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Abstract
This paper presents a speech enhancement approach derived
by using a piecewise linear approximation (PLA) of an ex-
plicit model of environmental distortions. PLA is a generaliza-
tion of two traditional approaches, namely vector Taylor series
(VTS) and MAX approximations. Formulations are described
for both maximum likelihood (ML) estimation of noise model
parameters and minimum mean-squared error (MMSE) estima-
tion of clean speech. Evaluation experiments are conducted
to enhance speech signals corrupted by several types of addi-
tive noises. Compared to the traditional MAX-approximation
based approach, our PLA-based speech enhancement approach
achieves better performance in terms of two objective quality
measures, namely segmental SNR and log-spectral distortion.

Index Terms— speech enhancement, piecewise linear ap-
proximation, distortion model.

1. Introduction
Enhancing noisy speech captured by a single microphone for
improving listening experience by human has been a long stand-
ing research problem in the past several decades. Among many
approaches developed over the years (e.g., [11, 4, 2] and the
references therein), we are interested in a class of speech en-
hancement algorithms which are derived from three key ele-
ments, namely a statistical reference clean speech model pre-
trained from some training data, a noise model with parameters
estimated from the noisy speech to be enhanced, and an explicit
distortion model characterizing how speech is distorted (e.g.,
[4, 5, 6, 1]).

In particular, for the approach described in [1], it is assumed
that in the time domain, the “corrupted” speech yt(l) is subject
to the following explicit distortion model:

yt(l) = xt(l) + nt(l) (1)

where independent signals xt(l) and nt(l) represent the lth sam-
ple of clean speech and additive noise, respectively. Then in
frequency domain, we have

y
f = x

f + n
f (2)

where yf, xf and n
f represent the spectra of noisy speech, clean

speech and additive noise, respectively. By ignoring correla-
tions among different frequency bins, the distortion model in
the log-power-spectral domain can be expressed approximately
as

exp(yl) = exp(xl) + exp(nl) (3)

This work has been done when the first author was an intern at
Microsoft Research Asia, Beijing, China.

where yl, xl and n
l are log-power spectra of noisy speech, clean

speech and noise, respectively. The nonlinear nature of the
above distortion model makes statistical modeling and inference
of the above variables difficult, therefore certain approximations
have to be made. In [1], a so-called MAX approximation is
used, which was developed originally in [13] for robust auto-
matic speech recognition (ASR). In this paper, we propose to
use a more accurate approximation, namely a piecewise linear
approximation (PLA) of the above nonlinear distortion model,
to derive a new speech enhancement algorithm. It is noted that
we had also used the above PLA approximation to derive a fea-
ture compensation approach for robust ASR, whose results were
reported in [3].

The rest of the paper is organized as follows. In Section 2,
we introduce our PLA-based method for speech enhancement.
In Section 3, we present evaluation results. Finally, we conclude
the paper in Section 4.

2. Our Approach
2.1. System Overview

A block diagram of our speech enhancement system is illus-
trated in Fig. 1. In the training stage, as in [1], a Gaussian mix-
ture model (GMM) with diagonal covariance matrices is trained
from clean speech using log-power spectra features. Let’s use
{ωm, m = 1, 2, · · · , M} to denote the set of M mixture co-
efficient weights. In the enhancement stage, by ignoring the
correlations among different frequency bins, we can do fea-
ture compensation in the log-power-spectral domain for differ-
ent frequency bins independently. In the following subsections,
we elaborate on several modules in Fig. 1.

2.2. Feature Extraction

First, we apply a short-time Fourier analysis to the input signal
by computing the DFT of each overlapping windowed frame:

yf(k) =

L−1�

l=0

yt(l)h(l)e−j2πkl/L k = 0, 1, · · · , L− 1. (4)

where k is the frequency bin index, h(l) denotes the window
function (Hamming window here). Then log-power spectra are
defined as

yl(k) = log |yf(k)|2 k = 0, 1, · · · , K − 1 (5)

where K = L/2 + 1. For k = K, · · · , L − 1, yl(k) may be
obtained using symmetry yl(k) = yl(L − k). The relations
among yt(l), yf(k), yl(k), and phase information ∠yf(k) are
shown in the feature extraction module of Fig. 1.
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Figure 1: A block diagram of our speech enhancement system.

2.3. Waveform Reconstruction

After we obtain the estimation of the log-power spectrum of
clean speech, x̂l(k), from PLA module, the reconstructed spec-
trum x̂f(k) is given by

x̂f(k) = exp{x̂l(k)/2} exp{j∠yf(k)} , (6)

where the phase information ∠yf(k) is derived from the orig-
inal noisy speech. Then a frame of speech signal, {x̂t(l); l =
0, 1, · · · , L − 1}, is reconstructed by computing inverse DFT
(IDFT) of the current frame of spectrum as follows:

x̂t(l) =
1

L

L−1�

k=0

x̂f(k)ej2πkl/L . (7)

Waveform for the whole utterance can then be synthesized by
using a traditional overlap-add procedure as described in [8]
where the same Hamming window as in speech analysis step
is used for waveform synthesis.

2.4. PLA Module

Let’s assume the noise feature vector n
l follows a Gaussian

PDF (probability density function) with a mean vector μμμn and
a diagonal covariance matrix ΣΣΣn respectively. We have stud-
ied two ways of estimating {μμμn,ΣΣΣn}. The first approach sim-
ply takes the sample mean and covariance of the relevant fea-
tures from the first several (10 in our experiments) frames of the
noisy speech utterance. The second approach uses a maximum
likelihood (ML) estimation of {μμμn,ΣΣΣn} from the whole noisy
speech utterance with T frames of observations, which can be
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Figure 2: An illustration of several special cases of PLA.

solved by using EM algorithm iteratively (e.g., [15, 10]). The
EM updating formulas are as follows:

μμμ
n

=

�T−1

t=0

�M
m=1

P (m|ylt)En[nlt|y
l
t, m]�T−1

t=0

�M
m=1

P (m|ylt)
(8)

ΣΣΣn =

�T−1

t=0

�M
m=1

P (m|ylt)En[nlt(n
l
t)
�|ylt, m]�T−1

t=0

�M
m=1

P (m|ylt)
−μμμ

n
μμμ�

n

(9)
where

P (m|ylt) =
ωmpy(ylt|m)�M
l=1

ωlpy(ylt|l)
. (10)

In the above equations, py(ylt|m) is the PDF of the
noisy speech y

l
t for the mth component of the compen-

sated noisy speech mixture of densities, En[nlt|y
l
t, m] and

En[nlt(n
l
t)
�|ylt, m] are the relevant conditional expectations,

t is the frame index.
Given the noisy speech and noise estimation, the minimum

mean-squared error (MMSE) estimation of clean speech can be
calculated as

x̂
l
t = Ex

�
x
l
t|y

l
t

�
=

M�
m=1

P (m|ylt)Ex

�
x
l
t|y

l
t, m

�
(11)

where Ex

�
x
l
t|y

l
t, m

�
is the conditional expectation of xlt given

y
l
t for themth mixture component. Finally, the estimated clean-
speech features in the log-power-spectral domain are converted
to time domain through waveform reconstruction.

To implement the above feature compensation approach,
the key technical issues become how to calculate py(ylt|m),
Ex

�
x
l
t|y

l
t, m

�
, Ex

�
x
l
t(x

l
t)
�|ylt, m

�
, En[nlt|y

l
t, m], and

En[nlt(n
l
t)
�|ylt, m], respectively. The complete set of formu-

las can be found in [3].
As we discussed in [3], both the MAX approximation and

the first-order vector Taylor series (VTS) approximation (e.g.,
[12]) can be treated as special cases of PLA as illustrated in
Fig. 2.
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Table 1: Comparison of segmental SNR (SegSNR) of noisy speech with that of enhanced speech by “NO MAX” approach.
Input AWGN Babble Noise Restaurant Noise Street Noise

SNR[dB] Noisy NO MAX Noisy NO MAX Noisy NO MAX Noisy NO MAX
20 10.19 12.03 10.66 11.14 11.29 11.28 10.27 10.78
15 5.60 8.53 6.07 6.68 6.58 7.10 5.65 6.30
10 1.12 4.87 1.60 2.83 2.04 2.99 1.16 2.59
5 -3.26 1.86 -2.76 -0.03 -2.39 -0.81 -3.23 -0.53
0 -7.41 -0.75 -6.90 -2.80 -6.60 -4.61 -7.39 -3.65
-5 -11.20 -3.32 -10.75 -4.73 -10.58 -8.17 -11.19 -6.52
-10 -14.54 -5.28 -14.16 -6.86 -14.17 -11.64 -14.53 -9.29

Table 2: Comparison of log-spectral distortion (LSD) of noisy speech with that of enhanced speech by “NO MAX” approach.
Input AWGN Babble Noise Restaurant Noise Street Noise

SNR[dB] Noisy NO MAX Noisy NO MAX Noisy NO MAX Noisy NO MAX
20 4.79 2.53 3.02 1.96 2.67 2.07 3.29 2.34
15 7.86 3.48 4.57 2.89 4.57 3.19 5.44 3.46
10 11.41 4.37 6.62 4.08 7.31 4.58 8.38 4.71
5 15.31 5.53 9.25 5.42 10.65 6.22 11.93 6.12
0 19.48 6.60 12.43 7.35 14.46 8.26 15.87 7.53
-5 23.85 8.03 16.12 9.46 18.59 10.34 20.13 9.25
-10 28.37 9.39 20.17 12.21 22.96 13.40 24.61 11.50

3. Evaluation Experiments
3.1. Experimental Setup

In our experiments, the following three enhancement methods
are compared:

• NO MAX: the reference speech enhancement system as
described in [1], where noise re-estimation is NOT con-
ducted and MAX approximation is used for MMSE esti-
mation of clean speech spectrum;

• NO PLA: noise re-estimation is NOT conducted and
PLA(3) approximation is used for MMSE estimation of
clean speech spectrum;

• MAX PLA: MAX approximation is used for noise re-
estimation and PLA(3) approximation is used for MMSE
estimation of clean speech spectrum.

The noise signals used in our evaluation include synthetic ad-
ditive white Gaussian noises (AWGN) and three other types of
noise recordings extracted from Aurora2 database [9], namely
babble (crowd of people), restaurant, and street. A total of 800
clean-speech sentences from 40 males and 40 females (10 sen-
tences per speaker) are selected from TIMIT database [7] for
training the clean speech GMM with 32 Gaussian components.
Another 1680 clean-speech sentences from 112 males and 56
females (10 sentences per speaker) in TIMIT database are used
to generate the set of testing sentences for each combination of
noise type and SNR (as measured in Aurora2 database). All
the speech samples from TIMIT database are down-sampled to
8KHz. For speech analysis, the frame length is set as L = 256
and the frame shift R = 128. When applicable, the number of
EM iterations for noise re-estimation is set as 4.

The performance is evaluated by two objective quality mea-
sures and informal listening tests. The first objective quality
measure is segmental SNR (SegSNR, in dB) defined as follows

(e.g., [14, 2]):

SegSNR =
1

T

T−1�

t=0

C1

�
10 lg

�L−1

l=0
[xt(l + tR)]2�L−1

l=0
[xt(l + tR)− x̂t(l + tR)]2

�

(12)
where T denotes the number of frames in the signal, and

C1(z) = min [max(z,−20), 30] . (13)

The above operator C1(·) confines the SNR at each frame to
the perceptually meaningful range between 30dB and -20dB,
which prevents the segmental SNR measure from being biased
in either a positive or negative direction due to a few silence
or unusually high SNR frames, because they do not contribute
significantly to the overall speech quality.

The second objective quality measure is log-spectral distor-
tion (LSD, in dB) defined as follows (e.g., [2]):

LSD =
1

T

T−1�
t=0

��
� 1

L/2 + 1

L/2�
k=0

�
10 lg

C2(x
f
t(k))

C2(x̂ft(k))

	2
�
�

1

2

(14)
where

C2(z
f
t(k)) = max

�
|zft(k)|2, 10−50/10 max

t,k
(|zft(k)|2)

	
(15)

is the clipped power spectrum such that the dynamic range of
the log-spectrum is confined to about 50dB.

3.2. Evaluation Results

Table 1 summarizes a comparison of SegSNR of noisy speech
with that of enhanced speech by “NO MAX” approach, where
“Input SNR” denotes the global SNR of the testing utterances
as measured in Aurora2 database [9]. A similar comparison is
made in terms of LSD in Table 2. It is observed that NO MAX
approach achieves significant performance improvement in all
cases with different noises and SNR levels. This is especially
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Table 3: Comparison of segmental SNRs (SegSNR) of enhanced speech by NO MAX, NO PLA, MAX PLA approaches respectively.
Input AWGN Babble Noise Restaurant Noise Street Noise

SNR[dB]NO MAXNO PLAMAX PLANO MAXNO PLAMAX PLANO MAXNO PLAMAX PLANO MAXNO PLAMAX PLA
5 1.86 2.12 3.04 -0.03 -0.02 1.22 -0.81 -0.68 0.52 -0.53 -0.40 1.77
0 -0.75 -0.51 0.86 -2.80 -2.47 -1.19 -4.61 -4.40 -2.68 -3.65 -3.41 -0.17
-5 -3.32 -2.95 -1.11 -4.73 -4.40 -3.35 -8.17 -8.02 -5.14 -6.52 -6.23 -2.07
-10 -5.28 -5.15 -2.31 -6.86 -6.37 -5.37 -11.64 -11.40 -7.37 -9.29 -8.94 -3.62

Table 4: Comparison of log-spectral distortion (LSD) of enhanced speech by NO MAX, NO PLA,MAX PLA approaches respectively.
Input AWGN Babble Noise Restaurant Noise Street Noise

SNR[dB]NO MAXNO PLAMAX PLANO MAXNO PLAMAX PLANO MAXNO PLAMAX PLANO MAXNO PLAMAX PLA
5 5.53 5.42 5.67 5.42 5.36 5.15 6.22 5.98 5.58 6.12 5.97 5.41
0 6.60 6.50 6.40 7.35 7.27 6.79 8.26 7.92 7.20 7.53 7.36 6.60
-5 8.03 7.79 7.52 9.46 9.26 8.99 10.34 9.98 8.73 9.25 8.93 7.91
-10 9.39 9.35 8.25 12.21 11.68 11.41 13.40 12.86 10.83 11.50 10.95 8.89

true for AWGN, because the relevant modeling assumptions are
more accurate in this case.

Table 3 summarizes a comparison of SegSNR of enhanced
speech by “NO MAX”, “NO PLA”, “MAX PLA” approaches,
respectively. A similar comparison is made in terms of LSD in
Table 4. Here only the results for those cases with SNR below
10dB are given because the reference method “NO MAX” is
good enough for cases with SNR above 10dB and there is no
big performance difference among three approaches compared.
By comparing “NO PLA” with ”NO MAX”, it is observed that
both SegSNR and LSDmeasures are improved in all cases when
the more accurate PLA is used in MMSE estimation of clean
speech. By comparing “MAX PLA” with “NO PLA”, it is also
observed that both SegSNR and LSD measures are improved in
almost all cases when noise re-estimation is conducted. Appar-
ently, “MAX PLA” achieves the best performance.

We have also compared spectrograms of noisy speech and
enhanced speech with different approaches. Compared with
“NO MAX”, we found that “MAX PLA” can suppress better
the residual noise after speech enhancement. This is confirmed
by informal listening tests as well.

To understand the computational complexity of the pro-
posed “MAX PLA” approach, a timing experiment is con-
ducted on a “Pentium-4” PC with a 3GHz clock by using three
testing sentences with different lengths of 1s, 1.93s, and 7.47s,
respectively. The total User CPU Time for enhancing the above
three noisy sentences are 2.78s, 5.52s, and 21.33s, respectively.
The main overhead comes from the noise re-estimation part.

4. Summary

We have presented a new speech enhancement approach de-
rived by using a piecewise linear approximation (PLA) of an
explicit model of environmental distortions. Formulations are
described for both ML estimation of noise model parameters
and MMSE estimation of clean speech. Evaluation experi-
ments are conducted to enhance speech signals corrupted by
several types of additive noises. Compared to the traditional
MAX-approximation based approach, our PLA-based speech
enhancement approach achieves better performance in terms of
segmental SNR and log-spectral distortion.
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