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Abstract

We present a graphical semantics for the pi-calculus, that is easier to visualize and better suited to expressing causality
and temporal properties than conventional relational semantics. A pi-chart is a finite directed acyclic graph recording a
computation in the pi-calculus. Each node represents a process, and each edge either represents a computation step, or a
message-passing interaction. Pi-charts enjoy a natural pictorial representation, akin to message sequence charts, in which
vertical edges represent control flow and horizontal edges represent data flow based on message passing. A pi-chart repre-
sents a single computation starting from its top (the nodes with no ancestors) to its bottom (the nodes with no descendants).
Unlike conventional reductions or transitions, the edges in a pi-chart induce ancestry and other causal relations on processes.
We give both compositional and operational definitions of pi-charts, and illustrate the additional expressivity afforded by the
chart semantics via a series of examples.
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1 Message Sequence Charts as Process Histories

Message sequence charts (MSCs) are a successful graphical notation for describing the his-
tory of interactions between system components running in parallel. They are standardized
by the ITU in connection with the Specification and Description Language (SDL) [22,21],
and are included, as sequence diagrams, in the Unified Modeling Language (UML) [33].
MSCs are widely used to specify the behaviour of systems made up of multiple com-
ponents; a substantial literature addresses the problems of defining formal semantics for
MSCs and deriving implementation code from MSCs used as specifications [27,2].

This paper explores a different direction, the use of MSCs as a formal semantics, in
terms of potential execution histories, for known code. We work within a process calculus,
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the pi-calculus, although the ideas should apply to other languages. The semantics of the pi-
calculus is typically specified as a reaction or reduction relation, or as a labelled transition
system [30,39]. We propose a form of MSC as an alternative.

In fact, MSCs are already used informally to illustrate computations in process cal-
culi. For example, Bonelli and Compagnoni [5] visualize intended histories of pi-calculus
processes with MSCs. Phillips, Yoshida, and Eisenbach [36] illustrate the semantics of a
distributed abstract machine for the boxed ambient calculus [11] with MSCs. Jeffrey and
Rathke [23] consider traces induced by a labelled transition system, and make informal
connections between these and sequence diagrams. A paper [4] on the TulaFale process
language uses an MSC to show an attack on a security protocol. In these papers, the formal
semantics is given by relations and MSCs appear only informally. The attraction of MSCs is
that they pictorially represent the identity of individual process components as they evolve
and interact with other components; the conventional reduction semantics hides this infor-
mation. Since the history and identity of components is valuable for expressing formal
properties of systems, we go further and ask whether MSCs are suitable in themselves as a
formal semantics.

To explain some of the basic ideas and to see some of the benefits of a chart semantics
for the pi-calculus, we describe a simple example. We suppose there is a single stateful
server S(n,s) which when called with a value n’ and a session channel ¢, responds by
sending on c its current state n, provisions a private service R(c) to handle the session, and
changes state to S(n’,s). Here is pi-calculus code for such a server, together with a client
C(n',s) that initiates such a session, and then runs A(n,c) where n is the previous state of
the server and c is the session channel.

S(n,s) :=s(r',c).(e(n).R(c) | S(n',s))

C(n',s) := (ve)s{n',c).c(n).An,c)
The pi-chart below shows interactions between one server and two clients. Pi-charts are in
the spirit of MSCs but do not conform to the letter of the standard [21]. In particular, we

allow processes to fork, and to generate fresh names.
C(ny,s) S(n,s) C(na,s)

new ¢
(ni,c1)ons

new ¢,
S(ni,s)
(n2,c2) on's
ny) on ¢y
S(na,s) R(c2) A(ny,c2)



A pi-chart is a directed acyclic graph. Both nodes and edges are labelled. As in this
example we usually omit some node and edge labels to avoid clutter. Nodes are labelled
with processes. Downward (or oblique) edges represent process evolution and are labelled
with next labels, including new c, which represents the generation of a channel ¢, and &,
which represents the unfolding of a process constant or parallel composition. The next
label € is generally omitted. Horizontal edges represent interaction, and are labelled with
communication labels, (¢) on a.

A pi-chart represents a single computation starting from its top (the nodes with no
ancestors) to its bottom (the nodes with no descendants), with restrictions corresponding
to any new names. The computation in the example corresponds to the following series of
reductions in a conventional reduction semantics.

C(n1,s) | S(n,s) | C(nz,5) =7 (ver)(ve2)(A(n,cr) | R(er) | S(n2,s) | R(e2) | Alni,e2))

As ameans of visualizing computation, pi-charts have advantages over the conventional
relational semantics. A series of computation steps in the relational semantics is hard to
visualize; listing the series of intermediate states can lead to an overwhelming amount of
syntactic detail. Conventionally, reduction and transition relations are closed up to associa-
tivity and commutativity of parallel composition. Hence, it is hard to track the evolution
of individual threads within a system. One solution is to introduce syntax for abstract
locations [13], although this increases the amount of syntactic detail when visualizing re-
ductions. On the other hand, pi-charts have a two dimensional representation that is easily
rendered pictorially. The graphical structure allows detail, such as process labels, to be
omitted with little risk of ambiguity. Vertical paths in a chart track the evolution of indi-
vidual processes; in our example, we see that S(n, s) is an ancestor of R(cy), S(na,s), and
R(c2), but not of the other processes at the bottom of the chart. (There is, though, a causal
relation between S(n,s) and all the processes at the bottom.)

In general, MSCs have been highly successful as a means of visualising and validating
dynamic behaviour of concurrent systems, and their graphical representation has also facil-
itated communication between groups with different backgrounds [28]. We believe that a
sequence chart representation of pi-calculus computations could have similar benefits.

We proceed as follows. In Section 2 we formally define a chart semantics for a syn-
chronous pi-calculus with mixed choice. We give three separate inductive characterizations
of the set of pi-charts; Theorem 2.4 establishes the equivalence of these characterizations.
As evidence for the expressivity of pi-charts, we give a series of examples of correctness
properties expressible using charts. Section 3 investigates the relationship of pi-charts to
a conventional reduction semantics. Theorem 3.4 shows the relation between the parallel
compositions of processes at the top and bottom of a pi-chart coincides with the reflexive
and transitive closure of a conventional reduction semantics, up to top-level restrictions.
Theorem 3.8 relates structural congruence of processes with a structural congruence on
graphs. Sections 4 and 5 conclude and discuss related work.

Appendix A shows how charts can usefully illustrate the behaviour of biological re-
actions expressed in the pi-calculus. Appendix B is a case study of proving properties
expressible with pi-charts. We introduce a type system built from standard notions of name
groups, group creation, and usage bounds on channels. Formal data flow and usage proper-



ties are conveniently expressed using charts. Theorem B.1 establishes bounds on data flow
and channel usage guaranteed by the type system.

2 A Chart Semantics

We consider a polyadic pi-calculus, with synchronous communication, mixed choice, and
process constants. Standard variations such as replication operators or asynchronous output
can be accommodated in our framework, but we omit the details. The only unusual feature
is that we annotate the autonomous 7 prefixes with terms ¢ from a free algebra A over
names; these terms serve various purposes, such as representing events (for correspondence
assertions [20]) and type annotations (for the system in Appendix B).

Syntax for Pi-Calculus Processes: P
I 1

a,c,x names and variables
M:=M+M | a(c).P | a(x).P | ©.P mixed choice
PO,R::=M | (P|Q) | (va)P | A(c) | 0  process

|

Let P be the set of all processes. Names identify communication channels. We write
fn(P) for the set of names occurring free in P. Let P{*/,} be the outcome of substituting y
for each free occurrence of x in P. We write a, ¢, x for finite tuples of names.

The intended meaning of the process syntax is as follows. An output a(c).P sends the
tuple ¢ on channel a, to become P. An input a(X).P receives a tuple ¢, of the same length
as ¥, off channel a, to become P{°/}. In a(%).P, the names X are bound with scope P,
and assumed to be pair-wise distinct. A process 7;.P autonomously marks the event ¢,
and becomes P. A choice M + N behaves either as M or N. A parallel composition P | Q
behaves as P running in parallel with Q. A restriction (va)P creates a fresh name a and
becomes P; the name a is bound and has scope P. We assume a given constant library,
a finite collection of process constants, each of which has a definition, written A(X) := P,
where fn(P) C ¥. Given such a definition, a process A(¢) behaves as P {¢/z}. Finally, 0
does nothing.

We identify phrases of syntax up to consistent renaming of bound names; for instance,
(va)P = (vb)P{"/,} if b ¢ fn(P). We also identify processes up to associativity and com-
mutativity of the choice operator.

2.1 Labelled graphs

Charts are particular labelled graphs. Nodes are drawn from an infinite set of node iden-
tifiers, I, ranged over by 1. Nodes are labelled with pi-calculus processes. Each edge has
either a next label (nf) or a communication label ({¢) on a). A next label represents an
event, and labels an edge from a process to its successor; the next label new x, where the
free name x is globally fresh, represents name generation. Annotation ¢ represents a tau
step, while next step € represents all other kinds of process evolution, including unfold-
ing of process constants and parallel compositions. A communication label represents a
message passing from an output to an input.

Edge Labels for the Pi-Calculus: nL and L



nfenl ;= next label

new x name generation

t annotation

€ next step
leL:= edge label

nf next label

(¢)ona communication

A labelled graph is a pair (N,E) where N : T — P and E : I x I — L are finite maps.
Given G = (N, E), we write N for N and E¢ for E. A graph G is well-formed iff dom(Eg) C
(dom(Ng) x dom(Ng)). The following notations express graphs as compositions of la-
belled nodes and edges.

L2t = (2,{(( 1), 0))
teP :=({(1,P)},2)

GUH = (NgUNy,EgUEg) when a well-formed graph

G\H := (Ng\Ngy,Eg\Eg)

2.2 Primitive pi-charts

We begin our chart semantics by defining a set of primitive pi-charts. Let a primitive chart
be any instance of one of the following five schemas. Here and elsewhere we omit the
€ label from edges. We refer to nodes with the variables 11,1, 13,14, assumed pair-wise
distinct. Let C, be the set of primitive charts.

Primitive Charts: C,
I 1

1% (va)P um P|Q ueL.P+M
newa t

Le P n¥ P 1w Q L% P
i ¢)ona "
a(e).P+M 1 By a(X).0+N lll A@)
P %1 us 0{%} ue P4}
when A(X) := P

Since we identify processes up to renaming of bound names, from (va)P we get in-
finitely many primitive charts of the first form above, one for each possible choice of a.

2.3 The top and bottom of pi-charts

Each pi-chart has a top, the nodes with no predecessors, and a bottom, the nodes with no
successors. A core idea, formalized later as Theorem 3.4, is that a pi-chart represents a
computation starting with the processes at the top, and ending with those at the bottom. We



formalize top and bottom below, together with other notations needed for a compositional
definition of pi-charts: new(G) is the set of names generated within a chart; G; is the
edgeless graph consisting of the terminal nodes of G, that is, those labelled with 0.

Gt := ({(1,P) | Ng(1) =PA—=(F,nl. Eg(1',1) =nl)},2)
G, :=({(1,P) | Ng(1) = PA—(T,nl. Eg(1,1') =nl)},2)
new(G) :={a |newa € range(Eg)}
Gri == ({(1,0) [ Ng(1) = 0},2)
lg :=dom(Ng)

We write nng(S) for U,esfn(Ng(1)) when S C lg. When speaking about a particular
graph G, we often write nn(S) for nng(S). We let nn(G) := nng(lg). One invariant we
want to preserve is that all names that occur in a chart are either free in the processes
at the top of the chart or freshly created. A well-named chart is one satisfying nn(G) C
nn(GT) Wnew(G); note that all primitive charts are well-named.

2.4 Three equivalent characterizations of pi-charts

We can now define how to build larger charts from primitive ones. We give three definitions,
two compositional and one operational in flavour, and show them equivalent.

Intuitively, two pi-charts may be composed in sequence if the bottom of the first equals
the top of the second. Dually, two pi-charts may be composed in parallel if they are com-
pletely disjoint. Given these notions, a pi-chart is either a singleton chart 1 e P, a primitive
chart G € C,, or a composition GU H where G and H are composable, either in sequence
or in parallel.

The following definitions make these intuitions precise; various freshness conditions
are needed to guarantee global uniqueness of generated names.

Sequential Composition: S(G,H)

I

If G and H are well-formed then S(G, H) iff

(1) |Gﬂ IH = IGJ_ \ |(GL)n” = IHT;

(2) new(H) Nnew(G) =nn(G1)Nnew(H) = &; and
(3) whenever 1 € IgN 1y then Ng(1) = Ng(1).

Parallel Composition: P(G,H)

I

If G and H are well-formed then P(G, H) iff

(D) 1lgNly = @; and

(2) new(G) Nnew(H) = nn(Gt)Nnew(H) = nn(Ht) Nnew(G) = &.
|

A First Characterization of Pi-Charts: Cgp

GGC[) G,H € Csp S(G,H) G,H € Csp P(G,H)

teP e Cgp G e Cgp GUH € Cgp GUH € Cgp




Although sequential and parallel compositions are intuitive and easy to define, they lack
some algebraic properties useful in proofs. As an example, if P(G1,G>) and S(G1 UG, H),
we neither have S(Gy,H) nor P(G,H), in general. Moreover, inductive proofs using the
definition of Cgp require two inductive cases, where one ought to suffice. To overcome
these problems, we unify parallel and sequential composition into liberal composition, and
obtain a second definition of pi-charts.

Liberal Composition: L(G,H)

I

If G and H are well-formed then L(G,H) (“G before H”) iff

M lgNlyg C IGJ_ and lgNlg C IHT;

(2) new(H) Nnew(G) = nn(Gt)Nnew(H) = nn(Ht \ G) Nnew(G) = &; and
(3) whenever t € lgN 1y then Ng(1) = Ng(1).

A Second Characterization of Pi-Charts: C;

GeC, GeC, HeC, L(G,H)

tePcCy Ge(Cp GUH e C,

By comparing definitions, it is clear that liberal composition is more permissive than
either parallel or sequential composition. Crucially, liberal composition is associative, and
preserves well-namedness.

Lemma 2.1 Assume that graphs Gy, G, G3 are well-named.

(1) IfL(G1,G>) and L(G1 UGa,Gs), then L(Ga,G3) and L(Gy,G>UGs).

(2) If L(G2,G3) and L(G1,G2UG3), then L(G1,G3) and L(G, U G2, G3).
Lemma 2.2 If Gy, G, are well-named and L(G1,G,) then G| UG, is well-named.
Proof

I’l(G] UGQ)
=n(Gy)Un(G,)
Cnn(G;1)Unew(G
=new(G;UG,)Unn
Cnew(GUGy)Unn
= new(G1 U Gz) Unn

unn(Gat)Unew(Gy)

Gir)Un(le,)

G]T) UI’l(leT —join(G1 , Gz)) Ul’l(jOin(Gl , Gz))
G1UG,7)Un(join(Gy,G))

A~ N N

Then n(join(Gl,Gz)) - I’l(lGu) - n(Gl) - nn(GlT) U neW(Gl) - I’l(lGlT U (lG2T \ |G1)) U
new(Gi1) C nn(GyUG,7)Unew(GUG,).
Moreover,

nn(G; UG,7)Nnew (G UG,)
=(nn(Gi1)Unn(lg,; —lg,,)) N (new(Gi) Unew(G>))
(new(Gi)Nnn(lg,; —lg,,))
%)



1 If G € Cy then G is well-named.
Proof By Lemma 2.2 and nn(G) C nn(G)Unew(G) for all primitive pi-charts G.
By associativity (Lemma 2.1) we obtain the following iterative account of Cy.

Lemma 2.3 G € Cy, iff there exist pi-charts Hy,...,H, € C,U{1eP |1 €1P € P} such
that G=H,U...UH, and L(HU---UH;_,H;) for eachi € 2..n.

Proof The implication from right to left holds by a simple induction on n.

We prove the other direction for all derivations D of G € Cy, by induction on the depth
of derivations of G € C;. We define the right complexity r of a derivation D as r(D) :=0
for a single primitive rule D and r(B-BEFORE(Dy,D5)) := r(Dy) + (r(Dy) +1)2.

The base case (G € CpU{1eP |1 € I,P € P}) is trivial. For the induction case, we
assume that the lemma holds for all pi-charts G € Cy, with derivations of depth strictly less
than k.

Assume that D := B-BEFORE(Dj,D>) is a derivation for G € C, with depth k and the
smallest (D) among all derivations for G with depth k, and that D, and D, are derivations
of G| € Cp and G, € Cy, respectively. If D, is aleaf then G, =H € C,U {teP|1€L,Pe
P}, and we have by the induction hypothesis that Gy = H; U...UH, where Hy, ..., H,
are in C,U{1eP |1 €I,P € P} such that L(H,U---UH;_1,H;) for each i € 2..n. Thus,
G=H,U...UH,UH, and moreover L(G;,H) by assumption.

If D, is not a leaf, we derive a contradiction. In this case, D, = B-BEFORE(D31, Dy;) for
some Dy, Dy deriving G; and Gyp, respectively. Lemma 2.1 then gives that L(G1,Gy)
and L(G1UG31,G2,). Then B-BEFORE(B-BEFORE(D1,D;}),Dy;) is a derivation of G € Cp,
and

r(B-BEFORE(B-BEFORE(D1,D71),D2))
= r(D1) + (r(D21) +1)2 + (r(D2) + 1)?
D)+ (r(Dar) + 1+ (r(Dp) +1)?)?

which is a contradiction.

For our final definition, we start with an initial set of unconnected nodes and add prim-
itive charts one by one to the bottom. This amounts to an operational semantics. (We use
it as the basis of two separate pi-calculus implementations that output pi-charts in the dot
language, suitable for rendering with Graphviz [19].) We define chart extension G — G’
(“G extends to G’”) as follows, and hence obtain a third characterization of pi-charts.

Chart Extension G — G’ and a Third Characterization of Pi-Charts C;

I

G — G iff there is H € C,, such that G’ = GUH and L(G,H) and I, Clg,
C;:= {G|GT —* G}

|

Theorem 2.4 Csp = C. = C;
Proof We begin by proving that C; C Cy, that is, that G € Cy, implies that Gt —* G.



Trivially, L(Gt,G). By Lemma 2.3, there exist primitive pi-charts H, ..., H, such that
G=H U...UH, and L(H,U---UH;_1,H;) for each i € 1..n. Since L(G+,H,U...UH,)
Lemma 2.1(i) gives that L(Gt,H;U...UH,_1) and L(Gr UH U...UH,_1,H,).

We also have Iy, C |G umu..om, ),» 0 Gt UHIU...UH,_; — G. Inductively,
GT —"G.

Secondly, we prove that C; C Cgp, that is, that if G+ —* G then G € Cgp, by induction
on the number of extensions. For the base case, G = Gt = (Ng,d) € Csp, by parallel
composition of charts of the form t e P. For the induction case we have G = G’ UH with
G €C;,HeC, L(G,H)and Iy, Clg . Asabove (I, \lg,,) UH € Cgp. By induction
G’ € Cgp. Since 0 ¢ dom(Ny,, ) we get S(G', (I, \lg,,) UH), s0o G'UH € Cgp.

Finally, since S(G,H) VvV P(G,H) = L(G,H), Csp C C, by induction. O

2.5 Expressible properties

To end this section, we discuss some properties expressible with pi-charts. We may see the

edges of a chart G as a relation —g C I x L x I. We split this relation, writing 1| EI;G 1, for
. (¢) ona )
dc,a. 1y — g 1» and 11%2 for Eg(11,12) € nL. Hence, we define some causal relations,

roughly following the terminology of Priami [38].

Causal Relations:

I 1
on on

[Ancestor|g:= $*G [Causes]g:= (YU ¢)* [Enables]g:= (+5U o6 U(—g)1)*

The node receiving a message enables the sending node and all of its descendants.
This is due to the synchronous nature of communication: the sender proceeds with the
knowledge that the message was received, just as if they had received an explicit acknowl-
edgement of reception. The “causes” relation only flows in the direction of communicated
messages; it is the equivalent in our setting to Lamport’s “happened before” relation [26].

Another causal semantics for the pi-calculus is proved semantics [9,17,16], which makes
a distinction between subject and object dependencies [7]. Since the latter are only defined
in terms of “bound output” labels of a labelled transition system, they have no direct coun-
terpart in our setting where all communication is internal to a pi-chart.

Let the nodes with 1 as an ancestor be the descendants of 1. If 1, 13 are the nodes in
the primitive chart for parallel composition, the sets of descendants of 1, and 13 are disjoint.
(The “causes” and “‘enables” relations do not possess this property.)

& t
Lemma 2.5 If a pi-chart G has distinct edges 1, — 1 and 11 — 13 then there is no 14 such
that both 1, [Ancestor]g 14 and 13 [Ancestor|g 1a.

We can concisely express some intensional properties of the interactions recorded in a
chart G as follows (omitting the subscripts ).

. (a) onc
e “I got an answer to this message (1 — 12).”

3t’. (11 [Ancestor] ') A (1 [Ancestor]ﬁ )



» “Every end(t) event was caused by a corresponding begin(t) event.” [20]

, end(t) , begin(t)
Ve, 1,3t (1} — 1) = (I’ —[Causes]| 1;)

e “I (11) only communicated with descendants of somebody else (15).”
V' (11 [Ancestor] % 1) = (1, [Ancestor] 1)

* “No name created by me (1;) was ever transmitted to somebody else (12).”

TS newb / (yona '
-1, 1,a,c. (b € )N (1 [Ancestor] — 17) A (1] [Ancestor] — 1) A (12 [Ancestor] 1)

3 Relating the Reduction Semantics and Chart Semantics

We define a standard reduction semantics for our pi-calculus [30,39], based on structural
equivalence P = @, and reduction P — Q. The only noteworthy detail is that constant
instantiation is a rule of reduction, not structural equivalence. This avoids the syntactic
constraints on definitions usually needed to avoid any unbounded unfolding.

Structural Equivalence: P = Q

r
P=P STRUCT-REFL

Q=P=P=Q STRUCT-SYMM
P=Q,0=R=P=R STRUCT-TRANS
P=P = (vx)P = (vx)P STRUCT-RES

P=P =P|Q0=P|Q STRUCT-PAR
P|Q=Q]|P STRUCT-PAR-COMM
(P|Q)|R=P|(Q]|R) STRUCT-PAR-ASSOC
a¢ fn(P)= (va)(P|Q)=P]|(va)Q STRUCT-RES-PAR
(va)(vb)P = (vb)(va)P STRUCT-RES-RES

|

Reduction: P — Q

I

P—P=P|Q—P|Q RED-PAR

P — P = (va)P — (va)P' RED-RES
P=00—-0,0=P=P—P RED-STRUCT
(a(x).P+M) | (@(c).Q+N) — P{/%} |0 RED-COMM
o.P+M— P RED-NOTE
A(C) — P{%} if AX) =P RED-INST

|

3.1 Operational correspondence

We now develop the correspondence between the reduction semantics of the pi-calculus
and pi-charts. We begin by defining the process corresponding to a pi-chart: the parallel
composition of the processes at the bottom of the chart inside a restriction of the names
generated in the chart.

10



Unloading a pi-chart G to a process: [G]
[G] := (vnew(G))(ITiei;, NG(1))  (hence: [G] = (vnew(G))[G.])

1 Given P, we let N(P) be the set of processes of the form
(ve)(Pr |-+ | Py [ Ar(cr) |-+ | Any(Cny) | Opy | -+ [ Oy,)), where each P is a sum M; or a
constant A(c;), that are structurally equivalent to P. We write Py for any element of N(P).
We split the primitive charts into housekeeping charts, that do not correspond to re-
duction steps, and computation charts, that do. Let the set of housekeeping charts, Cy,, be
the subset of C, generated just from the schemas for parallel composition and restriction.
Let the set of computation charts, C., be C,, \ Cj,. Similarly, we split the chart extension
relation — into two relations —, and —. as follows. If G — GU H with H € C,, we write
G —;, GUH. Similarly G —. GUH if G - GUH with H € C,.

Housekeeping charts
I

l/\P 0 u l (va)P
newda

153 e P 13\1 0 153

We can then say that a pi-chart G is in normal form if G /4. We let N(G) be the set of
pi-charts Gy in normal form such that G — Gy.

Lemma 3.1 N(G) is non-empty for every pi-chart G.

Proof By induction on E,¢i; |Ng(t)[, where [P| denotes the syntactic size of P. There
are three cases.

(1) If G, =1e(va)PUH with a & nn(Gr)Unew(G) then there is 1 with G —, GU
New(t)(a,P)(1') =:G'and G'; =1'ePUH. Then e, |Ng(1)|= I+Zcry, ING (1)],
and by induction G’ —; Gy with Gy in normal form.

(2) Otherwise, if G, =1eP | QUH with a & nn(Gt) Unew(G) then there is 11,1,
with G —, GUPar(1)(P,Q)(11,) =: G’ and G’ | = {eiota;PU1, e QUH. Then
Zietg ING(1)| =1 +Ziely INg/(1)| and by induction G' —; Gy with Gy in normal
form.

(3) Otherwise, G is in normal form and we are done.

We can then show that housekeeping extension does not change the process corresponding
to the chart, up to structural equivalence.

Lemma 3.2 Suppose G is a pi-chart and P = |G]. If G —;, GUH then P = [GUH].

Proof If H is a PAR chart, this is immediate by AC of parallel composition. If H is a NEW
chart, there is 1 € g, such that Ng(1) = (vx)P, and y & new(G) Unn(GT) U fn((vx)P).
By Corollary 1, y & fn([],,¢ G Ng(1;)), so we may use scope extrusion to conclude that
[G] = [G']. By transitivity, P = [G'].

2 If P=[G] and Gy € N(G) then [Gy] € N(P).

11



Proof For each Gy € N(G), [Gn] € N([Gn]) = N([G]) = N(P).
3 N(P) is non-empty for every process P.
Proof By Corollary 2 and Lemma 3.1 with G =[1e P] .

Reductions, on the other hand, are matched one for one by computation extension of
charts, possibly with some housekeeping beforehand to reveal the redex.

Lemma 3.3 Suppose G is a pi-chart and P = [G]).
(1) If P— P' then G —;—. G with [G'] = P".
(2) If G —. G then P — P with [G'] =P

Proof

(1) Assume that Py = (veé)[[,—; P There are three base cases for P — P’.

RED COMM Then P — P' if and only if there are i, j < n and a,¢,X,F/,P;,M,N
with P, = a(b).P/ + M and P; = a(x).P;+ N such that P’ = (ve)(F/ | P}{¢ et
[Te(1..n\ijy) P) =: Q. By STRUCT, Py — P’

By Corollary 2, G — Gy with Py =4 [Gn]. Thus, there are 1;,1, € lg,, with
NGy (1) = a(c).F{ +M and Ng, (12) = a(x).P; + N. Choosing distinct t{,1; & |Gy,
we get Gy —. Gy UComm(1y,12)(a,¢, X, P/ ,P],M N)(11,1,) =: H. Clearly, [H] =
Q=P.

RED NOTE Then P — P’ if and only if there is i < n and T, P/ with P, = 7,.P! such
that P/ = (vE)(Ot ’ Pi/ ‘ HvE({l..n}\{i,j}) Pv) =: Q. By STRUCT, Py — P.

By Corollary 2, G —} Gy with Py =¢ [Gy]. Thus, there is 1 € lg,, with
Ng, (1) = 5.P!. Choosing U’ & lg,, we get Gy —. Gy UNote(1)(t,P)(1’). Clearly,
[GyUNote(1)(s,P) (1) =Q =P

RED INST Then P — P’ if and only if there is i < n and A,¢ with P, = A(¢) and
A(?c) := P such that P/ = (VE)(PA {LN/;} ‘ Hve({]...n}\{i,j})Pv) =: 0. By STRUCT,
PN — P/.

By Corollary 2, G —} Gy with Py =¢ [Gy]. Thus, there is 1 € lg,, with
Ng, (1) = A(¢). Choosing 1’ & Ig,,, we get Gy —. Gy UInst(1)(A,c)(1’). Clearly,
[GyUlnst(1)(A,0) 1) =Q=P.

(2) Assume that G —. GUH, lg, = {1}, and N(1;) = P.. Modulo renumbering of the

node identifiers, there are three cases for H.

H = Note(1,)(T, P{)(1{): We then have [G] = (ve)(tr.P{+M | [1,—>. . P) —
(V~)(0T | Py [ Tl=2..n ) = [G].

Inst<11>(A ¢)(17): Assuming that A(X) := Pa, we then have
[[G]] = (VE)(A(E) ‘ Hv:Z...nP) (VN) Pp {C/x} ’Hv 2..n ) [[G/II

H = Comm(1y,12)(a,c,X,P{,Py,M,N)(1},1;): Wethen have [G] = (ve)(a(c).P{+M |
a(®)PL+N [ Thes o P) — (V)L P {5} [ Thos ) =[G,

The full correspondence between many-step reduction of processes and pi-charts is then
given by the following theorem.

Theorem 3.4 P —* Q iff there is a pi-chart G with P = [[G7] and Q = (vnew(G))[G_].
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Proof By Lemma 3.2, Lemma 3.3 and induction, with G and G’ in the lemmas given by
G:=Gtand G :=G. O

Conversely, if [G1] —* (vnew(G))[G ] for some graph G, the graph is not necessarily
a pi-chart. It may have spurious edges, for example. We cannot expect to recover the notion
of a pi-chart simply from the reduction semantics.

Many standard equivalences, such as barbed equivalence and congruence, are defined
in terms of the relation P —* Q, plus direct observations of process structure [39]. Theo-
rem 3.4 provides a basis for re-defining such equivalences in terms of charts.

3.2 Structural equivalence on graphs

The set of pi-charts {G | 1 e P —* G} generated by a process P is not preserved by structural
congruence of processes, that is, it is not true that if P = Q then P and Q will generate the
same charts, or even of the same shape. For example, consider two equivalent processes
(va)(P| Q) and P | (va)Q, where a ¢ fn(P). The first process will generate a fresh name a
and then branch to P and Q, whereas the second process will branch to P and (va)Q, which
then can generate the fresh name a. We reconcile these differences by defining a notion of
structural congruence on graphs. Let G = G’ be the least relation on graphs that is reflexive,
symmetric and transitive and that satisfies the following axioms.

Structural Equivalence on Graphs: G = H
I 1

/<Q)|R /\PI(QIR)

LK PO 1% R = u¥p uA QIR SC-COMP-ASSOC
l3'l/P 14% [0} l4D/>Q 15\1 R
11 % (va)(vb)P 11 % (vb)(va)P
newa newb
L% (Vb)P = LY (va)P SC-RES
newb newa
i3 p 3% p
u® (va)(P|Q) um Pl(va)Q
newa
_ Ve N
Lh P|Q = B P L% (va)Q SC-RES-COMP
newa
130/)P 14\1 ] ue Q
P=
7Q SC-CALC
teP=10Q
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G=G H=H' L(G,H) L(G,H)

SC-CONG
GUH =G UH'

We note various properties of equivalent charts in Lemma 3.5. The lemma states that
the nodes at the top of equivalent charts are equal up to structural congruence of processes
(1), and similarly for the nodes at the bottom (2). Equivalent charts also generate the same
fresh names (3), and their corresponding processes are equivalent (4).

Lemma 3.5 VG. if G is a pi-chart and G = H then H is a pi-chart and

(1) Gr=H~

(2) GL=H,

(3) new(G) =new(H)
@) [6] =[H]

Proof By induction on the derivation of structural congruence for pi-charts.
SC-COMP-ASSOC

/{Q)IR /\P(QR)

IfG= LK PO 159 R and H = e P LR QIR then:

;e p lf\' 0 14"DQ lsq' R

() Gr=1uye(P|Q)|R=10P|(Q|R)=Hr by STRUCT-PAR-ASSOC
2) G, =11ePUneQUIizeR=H,

(3) new(G) =new(H) =@

@ [Gl=P[Q|R=P[Q|R=[H]

SC-RES
11 % (va)(vb)P 1 % (vb)(va)P
newa newb
fG= ny (vb)P and H = 2% (va)P then:
newb newa
3% P 3% P

(1) Gr =1, e(va)(vb)P =1, e(vb)(va)P = Ht by STRUCT-RES-RES
2) G, =1;6P=H,

(3) new(G) =new(H) ={a,b}

@) [G] = (va)(vb)P = (va)(vb)P = [H]

SC-RES-COMP Assume x ¢ fn(P)
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u® (va)(P|Q) ug Pl(va)Q

IfG = nk PlO andH=  G¥ P 0¥ (vaQ  then:

newa

l3"PP l4<)' (0] ue Q

() Gr=1e(va)(P|Q)=1,eP|(va)Q = Ht by STRUCT-RES-PAR
2) GL=1p3ePUleQ=H,
(3) new(G) =new(H) ={a}
@ [G] = (va)(P| Q) = [H]
SC-CALC
IfP=QandG=1eP and H =1 e then:
(1) Gr=1eP =10 = Hr by (SC-CALC)
(2) G, =1eP=1eQ =H, by (SC-CALC)
(3) new(G) =new(H) =@
@ [G]=P=0=[H]
SC-CONG
If L(G,H) and L(G',H') and G = G’ and H = H' and GUH is a pi-chart then G and
H are pi-charts by Lemma 3.6. Therefore Gt = G'v, G, =G’} , new(G) = new(G')
and [G] = [G'] by induction, and also Hr = H't , H. =H', , new(H) = new(H’) and
[H] = [H'] by induction. Let I = (G, NHy) and I’ = (G', NH'y). Therefore I =I' by
(sc-cALC). Therefore:
(1) (GUH)y =GTU(HT\I)=G'tU(H't\I') = (G'UH’)+ by (SC-CALC)
(2) (GUH), =H, U(G, \I)=H' | U(G' \I')=(G'UH’) | by (SC-CALC)
(3) new(GUH) = new(G)Unew(H) = new(G")Unew(H') = new(G'UH') =Z
@ [(GUH),] = [H,U(G\D] = [H.] | [G: \1]
and [(G'UH") | [ = [H' L U(G' \I)] = [H' L] | [G" L\
Therefore [(GUH) ] = [(G'UH') ] by STRUCT-PAR.
Therefore [GUH] = (VZ)[(GUH) ||| = (vZ)[(G'UH'") ] = [G'UH'] by STRUCT-
RES.

Lemma 3.6 VG,H. if GUH is a pi-chart and L(G,H ) then G and H are pi-charts

Proof By induction on the derivation of the syntax for pi-charts. For each primitive pi-
chart Cp, if Cp = GUH and L(G,H) then either G = Cp and H is a pi-chart or vice-versa.

We can characterize structural equivalence of processes in terms of the extension rela-
tion G — G’ on graphs and structural equivalence of graphs, as stated in Theorem 3.8. The
theorem states that equivalent processes generate equivalent charts, up to housekeeping ex-
tensions. Ideally we would like the statement of Theorem 3.8 to hold for G = H rather
than the weaker G — ;= H (recall that — denotes a “housekeeping” transition involving a
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parallel composition or a restriction). Unfortunately, the stronger statement does not hold
in general. For a counterexample, consider the two equivalent processes (va)(P | Q) and
P | (va)Q, where a ¢ fu(P), and the charts G, H, G’ defined as follows.

ur Pl(va)Q u? (va)(P|Q)
19 (va)(P| Q) newa
G = newa H = LY P B (va)Q G = LR P|Q
Le P|Q newa
ue Q N A 0

We have that 1; @ (va)(P | Q) can extend to G but 1; P | (va)Q cannot extend to any
chart structurally congruent to G. However, 1; @ P | (va)Q —— H and G can perform an
additional housekeeping extension to G’ with G’ = H.

Proposition 3.7 if P = Q and 1 ¢ P —* G then there is an H such that 1e Q —* H and
G —>ZE H
Proof By induction on the derivation of structural congruence for pi-calculus. We as-

sume the following induction hypothesis. If Gy is a pi-chart and P is a process and P = Q
and P(1e P,G) then:

(1) if GoU1eP —* G then JH such that GyU1eQ —* H and G —,= H
(2) if GoU1eQ —* H then 3G such that GyUt1eP —* Gand H —;=G

The proof exploits the fact that structurally congruent processes generate structurally con-
gruent charts by a series of housekeeping chart extensions. In principle, a housekeeping
extension can always happen eventually, regardless of other chart extensions that may oc-
cur. We prove this by examining each of the structural congruence rules in turn, in order to
ensure consistent use of node identifiers. The base case for part (1) of all the rules is as fol-
lows. fP=Qand ;e PUG) —* 1,0 PUG’ and P(1; ¢ P,G') then 1, ¢ QU Gy —* 1,0 QU G’
and P(1, ¢ Q,G’). Therefore 1; e PUG’ =1, ¢ QU G’ by SC-CONG and SC-CALC. The base
case for part (2) is similar. Due to lack of space, we show only some representative induc-
tive cases.

STRUCT-RES-PAR

If G, = and G, = and G3 =
u# (va)(P|Q) u% (va)(P|Q) us (va)(P|Q)
newa newa
L P|Q LR PO

l3D/>P 14\1 o
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and H| = and H, = and Hz =

u# P|(va)Q 7\P (va)Q ,7\1’ (va)Q

LY P LW (va)Q Y P 1B (va)Q

newa

1y (0]

then part (1) has two remaining cases:

e IfGiUGy) —" G U G’ and L(Gz,Gl) and {lz, 13, 14} Nlg = @ then H UGy —* H3 U G
and L(H3,G’) and G, UG' —), Gz UG’ and L(G3,G’). Therefore G3 UG’ = H; UG’ by
SC-CONG and SC-RES-COMP.

e Finally, if G; UGy —* G3 UG’ and L(G3,G’) then H UGy — H3 UG’ and L(H3,G').
Therefore G3 UG’ = H3; UG’ by SC-CONG and SC-RES-COMP.

Part (2) is similar.
STRUCT-REFL and STRUCT-TRANS are straightforward
STRUCT-SYMM follows from the induction hypothesis.
STRUCT-PAR

IfP=PandGy=1yeP|QandH =1eP |Q

up PlQ ug P'lo
and G, = /\ and H, = /\

lz‘[/P 13\}' 0] lz"PP’ 13\}' (0]

then part (1) has one remaining case. If P(G; UGy) and {12,13} NGy = & then P(1, ®
P13 QUGy). Therefore if 1, e PU130 QU Gy —* G we have 3H such that 1, ¢ P' U
130 QUGy) —* H and G —;= H by induction. Also L(G;,G) and L(H;,H). Therefore
G1UG = H;UH by SC-CONG and SC-CALC.

Part (2) is similar.

Theorem 3.8 P = Q iff whenever 1o P —* G there is H with 1 Q —* H and G —;= H.

Proof The forward direction follows by induction on the derivation of structural congru-
ence for the pi-calculus, from Proposition 3.7, while the reverse direction is straightforward.
Consider the trivial case where 16 P -G =1eP. If 16 Q —* H and H = G we have that
G+ = Ht by Lemma 3.5. Furthermore, we know that 1 ¢ Q —* H implies Hr =10 Q.
Therefore 16 P=10(Q, so P= Q by Lemma 3.5.

4 Related Work

Starting with Petri [34], there is a substantial literature on graphs as a notation for states
of concurrent computations. Examples include process algebras inspired by Petri Nets [3],
together with a range of graph-based notations such as [18] and its numerous citations. In
the area of process calculi Milner’s pi-nets [29] represent pi-calculus processes as graphs,
where each node represents a channel and edges to a node represent inputs or outputs on
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the channel. Rewrite rules on graphs coalesce nodes after an interaction. Other graph-
rewriting based models for the pi calculus include a hypergraph semantics [25] and a term
graph semantics [18]. History dependent automata [32] map the entire state space of a
pi-calculus process, where each node represents a separate state. The history of names is
recorded in the graph, but not the history of computations. Bigraphs [31] are a graphical
representation of both the computational and spatial aspects of a process. The graphical
stochastic pi-calculus [35] represents a pi-calculus process as a collection of synchronising
automata. All these process representations use graphs to represent states of computations,
but not the computation history. (However, in certain of the cases one can recover causal
relationships [10].) In contrast, a pi-chart represents one of the possible interaction histories
of a set of processes, themselves given by syntax trees.

A trace is a sequence of actions performed by a process. In the setting of the pi-calculus,
there are several formal definitions of trace, with the aim of defining properties of type sys-
tems [39], investigating asynchronous equivalences [6], and defining correspondence asser-
tions [20]. Proved traces [8,38] are decorated with the locations in the term that participated
in a transition. Pi-charts enable two-dimensional rendering and record more information,
especially regarding restricted names as the subjects and objects of communication.

Various graphical structures are used to define noninterleaving semantics and equiva-
lences of processes; this work has mainly concerned other process calculi and algebras,
but recently Varacca and Yoshida [41] develop such a semantics for the pi-calculus using
event structures [42]. In contrast, pi-charts are not directly useful (and are not intended)
for generating equivalences on processes. The equivalence induced by the set of pi-charts
{G | 1e P —* G} extending from a process P is syntactic identity, since the process P is
embedded in each member of the set. Of course, Theorem 3.4 allows us to reformulate any
equivalence relation defined using the interleaving semantics P —* Q in terms of the chart
semantics. Our development of structural congruence of graphs, leading to Theorem 3.8,
begins the study of equivalences induced by charts.

Cryptographic security protocols are often specified by protocol narrations [1], exem-
plary sequences of communications of the form “Message n X — Y: M”’, meaning that the
nth message M of the protocol goes from role X to role Y. A narration itself is essentially an
MSC. Some formalisms for security protocols represent protocol runs as MSCs, essentially.

For example, strand spaces [40] are a graphical formalism for protocol narrations, based
on strands and bundles. Each strand is a string of inputs and outputs, with implicit name
generation, representing a role in the protocol. A bundle is a directed acyclic graph obtained
by composing strands, similar to an MSC. Properties of protocols are expressed in terms
of occurrences of strands within bundles and “ancestor of” and “earlier than” relations,
similar to the causal relations in Section 2.

Crazzolara and Milicia [14] establish explicit formal links between MSCs, formalized
as pomsets [37], and the semantics of the Security Protocol Language (SPL) [15]. SPL can
be seen as a simple process calculus, with broadcast communication, but without process
forking as in the pi-calculus. They define an algorithm for constructing an MSC from any
finite trace in the transition semantics of an SPL program. Their main formal result is that
the events of such an MSC can be linearized to match the trace and moreover that every
linearization of the MSC corresponds to a trace of the original SPL program. Their MSCs
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are extracted from an existing semantics for SPL, rather than being defined directly.

5 Conclusion

To summarize, our chart semantics is the first semantics for the pi-calculus based on the
idea of message sequence charts. The main benefits of pi-charts compared to a conventional
relational semantics are: (1) pi-charts are easier to visualize; and (2) pi-charts can express
ancestry and causal dependencies that state-based relational semantics omit.

Although a chart corresponds to a single execution trace, in future we envisage verifica-
tion tools for proving properties about the set of all charts generated by a given process. For
example, this could be useful for validating high-level protocols expressed as pi-calculus
processes. In cases where the desired properties do not hold, a visual execution trace rep-
resenting a counter-example could be presented to the user.

The pi-calculus is used to model programming language features, communication and
security protocols and their properties, and more recently, aspects of systems biology (see
Appendix A for an example). Hence, the broader significance of our work beyond the pi-
calculus is that it forms a formal basis to help visualize and express properties of systems
in all of these areas.
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A A Biological Example

This example shows how pi-charts can be a useful tool for visualising interactions between
stochastic pi-calculus models of biological systems. We use the same pi-calculus syntax
and reduction rules from Sections 2 and 3, enriched with a stochastic extension along the
lines of [35]. Stochastic behaviour is incorporated into the calculus by associating each
channel a with a corresponding interaction rate given by p(a), and associating each action
T, with a delay rate r. The rates are used as the basis for a stochastic simulation algorithm,
which calculates the probability of all possible reductions at each step and stochastically
chooses the next reduction based on these probabilities.

Consider the following network of three genes that mutually repress each other, with
definitions for Gene(a,b), Blocked(a,b) and Protein(b) based on [35]:

H 113 SPiM Protein(a)
Gene(a,b) := Tyranscrive-(Gene(a,b) | Protein(b)) l ‘ Ay
+ a().Blocked(a,b) 84.75 / rJ ”HJ‘ Protein(c)

Blocked(a,b) := Tynpiock-Gene(a, b) | ] I

Protein(b) := b().Protein(b) {
+ Tdegrade 28.25 ||' l
AU

Gene(a,b) | Gene(b,c) | Gene(c,a) 0 50000

The Gene(a,b) is parameterised by its promoter region a, together with the promoter
region b that is recognised by its transcribed proteins. The gene can perform one of two
actions. Either it can transcribe a Protein(b) by doing a stochastic delay at rate transcribe,
after which the new protein is executed in parallel with the gene, or it can block by do-
ing an input on its promoter region a. The blocked gene can then unblock by doing a
stochastic delay at rate unblock. The Protein(b) can repeatedly do an output on the pro-
moter region b, or it can decay at rate degrade. According to the reduction rules of the
calculus, the output b() of the transcribed protein can interact with the input b() of a
Gene(b,c), which becomes blocked as a result. The three genes Gene(a,b), Gene(b,c)
and Gene(c,a) can mutually repress each other, since Gene(a,b) produces a protein that
can block Gene(b,c), which produces a protein that can block Gene(c,a), which produces
a protein that can block Gene(a, b), completing the cycle. This mutual repression gives rise
to alternate oscillation of protein levels, as shown in the above simulation plot, in which
the vertical axis represents the number of processes and the horizontal axis represents the
simulation time. The results were obtained with equal rates for channels a, b, c such that
p(a) > transcribe > degrade > unblock. However, the plots themselves give no indica-
tion as to what actually causes the oscillations to occur. Such a question is fundamental to
understanding the behaviour the system, and pi-charts can help to provide a partial answer.
An execution trace for the system is represented by the following pi-chart, which shows
how the system can evolve starting from one of each gene. The visual representation of
causality in the pi-chart helps to clarify the sequence of execution steps leading to the first
oscillation cycle.
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Gene(c,a) Gene(a,b) ® Gene(b,c)

transcribe

transcribe Protein(b)

Protein(a) Protein(b)

degrade
0

Gene(c,a) Protein(a) Blocked(a,b) Blocked(b,c)

The chart shows how one of the genes, in this case Gene(a, b), transcribes a Protein(b),
which immediately blocks Gene(b,c). Gene(c,a) transcribes Protein(a) soon after, which
blocks Gene(a,b).The Gene(a,b) and Gene(b,c) both remain blocked, waiting for a slow
unblock delay to fire, while Gene(c,a) is able to freely produce Protein(a) and start the
first oscillation cycle.

We have implemented a prototype stochastic simulator that automatically generates
a pi-chart during a given simulation run. The prototype was implemented as a simple
extension to the SPiM simulator,> by exporting the execution history of a simulation to a
file using the DOT syntax [19]. The DOT layout engine is then used to automatically render
the file as a pi-chart. The generated charts can be quite large, but it is relatively easily to
scroll and zoom through the charts to a time point of particular interest in the simulation.
For the above biological example one can focus on the sequence of transitions leading up
to a switch in oscillation cycles, which can be quite informative.

In general, pi-charts seem to be a convenient way of visualising and debugging the
behaviour of concurrent biological systems, and initial reactions from biologists have so
far been positive. We plan to include a pi-chart debugging option in the next release of the
SPiM simulator, so that biologists can experiment with generating their own charts from a
range of models.

B Expressing the Bounds Guaranteed by a Type System

We present a synthesis of some existing type systems, including groups (or sorts) [30],
group creation [12], and usage bounds [24]. A channel type T takes the general form
g ilo[T,...,T,]. We say g is the group of the type, and of names belonging to the type.
Groups indicate different usages, for example, REQ or RES. A name x of type T is a
channel conveying tuples of names with types 11, ..., T,. The multiplicities i and o are
upper bounds on the number of uses of x for input and output.

Group creation (vgrp g)P makes a fresh group g for use within P. Groups are repre-
sented as names, but well-typed processes cannot send them on channels. Hence, group

3 SPiM is available at http://research.microsoft.com/~aphillip/spim/.
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creation helps structure processes by confining the flow of names belonging to a group. In
particular, if a process O | (vgrp g)P is well-typed and there is a name x in group g, then
the name x is communicated only between descendants of P—the lexical scope of g—and
cannot flow to descendants of O.

Our point here is not the type system itself, an assembly of variations of existing com-
ponents, but rather to show that pi-charts can conveniently express both the usage bounds
induced by multiplicities and the secrecy properties induced by group creation. The original
statement of the latter [12, Proposition 3] relies on an informal notion of process derivation;
our statement in terms of the “ancestor of”’ relation is completely formal.

We proceed with a terse presentation of the type system. Further explanations and
examples are in the original publications [12,24,30].

Groups and Types:

I 1
g,h group: subset of the set of the names

w,i,o:=0|1|w multiplicity

T:=glo[h,...T)] polyadic channel type (n > 0)

mu=g|(x:T) item: either a group, or a name with a type
E:=2,m,...,my, typing environment: finite list of items

dom(@): =@ dom(E,g):=dom(E)U{g} dom(E,x:T)=dom(E)U{x}

| |

Our pi-calculus syntax is untyped, but we place type and group annotations on T pre-
fixes, both to guide typechecking, and to record typing information in the pi-chart seman-
tics. We take the algebra of annotations A to be the set of items, so that we can write
7,.P and T.7.P. Let typed name restriction be (vx : T)P := (vx)T.r.P and group cre-
ation be (vgrp g)P := (vg)T,.P. Every chart extending from (vx : T)P and reaching P

newx x:T
includes edges t —— 1’ and 1" — 1” and node 1” e P. Similarly, every chart extending
. . new g 8P 8
from (vgrp g)P and reaching P includes t — 1,1/ —— 1", and 1" e P.

Let the addition p + u’ of two multiplicities be the commutative function satisfying the
equations U +0=pand u+@w=wand 0+ 1 =1 and 1 + 1 = w. The addition functions
on types, items, and environments are the least partial functions to satisfy the following
equations. They are all associative and commutative.

Type, Item, and Environment Addition: 7 +7' m+m' E+E’
I

(gilo[Th,....,T,))+ (g0 [Th,....T,)])) =g 2(i+7) o+ ) [Th,...,T,]
gte=¢g
(x:T)+(x:T"):=x:(T+T)

(Dmyy....my)+(D,m), ... om),) = (S,m+m,....m,+m))
L 1

We assume a relation between process constants and lists of groups and types describing
their parameters. Specifically, for each definition A(xy,...,x,) := P, we assume that the
constant A is related to a list of group parameters hy,...,h, and a list of types T1,...,T,.
We write this as A[hy, ..., Ay, x1 2 Thyo oo, X, 0 Ty

The following rules define four judgments: E - ¢ means that the environment E is
well-formed; E - m means that the item m occurs in E; E - T means that the type T is
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well-formed in £; and E F P means that the process P is well-formed in E.
Typing Rules: E+~¢ EFm ERT EFRP
I

ENV-J ENV-GROUP ENV-NAME

Eto gé¢dom(E) EFT x¢dom(E)

ko E gko Ex:Tko

LOOKUP TYPE PROC-ZERO

g,mi,....myFo i€l.n Erg EFTy ... EFT, Eto
&,my,...,myEm; Etrg?ilo[n,...,T,] EFO

PROC-IN

Eolx:27110 [T],...,Tn] Ey,yi:1,...,y,: T, P E=Ey+E; defined

Etx(y1,--yyn)-P

PROC-OUT
PROC-NOTE PROC-CHOICE

EoyFx:g?20!1[N,...,T,)] Eiby:T; Yiel.n

E,.1FP E=Ey+---+E, defined E+-m EFP EFM EEN

EFX(1,....y).P Et+1,.P EFM+N
PROC-RES-GROUP PROC-RES PROC-PAR
E,gkP Ex:TFP  EFP, E;-P E=E +E, defined
Et (vgrp g)P EF(vx:T)P EFP | P
PROC-CONST

A[l/ll,...,hm,xl Y TR 7;1] o= {g_//hj |]€ 1..m}
EFo Elg; Vjel.m Ebci:Tioc Viel.n E=E+ --+E, defined

EtA(ct,...,cn)

L 1
We assume that hy, ..., hy,,x; 2 Tq,...,x, : T, B P for each definition A(xy,...,x,) := P
where A[hy, ... . hy,x1 2 Th, .o x0Tl

Theorem B.1 Suppose E \- [G+], G is a pi-chart, and T =g % o [T},...,T,].

x:T
(1) If yy —> 1, then the number of communications on x in G is no more than min(i, o).

8 :T
2 Ify —»1and i i 14 then 1, [Ancestor] 13.

(y)onz _
Moreover, if s — 16 and x € fn(y,z) then 1, [Ancestor] 15 and 1, [Ancestor] 16.

We can explain the secrecy property of group creation by appeal to this theorem. Sup-
pose that E+ O | (vgrp g)P, and consider any pi-chart G such that GT =1e (O | (vgrp g)P)
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for some 1. Such a G represents an arbitrary interaction between the process O and the pro-
cess (vgrp g)P. Unless G is a singleton, in which case it includes no interactions, it must
include an instance of the primitive chart for parallel composition, with edges 1t — 1’ and

t — 1", and nodes " e O and 1" e (vgrp g)P. As discussed above, if P is reached, there

new g grp g
must be edges 1 — 1y, 1] — 1, and a node 1, @ P. By Lemma 2.5, no descendant of

' O is a descendant of 1, e P, and the converse. If a name x of group g is created, there

:T
must be an edge 13 = 14, where g is the group of 7. By Theorem B.1(ii), 1, [Ancestor]| 13,

that is, a descendant of P creates the name x. Now, consider any communication of x, that

() onz
is, consider any edge 15 —— 15 with x € fn(y). By Theorem B.1(ii), 1, [Ancestor] 15 and

1 [Ancestor] 1, that is, both the sender ts and the receiver 14 of the tuple y containing x
are descendants of P. Additionally, the theorem implies that all communications on the
channel x itself are between descendants of P.

Hence, pi-charts directly formalize the intention that “channels of group g are forever
secret outside the initial scope of (vgrp g)” [12].
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