is required to handle the reading and writing
of partial blocks. An alternative is to first transpose the high
dimension to dimension 1, perform the FFT with a variant of
FftShMem () that includes the twiddle from step 2, and then
transpose from dimension 1 to the final destination. However,
these transposes require separate passes over the data and may
sacrifice some performance.

Because global memory FFT algorithm does not involve
global transposes of the data, it can actually be faster than
the hierarchical FFT for large N on GPUs with high memory
bandwidth. We use auto-tuning to determine at which point
to transition from the hierarchical FFT to the global memory
FFT.

D. Mixed-radix FFT

So far we have considered algorithms for radix-R algo-
rithms for which N = R?. To handle mixed-radix lengths
N = R¢RY, the value used for R can be varied in the iterations
of a radix-R algorithm. For example, for N = 22¢3b we can
run ¢ iterations with R = 2 and b iterations with R = 3
using either the global or shared memory FFTs. If 2¢ and 3°
are small enough to fit in shared memory, but N is too large,
then we can perform the computation hierarchically by setting
N, = 2% and Ng = 3°. Specializations of FFT<R> () can be
manually optimized for small primes. When /N is a composite
of large primes, we use Bluestein’s FFT.

E. Bluestein’s FFT

The Bluestein’s FFT algorithm computes the DFT of ar-
bitrary length N by expressing it as a convolution of two

1.0E-1 =
Not Corrected
1.0E-2
5 1063 —+—Corrected
:
5 1.0E-4
1.0E-5 —
ottt <

4 5 7 9 11 13 15 17
log, N

19 21

Fig. 6. Comparison of numerical accuracy of Bluestein’s FFT algorithm with
and without correction.

subsequences a and b:
N—-1
Xk = b;; Z Cljbk_j
Jj=0

)
TG
where b; = e ¥, a; = ij;, and the * operator represents

conjugation. The convolution can be computed efficiently as
the inverse FFT of A - B, where A and B are FFTs of a and
b, respectively, and - is a component-wise multiply. The FFTs
can be of any length not smaller than 2N — 1. For example,
an optimized radix-R FFT can be used. In order to improve
the performance for small sequences, we perform the entire
convolution in shared memory using an algorithm similar to
FftShMem().

When N is large, care must be taken to avoid problems
with numerical accuracy. In particular, a problem arises in the
computation of b;. Because e2™ is periodic, we can rewrite
bj as e2TiIN = 2T = 2mile(f) where f = j2/(2N) and
frac(f) = f — |f]. From this we can see that b; will be
inaccurate when f is so large that few, if any, bits are used
for its fractional component. To overcome this issue we refine
f by discarding large integer components. We compute an
f' =rm/(2N), where rm = j2 mod 2N. We assume that
N € [0,23%), which would require over 23°B, or 32GiB, to
compute the DFT with a power-of-two FFT (2 buffers with 23
elements for A and B with 8 bytes per element), well above
the memory capacities of current GPUs (typically 0.5-1GiB).
We start with an estimation of rm as follows:

rmij—QN_fJ,

where f is calculated using 32-bit floating point arithmetic.
Let j2 = a,2%2 + a; and 2N | f| = b,232 + by, where ay, a;,
bn, and b; are all unsigned 32-bit integers. We compute the
lower 32 bits of the multiplications, a; and b;, using standard
unsigned multiplication. To obtain the upper 32 bits, a; and
by, we use an intrinsic umulhi (). We then compute f’ using

modular arithmetic:
232 d 2N) d 2N
f' = frac <(ah —bp) Hzl;)v > (@ l;;]no .

This process produces a value of f’ with much improved
precision that results in higher accuracy (see Fig. 6). This
process can be generalized to support larger N if desired.

Core | Shader . Peak Memory . Peak
GPU Clock | Clock ro'g:::ors Performance | Clock M(e’\r/er?)ry Bu(sb‘i’é';' th | Bandwidth| Driver
(MHz) | (MHZz) P (GFlops) (MHz) (GiB/s)
8800 GTX 575 1350 16 518 900 768 384 80 175.19
8800 GTS 675 1625 16 624 970 512 256 59 175.19
GTX280 650 1300 30 936 1150 1024 512 137 177.41

Fig. 7.

GPUs used in experiments. Each multiprocessor can theoretical perform 24 floating point operations (8§ FMAD/MUL) per shader clock. The GPUs

use GDDR3 RAM capable of two memory operations per clock. The warp width for all the GPUs is 32. For our performance results we used the driver

versions listed here, unless otherwise specified.

FE. Multi-dimensional FFTs

Multi-dimensional FFTs can be implemented by performing
FFTs independently along each dimension. However, perfor-
mance tends to degrade for higher dimensions where the stride
between sequence elements is large. This can sometimes be
overcome by first transposing the data to move the highest
dimension down to the lowest dimension before performing
the FFT. This process can be repeated to cycle through all
the dimensions. By using a kernel like Fft ShMemCol that
combines the FFT with a transpose, separate transpose passes
over the data can be avoided.

G. Real FFTs and DCTs

FFTs of real sequences have special symmetry. This symme-
try can be used to transform a real FFT into a complex FFT
of half the size. Similarly, trigonmetric transforms, such as
the discrete cosine transform (DCT) can be implemented with
complex FFTs through simple transformation on the data. We
implement real FFTs and DCTs with wrapper functions around
the FFT algorithms that we have presented in this section. We
refer the reader to Van Loan [9] for more details.

V. IMPLEMENTATION

We implemented our FFT library using NVIDIA’'s CUDA
API for single-precision data. We have implemented global
memory and shared memory FFT kernels for radices 2, 4, and
8. We use radix-8 for as many iterations as possible. When
N is not divisible by 8, we use radix-2 or radix-4 for the last
iteration. We have also implemented radix-3 and radix-5 for
shared memory.

We use a number of standard optimization techniques that
are not presented in the pseudo-code for the sake of clarity.
The most important optimization is constant propagation. We
use templates to implement specialized kernels for a number
of different sizes and thread counts. Where possible we also
use bit-wise operations to implement integer multiply, divide,
and modulus for power-of-two radices. We also compute some
values common to all threads in a block using a single thread
and store them in shared memory in order to reduce some
computation.

Current GPUs limit the maximum number of threads per
thread block and thread blocks per computation grid. On the
current GPUs, these limits are 512 and 65535 respectively.
These limits restrict the input sizes that can handled. We
overcome these limits by virtualizing. Thread indices are
virtualized by adding loops in the kernels so that a single

thread does the work of multiple virtual threads. Thread blocks
are virtualized by invoking the kernel multiple times and
adding an appropriate offset to the thread block index for
each invocation. Virtualization adds some overhead and code
complexity. Supporting it directly in the runtime would enable
easier programming on GPUs.

When the size of the FFT is too large for shared memory, we
use either the global memory or the hierarchical algorithm. On
all of the GPUs we tested, the performance of the hierarchical
algorithm degrades for larger N while the performance of
the global memory algorithm is nearly constant. At some
point there is a cross-over where the global memory algorithm
becomes faster. We determine the cross over point at runtime
and use the fastest algorithm for a given size.

VI. RESULTS

A. Experimental methodology

We tested our algorithms on three different NVIDIA GPUs:
8800GTX, 8800GTS, and GTX280. The specifications for
these GPUs are summarized in Fig. 7. One of the key
difference between the GPUs is the memory bandwidth. The
GTX280 has the most bandwidth and the 8800GTS has the
least. The GTX280 also has more multiprocessors, which give
it the highest peak performance. We used recent versions
of the drivers. We found, however, that an older version
of the driver for the GTX280 (177.11) gave significantly
different performance results. Results obtained with this driver
are marked with (x) in Figs. 11, 12, and 14. We ran our
experiments on a high-end Windows PC equipped with an
Intel QX9650 3.0GHz quad-core processor and 4GB of DDR3
1600 RAM. This processor consists of two dual-core dies in
the same package with each pair of cores sharing a 6 MB L2
cache.

We compared our algorithms to NVIDIA’s CUDA FFT
library (CUFFT) version 1.1 for the GPU and Intel’s Math
Kernel Library (MKL) version 10.0.2 on the CPU. The MKL
tests utilized four hardware threads and used out-of-place,
single precision transforms. The input and output arrays were
aligned to a multiple of the cache line width. We report
performance in GFlops, which we compute as

S0 Ma(5N,4logy Ny)
execution time

b

where D is the total number of dimensions, My = E/Ny is
the number of FFTs along each dimension, and F is the total
number of data elements. We follow common convention and

50
15
40
8 4Threads & 10 - - 4 Threads
2 —#—2 Threads é —=—2 Threads
{"5 —+—1Thread (9 —o—1 Thread
5 -4
0 —
4 6 8 10 12 14 16 18 20 22 1 3 5 7 9 11 13 15 17 19 21
log, N log, N

Fig. 8. MKL with varying numbers of threads. (Left) Single 1D FFT per thread (M = thread count). Because we use the minimum time over repeated
runs on the same data, when the data can fit in the cache, the cache may be warm for these runs. Performance increases with the number of iterations in
the FFT algorithm (log, N for radix-2) because of increased reuse of data in the cache. Performance peaks between N = 210 and N = 217 at 52 GFlops.
Because pairs of cores share a 6MB L2 cache, performance begins to degrade at about N = 218 due to increased conflicts between cores in the cache. From
N = 220 on, the size of the data (22° x 2 (input and output) x 2 (real and imaginary components) x 4 (bytes per float) = 224 bytes) exceeds the 12 MB
aggregate L2 cache size of the processor and the performance becomes I/O limited. (Right) Varying number of FFTs with M = E/N, where E = 224, The
performance with 4 threads is essentially the same as for 2 threads, except for between N = 210 and N = 217 where there is sufficient data reuse without
conflicts between cores in the shared caches.

300 300
250 / ——750 MHz 250 ~\ ——750 MHz
——650 MHz ——650 MHz

200 A v 200 -
8 \ ——550MHz 8 ——550 MHz
S 150 - 450 MHz = 150 1 ——450 MHz
9 100 - —350MHz ° 100 - ——350 MHz
s0 \= ——250 MHz 50 - ——250 MHz

0 0
1 3 5 7 9 1113 15 17 19 21 23 1 3 5 7 9 1113 1517 19 21 23
log, N log, N

Fig. 9. Varying core clock rate on GTX280. The FFTs are performed in shared memory for N € [2,210]. For N > 210 we show the performance of the
global memory algorithm (left) and the hierarchical algorithm (right). The global memory algorithm shows small oscillations due to use of radix-2 and radix-4
for the last iteration. The performance of the hierarchical algorithm drops off as IV increases. For all but the smallest sizes, performance scales linearly with
clock rate.

300 ——1300 MHz 300 ——1300 MHz
250 ——1200 MHz 250 ——1200 MHz
2 200 - 4 ——1100 MHz a200 4\ —1100 MHz
S 150 - /A —1000MHz © 150 7/ A ——1000 MHz
O 400 - 7/ 7W —900MHz © 199 7/~ ——900 MHz
50 |47 — ——800 MHz s0 L4 = ——800 MHz
0 700 MHz 0 700 MHz
1 3 5 7 9 11 13 15 17 19 21 23 600 MHz 1 3 5 7 9 11 13 15 17 19 21 23 600 MHz
Iogz N 500 MHz |°gz N 500 MHz

Fig. 10. Varying memory clock rate on the GTX280. The FFTs are performed in shared memory for N € [2,2°]. For N > 210 we show the performance
of the global memory algorithm (left) and the hierarchical algorithm (right). The FFT becomes compute bound for higher memory clock rates, especially for
larger sizes in the shared memory kernel.

use the same equation for all the algorithms, regardless of B. Scaling
radix. The execution time is obtained by taking the minimum
time over multiple runs. The time for library configuration
and transfers of data to/from the GPU is not included in the
timings. Unless stated otherwise, performance reported for the
GPU algorithms were obtained on the GTX280. To measure
accuracy, we perform a forward transform followed by an
inverse transform on uniform random data. We then compare
the result to the original input and divide the root mean squared
error (RMSE) and maximum error by 2.

We first examine the scaling properties of MKL w.r.t. the
number of threads and the scaling of our algorithms with re-
spect to core and memory clock rates on various GPUs. MKL
parallelizes the computation of multiple FFTs by assigning a
thread to each FFT. Fig. 8 shows the performance of MKL for
a varying number of threads. MKL performs very well for a
small number of small FFTs (small M and N), but for large
FFTs the performance becomes I/O bound. Performance also
degrades for large numbers of FFTs even if N is small.

====Ours GTX200*

—— Ours GTX280

== 0urs 8800GTX

=== Ours 8800GTS
CUFFT

—a— MKL

8 10 12 14 16 18 20 22 24

log,N

Fig. 11.

w
N

- i
E 16 / —a—MKL
2 8 CUFFT
= 4 1 —— ==>=0urs 8800GTS
c
S - — —+=0urs 8800GTX
L e
< 1 (& —4—Qurs GTX280
& I g e R e o s S

1/2

14 15 16 17 18 19 20 21 22 23 24
log,N

Single 1D power-of-two FFTs. (Left) Performance of our algorithms on multiple GPUs, CUFFT on the GTX280, and MKL. The dashed line is

for performance on an older driver. (Right) Run time relative to our algorithms on GTX280 (zoomed on large values of IN). MKL shows lower performance
because it uses only one thread for single FFTs. The performance of the GPU algorithms is low for small N due to relatively large latencies. For larger N,

the GPU algorithms perform much better than MKL on the CPU.

300
250 A e Ours GTX200*
w 200 —e— Ours GTX280
_% 150 == Q0urs 8800GTX
] —>— Ours 8800GTS
100
CUFFT
50 —te— MKL
[o e e e e o o
13 5 7 9 11131517 19 21 23
log,N
Fig. 12.

64 ‘
W 32
= == MKL
o 16 2
£ E e ,:f CUFFT
= T —=—Ours 8800GTS
2 ——Ours 8800GTX
o]
o

Rt ot e — U OTR0

MGG G S0 0 S0 a0 S S0 S S S S on S o an o an o o 4

1 3 5 7 911131517 19 21 23
log,N

= N & ©®©
)
|
|
|

Batched 1D power-of-two FFTs. (Left) Performance of our algorithms on multiple GPUs, CUFFT on the GTX280, and MKL. The dashed line

is for performance on an older driver. (Right) Run time relative to our algorithms on GTX280 (zoomed on large values of INV). The number of FFTs M is
chosen as E/N, where E = 223, the largest value supported by CUFFT. For large N on the GTX280, our FFTs are up to 4 times faster than CUFFT and

19 times faster than MKL.

Fig. 9 and Figure 10 shows the performance of our 1D
FFTs on the GTX280 at varying core and memory clock rates,
respectively, for both the global and hierarchical algorithm.
Both algorithms scale linearly with the core clock, while
the scaling for the memory clock is less than linear for
higher rates, especially for the shared memory kernels for
N € [27,219]. This indicates that the kernels become compute
bound for these higher memory clock rates.

C. Comparisons

Fig. 11 shows the performance for single 1D power-of-two
FFTs of varying size. The performance on both the GPU and
the CPU is lower for a single FFT than for batched FFTs.
Multiple FFTs are needed to utilize all threads with MKL on
the CPU and to hide memory latencies for small N on the
GPU. For this reason, the rest of our results were obtained
by using batched FFTs where total elements E is large and
the number of FFTs in the batch, M, is E/N. Batched FFTs
are also used for higher dimensional FFTs. Fig. 12 shows
the performance of batched 1D power-of-two FFTs. Here the
performance on the GPU for small NV is much better. For
large N, our FFTs are up to 4 times faster than CUFFT and
19 times faster than MKL. Fig. 13 shows a comparison of our
1D shared memory, power-of-two FFT with the cases that are
handled by the implementation of Volkov and Kazian [17].

Fig. 14 shows performance for 2D FFTs. For 2D, the

performance of our library for large N is up to 3 times faster
than CUFFT and 61 times faster than MKL.

We also compared performance for non-power-of-two FFTs.
Fig. 15 shows the performance for prime factor FFTs. We
currently support powers of 2, 3, and 5. Fig. 18 shows the
relative performance of these kernels. The performance for
radix For larger primes we use Bluestein’s algorithm. We can
infer from Fig. 16 that MKL also uses Bluestein’s for larger
primes. CUFFT, however, uses a direct computation of the
DFT which has O(N?) complexity and has poor accuracy. For
large prime sizes, our FFTs achieve up to 11 times speedup
over MKL.

Fig. 17 highlights the accuracy of the FFT algorithms. In
general, MKL has lower error than the GPU algorithms. The
error is the lowest for all algorithms for 1D power-of-two
FFTs. Here the errors for the GPU algorithms are quite similar.

Implementation| 8 | 16 | 64 | 256 | 512 | 1024
Data size

Volkov and Kazian 08 | 102 | 124 | 229 | 222 298 260
Ours 120 | 160 | 215 | 271 | 297 | 245

Fig. 13. Comparison with the cases handled by the FFT implementation
of Volkov and Kazian [17] These performance numbers were obtained using
a GTX280 with driver version 177.11. The numbers are comparable.

140
120 A
7/
3100 /I _,_ -=---0urs*
o 80 / —t— Ours
t; 60 / CUFFT
40 / —tr— MKL
20 ,4‘4?—_\
0 = T T T T T n T
1 2 3 4 5 6 7 8 9 10 11 12
160
140
120
“ 100
o - *
E 80 Ours
5 60 —t— Ours
40 7 e KL
20
0 et —
1 2 3 4 5 6 7 8 9 10 11 12
log,N
120
RO TN
100 P e e NN
20 ~ , s - -=== Ours*
" /
%60 > NN\ —e—Ours
o 4 CUFFT
9 a0
\+MKL
20
L m
0 P T

1 3 5 7 9 11 13 15 17 19

log,Nx

=
N
00

% 32 —
5)
= 8 /
@ ., ——MKL
£ 2 =
] 1/2 p—— e — CUFFT
2 1/8 / —e—0urs
T 132 f/
1/128
1 2 3 4 5 6 7 8 9 10 11 12
log,N
128
o 64
2 32 fH—‘
g 16 - e —a— MKL
'E 8 ——0urs
s 4
1
T; 2
€ 1 S e
1/2
1 2 3 4 5 6 7 8 9 10 11 12
log,N
64
) A
32
)
2 16 A \ —4—MKL
()]
£ 5 CUFFT
L
S 4‘ ——Ours
S
o 2
3
1-
1 3 5 7 9 11 13 15 17 19
log,Nx

2D power-of-two FFTs. (Top) Performance for single 2D FFTs of size N x N. (Middle) Performance for M 2D FFTs of size N x N, where

Fig. 14.

M = E/N? and E = 224, CUFFT not shown because it does not support batched 2D FFTs. (Bottom) Performance of a single 2D FFT of size N x Ny
where Ny Ny = 224 CUFFT currently only supports 2D FFTs with N, Ny € [2, 21]. The dashed line is for performance on an older driver.

GFlops

120
100

80
60
40
20

0

Fig. 15.
relative to our algorithms. For large N, our FFTs are typically 2-8 times faster than CUFFT and 5-32 times faster than MKL.

T —Ours
A CUFFT
1 1) L . —MKL
M
D o @® % ° St P o 1®
A0 O ,\‘c,‘\ ,&o‘,‘\‘ 6(,’5 »\"196 11:59 %196
N

Rel. runtime (log)

: A
A — MKL
a i —0Ours
2 A AL AT
1
Fa% 369’ fo'f’ $1‘) 116 (’c,'l« 000 R $1‘>
A0%7 O ’\c’\' Pt 996 1:,:59 '5196

N

1D Mixed-radix FFTs. (Left) Performance for batched 1D FFTs where N = 2375F, i j k # 0, M = E/N, and E = 22, (Right) Run time

16
14 A ?512 —
12 %128 P
8 10 - —Qurs € 32 CUFFT
o A —
o 2 —MKL £ 8 —MKL
C eI e B —ours
7 - 2] m—
2 4 <
0 T T I rrrrrrrrrrrrrrrrrrrrrrrrrrrror 1/2
Y > Y) > 9 8 N @) AP P @
A $'56 ‘\‘%1} 15\0 ,,’961 6@5’5 6‘}&) ,\‘%1« 13,1 ,596 c,g% 61}
N N
20 12
m 10 A\
15 g { \
Q /-‘N/ \ ours = 8 / \ -
c
Eo 10 —a— MKL 3 6 A A —e—Ours
(G} /th—‘rf"_‘\ < a /\ J/
5 o
\/ \ﬂ—h-—..‘ 2 / \
0 T T T T T 0
4 5 7 9 11 13 15 17 19 21 4 5 7 9 11 13 15 17 19 21
log, N log, N

Fig. 16. 1D Prime FFTs. (Top) Performance for batched 1D FFTs, where N € [25,216] is prime. The saw tooth shape of the plot for our FFTs and MKL’s
is characteristic of the Bluestein algorithm. CUFFT uses an O(N 2) algorithm which is very slow for large N. (Bottom) Batched 1D FFTs where N is the
largest prime not greater than 2¢ for 5 € [1,24] and M = E/N, where E =~ 224. For large prime N, our FFTs are up to 10 times faster than MKL.

4086 5.0E-6 —
3.56-6 3
3.0E-6 B e 4.0E-6 THEmTIn
o CUFFT CUFFT
. 2.5E-6 Pl ‘o- 3066 ——f+ J+ A L | R RN SR
g 2.0E-6 - 7»&(‘7 :\)Al:(r: = ——Ours
W 1s5e6 Wo20e6 AT MKL
1.0E-6 1.06-6 +———] - 9y @
5.0E-7
0.0E+0 0.0E+0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 3 5 7 9 11 13 15 17 19 21 23 6 8 10 12 14 16 18 20 22
log,N log,N
1.0E-2 1.0E-5
— 1.0E3 //\/
g =
& 1064 CUFFT ?,3' 1.0E-6 —ours
= —O0urs =
S 1.0E5 - ——MKL 5 = MKL
= T 1067
W 1.0E-6]
1.0€-7
1.0E-8
u > A % >) W
Mg @y ™ e P 4 5 7 9 11 13 15 17 19 21
N log,N

Fig. 17. Error. (Top-left) RMSE for 1D power-of-two FFTs. Maximum error, shown with dashed lines, is roughly proportional to RMSE. The constant of
proportionality is approximately the same for other algorithms, so we do not included maximum error on the other graphs. The error for the GPU algorithms is
about a factor of 5.5 larger than the error for MKL on the CPU for large N. The error scales roughly linearly with N. (Top-right) RMSE for 1D mixed-radix
FFTs. The error for our library and MKL is about the same as for powers of two. CUFFT has a slightly higher error range and variance. (Bottom-left) RMSE
for FFTs for small prime sizes N. The error of CUFFT grows very rapidly. (Bottom-right) RMSE for FFTs over a large range of prime sizes.

300
/\ —+—Power-of-two
250

\ —a—Power-of-three —

200 Power-of-five

/ —

100

. iA, .

1 5 7 9 11 13 15 17
log,N

GFlops

19 21 23

Fig. 18. Comparison of batched 1D FFT with varying radix-R. Power
of two sizes use combinations of radix-2, radix-4, and radix-8. We use only
radix-3 and radix-5 for the other cases. Performance could be improved by
radices larger powers of 3 and 5. These performance numbers were obtained
using a GTX280 with driver version 177.11.

For mixed-radix FFTs, the error for our library and MKL is
about the same, but it goes up by over a factor of 2 for CUFFT.
For FFTs of prime sizes, CUFFT’s error rapidly balloons.
However, the error for our FFTs is on the order of 10~%, even
for large sizes.

D. Limitations

Our algorithms are designed for single-precision complex
sequences since the majority of currently available GPUs only
support single-precision arithmetic. Since our techniques are
general, the algorithms can be extended to work efficiently
on double-precision inputs. Our algorithms currently work
only on data that resides in GPU memory. External memory
algorithms based on the hierarchical algorithm can be designed
to handle larger data. Computation can also be performed on
multiple GPUs. However, for both of these scenarios, data
must be transferred between GPU and system memory, which
can dramatically lower the performance. On current GPUs, our
measurements show that the data transfer time is comparable
to FFT computation time.

VII. CONCLUSIONS AND FUTURE WORK

We have presented several algorithms for efficiently per-
forming FFTs of arbitrary length and dimension on GPUs.
We choose the algorithm that provides the best performance
for a given input size and hardware configuration. Our hier-
archical FFT minimizes the number of memory accesses by
combining transpose operations with the FFT computation. We
also address numerical accuracy issues. Our results indicate
a significant performance improvement over optimized GPU-
based and CPU-based FFT algorithms.

There are several avenues for future work. We would like
to extend our library to use double-precision. One important
issue is the computation of the twiddle factors. The cos()
and sin() functions are currently much more expensive in
double precision than single precision. For this reason it
is probably better to use a precomputed table of twiddle
factors. We would also like to add support for GPUs from
other vendors by implementing our library using DirectX 11
Compute Shader APIL. Another interesting direction is mapping
the FFT algorithms onto multiple GPUs.

ACKNOWLEDGEMENTS

We would like to thank Vasily Volkov for providing bench-
mark data for their implementation. Many thanks to Chas
Boyd, Craig Mundie, Ken Oien, and Peter-Pike Sloan for
useful suggestions and support during the course of the project.
We would also like to thank Henry Moreton and Sumit Gupta
from NVIDIA for hardware support.

REFERENCES

[1] “HPC challenge,” http://icl.cs.utk.edu/hpce/, 2007.

[2] “NAS parallel benchmarks,” http://www.nas.nasa.gov/Resources/
Software/npb.html, 2007.

[3] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E.
Lefohn, and T. Purcell, “A survey of general-purpose computation on
graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80—
113, Mar. 2007.

[4] “ATI CTM Guide,” Advanced Micro Devices, Inc., 2006.

[51 NVIDIA CUDA: Compute Unified Device Architecture, NVIDIA Corp.,
2007.

[6] C. Boyd, “The DirectX 11 compute shader,” http://s08.idav.ucdavis.edu/
boyd-dx11-compute-shader.pdf, 2008.

[71 A. Munshi, “OpenCL,” http://s08.idav.ucdavis.edu/munshi-opencl.pdf,
2008.

[8] H. V. Sorensen and C. S. Burrus, Fast Fourier Transform Database.
PWS Publishing, 1995.

[9]1 C. V. Loan, Computational Frameworks for the Fast Fourier Transform.
Society for Industrial Mathematics, 1992.

[10] K. Moreland and E. Angel, “The FFT on a GPU,” in Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, 2003, pp. 112-119.

[11] J. Spitzer, “Implementing a GPU-efficient FFT,” SIGGRAPH Course
on Interactive Geometric and Scientific Computations with Graphics
Hardware, 2003.

[12] J. L. Mitchell, M. Y. Ansari, and E. Hart, “Advanced image processing
with DirectX 9 pixel shaders,” in ShaderX?: Shader Programming Tips
and Tricks with DirectX 9.0, W. Engel, Ed. Wordware Publishing, Inc.,
2003.

[13] T. Jansen, B. von Rymon-Lipinski, N. Hanssen, and E. Keeve, “Fourier
volume rendering on the GPU using a split-stream-FFT,” in Proceedings
of the Vision, Modeling, and Visualization Conference 2004, 2004, pp.
395-403.

[14] T. Sumanaweera and D. Liu, “Medical image reconstruction with the
FFT,” in GPU Gems 2, M. Pharr, Ed. = Addison-Wesley, 2005, pp.
765-784.

[15] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha,
model for scientific algorithms on graphics processors,”
2006, pp. 6-6, 2006.

[16] CUDA CUFFT Library, NVIDIA Corp., 2007.

[17] V. Volkov and B. Kazian, “Fitting FFT onto the G80 architec-
ture,” http:www.cs.berkeley.edu/~kubitron/courses/cs258-S08/projects/
reports/project6_report.pdf.

[18] A. C. Chow, G. C. Fossum, and D. A. Brokenshire, “A programming
example: Large FFT on the cell broadband engine,” Whitepaper, 2005.

[19] L. Cico, R. Cooper, and J. Greene, “Performance and programmability of
the IBM/Sony/Toshiba Cell broadband engine processor,” Whitepaper,
2006.

[20] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick,
“The potential of the cell processor for scientific computing,” in CF "06:
Proceedings of the 3rd Conference on Computing Frontiers, 2006, pp.
9-20.

[21] D. A. Bader and V. Agarwal, “FFTC: fastest Fourier transform for the
IBM Cell broadband engine,” I4th IEEE International Conference on
High Performance Computing (HiPC), pp. 172—184, 2007.

[22] M. Frigo and S. G. Johnson, “FFTW on the cell processor,” http://www.
fftw.org/cell/index.html, 2007.

[23] D. H. Bailey, “FFTs in external or hierarchical memory,” Supercomput-
ing, pp. 23-35, 1990.

“A memory
Supercomputing

