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Abstract
This paper presents a new feature compensation approach to
noisy speech recognition by using high-order vector Taylor se-
ries (HOVTS) approximation of an explicit model of environ-
mental distortions. Formulations for maximum likelihood (ML)
estimation of noise model parameters and minimum mean-
squared error (MMSE) estimation of clean speech are derived.
Experimental results on Aurora2 database demonstrate that the
proposed approach achieves consistently significant improve-
ment in recognition accuracy compared to traditional first-order
VTS based feature compensation approach.

Index Terms— robust speech recognition, feature compen-
sation, vector Taylor series, distortion model.

1. Introduction
Most of current automatic speech recognition (ASR) systems
use MFCCs (Mel-Frequency Cepstral Coefficients) and their
derivatives as speech features, and a set of Gaussian mix-
ture continuous density HMMs (CDHMMs) for modeling ba-
sic speech units. It is well known that the performance of such
an ASR system trained with clean speech will degrade signif-
icantly when the testing speech is distorted by additive noises.
How to achieve the noise robustness has been an important re-
search topic in ASR field. Among many approaches proposed
previously, one type of approaches is the so-called feature com-
pensation approach using explicit model of environmental dis-
tortions (e.g., [5, 4]), which is also the topic of this paper. For
our approach, it is assumed that in the time domain, the “cor-
rupted” speech y[t] is subject to the following explicit distortion
model:

y[t] = x[t] + n[t] (1)
where independent signals x[t] and n[t] represent the tth sample
of clean speech and additive noise, respectively. By ignoring
correlations between different filter banks, the distortion model
in log power-spectrum domain can be expressed approximately
as

exp(y) = exp(x) + exp(n) (2)
where y, x and n are log power-spectrums in a particular chan-
nel of the filterbank of noisy speech, clean speech and noise, re-
spectively. The nonlinear nature of the above distortion model
makes statistical modeling and inference of the above variables
difficult, therefore certain approximations have to be made. Un-
derstandably, a simple linear approximation, namely the first-
order vector Taylor series (VTS) approximation, has been tried
in the past (e.g., [5, 4]).
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There are also efforts in using high-order VTS (HOVTS)
to improve the above first-order VTS approximation. In [3],
the above nonlinear distortion function is first expanded using
HOVTS. Then a linear function is found to approximate the
above HOVTS by minimizing the mean-squared error incurred
by this approximation. Given the linear function, the remain-
ing inference is the same as in using the traditional first-order
VTS to approximate the nonlinear distortion function directly.
In [7], the above nonlinear distortion function is approximated
by a second-order VTS. Using this relation, the mean vector of
the relevant noisy speech feature vector can be derived, which
naturally includes a term related to the second-order term in
HOVTS. In this paper, we extend the work in [7] in the follow-
ing ways: 1) the nonlinear distortion function can be approxi-
mated by HOVTS with any order, 2) the required sufficient sta-
tistics are derived for estimating both noise model parameters
and clean speech feature vector. In comparison with the work
in [3], correlations among different channels of filterbank can
be considered by our approach.

The rest of the paper is organized as follows. In Section 2,
we give an overview of the general formulation of our feature
compensation approach. In Section 3, we present the detailed
formulation of how to calculate the required sufficient statistics
based on HOVTS approximation. In Section 4, we report exper-
imental results and finally we conclude the paper in Section 5.

2. Our Feature Compensation Approach
The flowchart of our feature compensation approach is illus-
trated in Fig. 1. In the training stage, a Gaussian mixture model
(GMM), p(xc

t) =
�M

m=1 ωmN (xc
t ; μ

c
x,m,Σc

x,m), is trained
from clean speech using MFCC features without cepstral mean
normalization (CMN), where μ

c
x,m, Σ

c
x,m, and ωm are mean

vector, diagonal covariance matrix and mixture weight of the
mth component, respectively. The relevant model parameters
can be transformed from cepstral domain to log-power-spectral
domain for later use as follows:

μ
l
x,m = C

+
μ
c
x,m (3)

Σ
l
x,m = C

+
Σ
c
x,m(C+)� (4)

where C+ is the Moore-Penrose inverse [2] of the discrete co-
sine transform (DCT) matrix C, the superscript ‘l’ and ‘c’ in-
dicate the log-power-spectral domain and cepstral domain, re-
spectively.

Let’s assume that for each sentence, the noise feature vector
nc in cepstral domain follows a Gaussian PDF (probability den-
sity function) with a mean vector μc

n
and a diagonal covariance

matrix Σc
n, which can be estimated in the recognition stage as

follows:
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Figure 1: Flowchart of our feature compensation approach.

Step 1: Initialization:
We first estimate the initial noise model parameters in
cepstral domain by simply taking the sample mean and
covariance of the MFCC features from the first several
(10 in our experiments) frames of the unknown utter-
ance.

Step 2: Transform noise model parameters from cepstral do-
main to log-power-spectral domain as follows:

μ
l
n

= C
+

μ
c
n

(5)
Σ
l
n = C

+
Σ
c
n(C+)� . (6)

Step 3: In log-power-spectral domain, use HOVTS approxi-
mation to calculate, as described in next section, the rel-
evant statistics, μl

y,m,Σ
l
y,m,Σl

xy,m,Σl
ny,m, which are

required for noise re-estimation and clean speech estima-
tion.

Step 4: Transform the above statistics back to cepstral domain
as follows:

μ
c
y,m = Cμ

l
y,m (7)

Σ
c
y,m = CΣ

l
y,m(C)� (8)

Σ
c
xy,m = CΣ

l
xy,m(C)� (9)

Σ
c
ny,m = CΣ

l
ny,m(C)� . (10)

Step 5: Use the following updating formulas (e.g., [6, 4]) to
re-estimate the noise model parameters:

μ
n

=

�T

t=1

�M

m=1 P (m|yt)En[nt|yt, m]
�T

t=1

�M

m=1 P (m|yt)
(11)

Σn =

�T

t=1

�M

m=1 P (m|yt)En[ntn
�
t |yt, m]

�T

t=1

�M

m=1 P (m|yt)
−μ

n
μ
�
n

(12)

where

P (m|yt) =
ωmpy(yt|m)
�M

l=1 ωlpy(yt|l)
. (13)

In the above equations, we have dropped the cep-
stral domain indicator “c” in relevant variables for no-
tational convenience. Furthermore, py(yt|m) is the
PDF of the noisy speech yt for the mth compo-
nent of the mixture of densities for the compensated
noisy speech, which is approximated by a Gaussian
PDF, N (yt; μy,m,Σy,m), via “moment-matching”.
En[nt|yt, m] andEn[ntn

�
t |yt, m] are the relevant con-

ditional expectations evaluated as follows:

En[nt|yt, m] = μ
n

+ Σny,mΣ
−1
y,m(yt − μ

y,m) (14)

En[ntn
�
t |yt, m] = En[nt|yt, m]E�n [nt|yt, m] +

Σn −Σny,mΣ
−1
y,mΣyn,m . (15)

Step 6: Repeat Step 2 to Step 5 several times.

Given the noisy speech and noise estimation, the minimum
mean-squared error (MMSE) estimation of clean speech feature
vector in cepstral domain can be calculated as

x̂t = Ex [xt|yt] =
M�

m=1

P (m|yt)Ex [xt|yt, m] (16)

where Ex [xt|yt, m] is the conditional expectation of xt given
yt for themth mixture component and can be evaluated as fol-
lows:

Ex[xt|yt, m] = μ
x,m + Σxy,mΣ

−1
y,m(yt − μ

y,m) . (17)

The other modules in Fig. 1 are self-explained.
In next section, we elaborate on how to calculate the re-

quired statistics, μl
y,m, Σ

l
y,m, Σl

xy,m, Σl
ny,m, using HOVTS

approximation of the nonlinear distortion function in Eq. ( 2).
For notational convenience, we drop hereinafter the indices re-
lated to the frame number, mixture component, and channel in-
dex of the filterbank without causing confusions.

3. Computation of Required Statistics
The explicit distortion model in Eq. ( 2) is reformulated in the
scalar form as follows:

y = f(x, n) = log(exp(x) + exp(n)) . (18)

Then the K-order Taylor series of f(x, n) with the expansion
point (μx, μn) can be represented as

fK(x,n)

=

K�
k=0

1

k!

�
(x− μx)

∂

∂x
+ (n− μn)

∂

∂n

�k

f(μx, μn)

=

K�
k=0

k�
r=0

A(k, r)(x− μx)k−r(n− μn)r (19)

where

A(k, r) =
1

r!(k − r)!

∂kf(x, n)

∂xk−r∂nr

����
(μx,μn)

(20)
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and

∂kf(x, n)

∂xk−r∂nr

����
(μx,μn)

=

�����
����

log(exp(μx) + exp(μn)), k = 0, r = 0
1− 1

1+exp(μn−μx)
, k = 1, r = 1

1
1+exp(μn−μx)

, k = 1, r = 0

(−1)k−r
�k

p=1
B(k,p)

[1+exp(μn−μx)]p
, k > 1

. (21)

When k > 1 and k ≥ p ≥ 1, the coefficients B(k, p) in Eq.
( 21) can be evaluated by using the following recursive relation

B(k, p) = (p− 1)B(k − 1, p− 1) − pB(k − 1, p) (22)

with the initial condition

B(1, 1) = −1, B(k, 0) = B(k, k + 1) = 0, k ≥ 1 . (23)

For convenience, we also define the following expectations:

E
i
xn[g(x,n)] =

��
g(xi

, n
i)pxn(xi

, n
i)dx

i
dn

i (24)

E
ij
xn[g(x,n), h(x, n)] =

����
g(xi

, n
i)h(xj

, n
j)

pxn(xi
, x

j
, n

i
, n

j)dx
i
dx

j
dn

i
dn

j (25)

where g(xi, ni) and h(xj , nj) are two general functions, i and
j are dimensional indices.

Given the above notations and results, we summarize in the
following subsections the main statistics required in implement-
ing our feature compensation approach.

3.1. Calculating μy(i)

Let’s use μy(i) to denote the ith element of the vectorμ
y
. Using

the definition of the mean parameter, we have

μy(i)
.
= E

i
xn[fK(x, n)]

=

K�
k=0

k�
r=0

A
i(k, r)Ei

xn[(x− μx)k−r(n− μn)r]

=

K�
k=0

k�
r=0

A
i(k, r)M i

n(r)M i
x(k − r) (26)

where

M
i
Δ(p) =

	
0, if p is odd
(p− 1)!!σp

Δ(i), otherwise (27)

Δ represents ‘x’ or ‘n’. Ai(k, r) is the value of Eq. ( 20) for
the ith dimension.

3.2. Calculating σ2
y(i, j)

Let’s use σ2
y(i, j) to denote the (i, j)th element of the matrix

Σy. Using the definition of the covariance, we have

σ
2
y(i, j)

.
= E

ij
xn[fK(x, n), fK(x, n)]− μy(i)μy(j)

=

K�
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k1�
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k2�
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A
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ij
n (r1, r2)

M
ij
x (k1 − r1, k2 − r2)− μy(i)μy(j) (28)

where

M
ij
Δ (p, q) =

�����
����

0, if p + q is odd
p!q!2−

p+q
2

�p−l is even
0≤l≤min(p,q)

2l

l!( p−l
2

)!( q−l
2

)!
σ

p−l

Δ (i, i)

σ2l
Δ(i, j)σq−l

Δ (j, j), otherwise

.

(29)

3.3. Calculating σ2
xy(i, j)

Let’s use σ2
xy(i, j) to denote the (i, j)th element of the matrix

Σxy. Using the definition of the covariance parameter, we have

σ
2
xy(i, j)

= E
ij
xn[(x− μx), (y − μy)]

=
K�

k=0

k�
r=0

A
j(k, r)M j

n(r)M ij
x (1, k − r) . (30)

3.4. Calculating σ2
ny(i, j)

Let’s use σ2
ny(i, j) to denote the (i, j)th element of the matrix

Σny. Using the definition of the covariance parameter, we have

σ
2
ny(i, j)

= E
ij
xn[(n− μn), (y − μy)]

=
K�

k=0

k�
r=0

A
j(k, r)M ij

n (1, r)M j
x(k − r) . (31)

4. Experiments and Results
4.1. Experimental Setup

In order to verify the effectiveness of the proposed approach,
a series of experiments are performed for the task of speaker
independent recognition of connected digit strings on Aurora2
database. A full description of the Aurora2 database and a test
framework is given in [1].

In our ASR systems, the feature vector we used consists
of 13 MFCCs (including C0) plus their first and second order
derivatives. The number of Mel-frequency filter banks is 23.
MFCCs are computed based on power spectrum. Each digit
is modeled by a whole-word left-to-right CDHMM, which con-
sists of 16 emitting states, each having 3 Gaussian mixture com-
ponents. The mixture number of clean-speech GMM for feature
compensation is 256. “Clean-training” is used. Our baseline
systems refer to the ones with CMN but no other feature com-
pensation applied.

4.2. Experimental Results

Table 1 summarizes a performance (word accuracy in %) com-
parison of the baseline system and several robust ASR systems
using HOVTS-based feature compensation for cases of using
first 10 frames to estimate noise model parameters (referred to
as “NO”), and using ML noise re-estimation (four EM itera-
tions, referred to as “YES”). The performance is averaged over
SNRs between 0dB and 20dB on test Set A, Set B and Set C
respectively. Several observations can be made. First, all the
robust systems using HOVTS-based feature compensation out-
perform the “Baseline” system. Second, all the feature compen-
sation methods using noise re-estimation perform better than
those without noise re-estimation. Third, “VTS(3)” performs
better than “VTS(2)”, and “VTS(2)” outperforms “VTS(1)”.
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Table 3: Detailed results of VTS(3)-based feature compensation using noise reestimation on Aurora2 database.
Clean Training - Results

Set A Set B Set C
Subway Babble Car Exhibition Restaurant Street Airport Station Subway M Street M Avg.

Clean 98.93 99.21 99.05 99.07 98.93 99.21 99.05 99.07 98.96 99.24 99.07
20dB 98.04 98.34 98.78 98.49 98.53 97.91 98.72 98.70 98.07 97.91 98.35
15dB 96.41 97.22 98.00 96.85 97.67 96.43 97.88 97.81 95.98 96.58 97.08
10dB 93.28 93.86 95.74 93.61 94.44 93.20 95.74 95.09 92.08 92.14 93.92
5dB 85.78 83.25 88.55 84.23 82.87 83.86 87.35 86.24 83.24 80.96 84.63
0dB 65.89 56.29 66.00 64.52 59.23 61.46 68.33 64.52 61.38 53.57 62.12
-5dB 31.78 21.49 25.08 32.49 24.99 26.27 31.05 28.17 28.15 23.40 27.29
Avg. 87.88 85.79 89.41 87.54 86.55 86.57 89.60 88.47 86.15 84.23 87.22

Table 1: Performance (word accuracy in %) comparison of the
baseline system and several robust ASR systems using HOVTS-
based feature compensation, averaged over SNRs between 0dB
and 20dB across all noise conditions on three different test sets
of Aurora2 database.

Methods Set A Set B Set C Overall
Baseline 66.55 71.57 67.43 68.74

VTS(1) 85.10 85.38 82.80 84.75
NO VTS(2) 85.77 86.27 83.70 85.55

VTS(3) 86.69 86.90 84.84 86.41
VTS(1) 86.24 86.52 83.86 85.88

YES VTS(2) 86.90 87.19 84.57 86.55
VTS(3) 87.66 87.80 85.19 87.22

Table 2: Performance (word accuracy in %) comparison of sev-
eral methods averaged over three test sets of Aurora2 dababase
at each SNR.

Methods 0dB 5dB 10dB 15dB 20dB
Baseline 24.64 49.33 79.57 93.04 97.10

VTS(1) 56.92 80.92 91.95 96.20 97.78
NO VTS(2) 57.89 82.10 92.91 96.74 98.14

VTS(3) 59.88 83.56 93.47 96.94 98.18
VTS(1) 58.83 82.82 92.99 96.72 98.03

YES VTS(2) 60.33 83.67 93.56 96.92 98.28
VTS(3) 62.12 84.63 93.92 97.08 98.35

Apparently the third-order information seems useful, but no fur-
ther improvement is observed when the order is more than three.

Table 2 gives a performance (word accuracy in %) compar-
ison of several methods averaged over three test sets of Aurora2
database at each SNR (in dB). Similar observations can also be
made under different SNRs.

Overall, ”VTS(3)” using noise re-estimation achieves the
best performance in all testing conditions. Detailed results for
this approach are listed in Table 3.

5. Summary and Future Work
In this paper, we have proposed a feature compensation ap-
proach using high-order vector Taylor series (HOVTS) approx-
imation of an explicit distortion model. Its effectiveness has
been confirmed in an experimental study on both Aurora2 and
Aurora3 databases, but only experimental results on Aurora2
are reported in this paper due to the page limit. Ongoing and
future works include

• to study HOVTS-based HMM compensation,

• to explore irrelevant variability normalization (IVN)
based HMM training using HOVTS,

• to apply the similar idea to speech enhancement.
We will report those results elsewhere when they become avail-
able.

6. References
[1] H. G. Hirsch and D. Pearce, “The AURORA experimen-

tal framework for the performance evaluations of speech
recognition systems under noisy conditions,” Proc. ISCA
ITRW ASR, 2000, pp.181-188.

[2] Y. Hu and Q. Huo, “Irrelevant variability normalization
based HMM training using VTS approximation of an ex-
plicit model of environmental distortions,” Proc. Inter-
speech, 2007, pp.1042-1045.

[3] N. S. Kim, “Statistical linear approximation for envi-
ronment compensation,” IEEE Signal Processing Letters,
Vol. 5, No. 1, pp.8-10, 1998.

[4] D.-Y. Kim, C.-K. Un, and N.-S. Kim, “Speech recogni-
tion in noisy environments using first-order vector Taylor
series,” Speech Communication, Vol. 24, pp.39-49, 1998.

[5] P. J. Moreno, B. Raj, and R. M. Stern, “A vector Taylor se-
ries approach for environment-independent speech recog-
nition,” Proc. ICASSP, 1996, pp.733-736.

[6] R. C. Rose, E. M. Hofstetter, and D. A. Reynolds, “Inte-
grated models of signal and background with application
to speaker identification in noise,” IEEE Trans. on Speech
and Audio Processing, Vol. 2, No. 2, pp.245-257, 1994.

[7] V. Stouten, Robust Automatic Speech Recognition in Time-
Varying Environemnts, Ph.D. thesis, Katholieke Univer-
siteit Leuven, 2006.

[8] G.-H. Ding, B. Xu, “Exploring high-performance speech
recognition in noisy environments using high-order Taylor
series expansion,” Proc. ICSLP, 2004, pp.149-152.

1260


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Jun Du
	Also by Qiang Huo
	------------------------------

